首页 > 最新文献

Metabolic Engineering Communications最新文献

英文 中文
mfapy: An open-source Python package for 13C-based metabolic flux analysis mfapy:一个开源Python包,用于基于13c的代谢通量分析
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00177
Fumio Matsuda, Kousuke Maeda, Takeo Taniguchi, Yuya Kondo, Futa Yatabe, Nobuyuki Okahashi, Hiroshi Shimizu

13C-based metabolic flux analysis (13C-MFA) is an essential tool for estimating intracellular metabolic flux levels in metabolic engineering and biology. In 13C-MFA, a metabolic flux distribution that explains the observed isotope labeling data was computationally estimated using a non-linear optimization method. Herein, we report the development of mfapy, an open-source Python package developed for more flexibility and extensibility for 13C-MFA. mfapy compels users to write a customized Python code by describing each step in the data analysis procedures of the isotope labeling experiments. The flexibility and extensibility provided by mfapy can support trial-and-error performance in the routine estimation of metabolic flux distributions, experimental design by computer simulations of 13C-MFA experiments, and development of new data analysis techniques for stable isotope labeling experiments. mfapy is available to the public from the Github repository (https://github.com/fumiomatsuda/mfapy).

基于13c的代谢通量分析(13C-MFA)是代谢工程和生物学中估计细胞内代谢通量水平的重要工具。在13C-MFA中,使用非线性优化方法计算估计了解释观测到的同位素标记数据的代谢通量分布。在此,我们报告了mfapy的开发,这是一个开源Python包,旨在为13C-MFA提供更大的灵活性和可扩展性。mfapy通过描述同位素标记实验数据分析过程中的每个步骤,迫使用户编写自定义Python代码。mfapy提供的灵活性和可扩展性可以支持常规代谢通量分布估计的试错性能,通过13C-MFA实验的计算机模拟实验设计,以及稳定同位素标记实验的新数据分析技术的开发。公众可以从Github存储库(https://github.com/fumiomatsuda/mfapy)获得mfapy。
{"title":"mfapy: An open-source Python package for 13C-based metabolic flux analysis","authors":"Fumio Matsuda,&nbsp;Kousuke Maeda,&nbsp;Takeo Taniguchi,&nbsp;Yuya Kondo,&nbsp;Futa Yatabe,&nbsp;Nobuyuki Okahashi,&nbsp;Hiroshi Shimizu","doi":"10.1016/j.mec.2021.e00177","DOIUrl":"10.1016/j.mec.2021.e00177","url":null,"abstract":"<div><p><sup>13</sup>C-based metabolic flux analysis (<sup>13</sup>C-MFA) is an essential tool for estimating intracellular metabolic flux levels in metabolic engineering and biology. In <sup>13</sup>C-MFA, a metabolic flux distribution that explains the observed isotope labeling data was computationally estimated using a non-linear optimization method. Herein, we report the development of mfapy, an open-source Python package developed for more flexibility and extensibility for <sup>13</sup>C-MFA. mfapy compels users to write a customized Python code by describing each step in the data analysis procedures of the isotope labeling experiments. The flexibility and extensibility provided by mfapy can support trial-and-error performance in the routine estimation of metabolic flux distributions, experimental design by computer simulations of <sup>13</sup>C-MFA experiments, and development of new data analysis techniques for stable isotope labeling experiments. mfapy is available to the public from the Github repository (<span>https://github.com/fumiomatsuda/mfapy</span><svg><path></path></svg>).</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00177"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39289655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells 脯氨酸代谢选择系统及其在中国仓鼠卵巢细胞脂质合成工程中的应用
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00179
James D. Budge , Joanne Roobol , Gurdeep Singh , Théo Mozzanino , Tanya J. Knight , Jane Povey , Andrew Dean , Sarah J. Turner , Colin M. Jaques , Robert J. Young , Andrew J. Racher , C. Mark Smales

Chinese hamster ovary (CHO) cells are the leading mammalian cell host employed to produce complex secreted recombinant biotherapeutics such as monoclonal antibodies (mAbs). Metabolic selection marker technologies (e.g. glutamine synthetase (GS) or dihydrofolate reductase (DHFR)) are routinely employed to generate such recombinant mammalian cell lines. Here we describe the development of a selection marker system based on the metabolic requirement of CHO cells to produce proline, and that uses pyrroline-5-carboxylase synthetase (P5CS) to complement this auxotrophy. Firstly, we showed the system can be used to generate cells that have growth kinetics in proline-free medium similar to those of the parent CHO cell line, CHOK1SV GS-KO™ grown in proline-containing medium. As we have previously described how engineering lipid metabolism can be harnessed to enhance recombinant protein productivity in CHO cells, we then used the P5CS selection system to re-engineer lipid metabolism by over-expression of either sterol regulatory element binding protein 1 (SREBF1) or stearoyl CoA desaturase 1 (SCD1). The cells with re-engineered proline and lipid metabolism showed consistent growth and P5CS, SCD1 and SREBF1 expression across 100 cell generations. Finally, we show that the P5CS and GS selection systems can be used together. A GS vector containing the light and heavy chains for a mAb was super-transfected into a CHOK1SV GS-KO™ host over-expressing SCD1 from a P5CS vector. The resulting stable transfectant pools achieved a higher concentration at harvest for a model difficult to express mAb than the CHOK1SV GS-KO™ host. This demonstrates that the P5CS and GS selection systems can be used concomitantly to enable CHO cell line genetic engineering and recombinant protein expression.

中国仓鼠卵巢(CHO)细胞是主要的哺乳动物细胞宿主,用于生产复杂的分泌型重组生物治疗药物,如单克隆抗体(mab)。代谢选择标记技术(如谷氨酰胺合成酶(GS)或二氢叶酸还原酶(DHFR))通常用于产生这种重组哺乳动物细胞系。在这里,我们描述了一种基于CHO细胞产生脯氨酸的代谢需求的选择标记系统的发展,该系统使用吡咯啉-5-羧化酶合成酶(P5CS)来补充这种缺陷。首先,我们证明了该系统可以用于产生在无脯氨酸培养基中具有生长动力学的细胞,类似于在含脯氨酸培养基中生长的亲本CHO细胞系CHOK1SV GS-KO™。正如我们之前所描述的,如何利用工程脂质代谢来提高CHO细胞中重组蛋白的生产力,我们随后使用P5CS选择系统通过过表达固醇调节元件结合蛋白1 (SREBF1)或硬脂酰辅酶a去饱和酶1 (SCD1)来重新设计脂质代谢。重组脯氨酸和脂质代谢的细胞在100代细胞中表现出一致的生长和P5CS、SCD1和SREBF1的表达。最后,我们证明了P5CS和GS选择系统可以一起使用。将含有单克隆抗体轻链和重链的GS载体超转染到过表达P5CS载体SCD1的CHOK1SV GS- ko™宿主中。与CHOK1SV GS-KO™宿主相比,在难以表达单抗的模型中,获得的稳定的转染池在收获时达到了更高的浓度。这表明P5CS和GS选择系统可以同时用于CHO细胞系基因工程和重组蛋白的表达。
{"title":"A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells","authors":"James D. Budge ,&nbsp;Joanne Roobol ,&nbsp;Gurdeep Singh ,&nbsp;Théo Mozzanino ,&nbsp;Tanya J. Knight ,&nbsp;Jane Povey ,&nbsp;Andrew Dean ,&nbsp;Sarah J. Turner ,&nbsp;Colin M. Jaques ,&nbsp;Robert J. Young ,&nbsp;Andrew J. Racher ,&nbsp;C. Mark Smales","doi":"10.1016/j.mec.2021.e00179","DOIUrl":"10.1016/j.mec.2021.e00179","url":null,"abstract":"<div><p>Chinese hamster ovary (CHO) cells are the leading mammalian cell host employed to produce complex secreted recombinant biotherapeutics such as monoclonal antibodies (mAbs). Metabolic selection marker technologies (e.g. glutamine synthetase (GS) or dihydrofolate reductase (DHFR)) are routinely employed to generate such recombinant mammalian cell lines. Here we describe the development of a selection marker system based on the metabolic requirement of CHO cells to produce proline, and that uses pyrroline-5-carboxylase synthetase (P5CS) to complement this auxotrophy. Firstly, we showed the system can be used to generate cells that have growth kinetics in proline-free medium similar to those of the parent CHO cell line, CHOK1SV GS-KO™ grown in proline-containing medium. As we have previously described how engineering lipid metabolism can be harnessed to enhance recombinant protein productivity in CHO cells, we then used the P5CS selection system to re-engineer lipid metabolism by over-expression of either sterol regulatory element binding protein 1 (SREBF1) or stearoyl CoA desaturase 1 (SCD1). The cells with re-engineered proline and lipid metabolism showed consistent growth and P5CS, SCD1 and SREBF1 expression across 100 cell generations. Finally, we show that the P5CS and GS selection systems can be used together. A GS vector containing the light and heavy chains for a mAb was super-transfected into a CHOK1SV GS-KO™ host over-expressing SCD1 from a P5CS vector. The resulting stable transfectant pools achieved a higher concentration at harvest for a model difficult to express mAb than the CHOK1SV GS-KO™ host. This demonstrates that the P5CS and GS selection systems can be used concomitantly to enable CHO cell line genetic engineering and recombinant protein expression.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00179"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39306448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene 聚囊藻pcc6803光合成倍半萜烯的代谢工程研究
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00178
Maximilian Dietsch , Anna Behle , Philipp Westhoff , Ilka M. Axmann

Cyanobacteria are extremely adaptable, fast-growing, solar-powered cell factories that, like plants, are able to convert carbon dioxide into sugar and oxygen and thereby produce a large number of important compounds. Due to their unique phototrophy-associated physiological properties, i.e. naturally occurring isoprenoid metabolic pathway, they represent a highly promising platform for terpenoid biosynthesis. Here, we implemented a carefully devised engineering strategy to boost the biosynthesis of commercially attractive plant sequiterpenes, in particular valencene. Sesquiterpenes are a diverse group of bioactive metabolites, mainly produced in higher plants, but with often low concentrations and expensive downstream extraction. In this work we successfully demonstrate a multi-component engineering approach towards the photosynthetic production of valencene in the cyanobacterium Synechocystis sp. PCC 6803. First, we improved the flux towards valencene by markerless genomic deletions of shc and sqs. Secondly, we downregulated the formation of carotenoids, which are essential for viability of the cell, using CRISPRi on crtE. Finally, we intended to increase the spatial proximity of the two enzymes, ispA and CnVS, involved in valencene formation by creating an operon construct, as well as a fusion protein. Combining the most successful strategies resulted in a valencene production of 19 mg/g DCW in Synechocystis. In this work, we have devised a useful platform for future engineering steps.

蓝藻是适应性极强、生长迅速的太阳能电池工厂,像植物一样,能够将二氧化碳转化为糖和氧气,从而产生大量重要的化合物。由于其独特的光营养相关生理特性,即天然存在的类异戊二烯代谢途径,它们代表了一个非常有前途的萜类生物合成平台。在这里,我们实施了一项精心设计的工程策略,以促进具有商业吸引力的植物四萜类化合物的生物合成,特别是价。倍半萜烯是一组多样的生物活性代谢物,主要产生于高等植物中,但通常浓度低且下游提取成本高。在这项工作中,我们成功地展示了一种多组分工程方法,用于蓝细菌合胞藻sp. PCC 6803的光合作用生产价。首先,我们通过对shc和sqs进行无标记基因组缺失,提高了对价态的通量。其次,我们在crtE上使用CRISPRi下调了类胡萝卜素的形成,这是细胞生存所必需的。最后,我们打算通过创建一个操纵子构建体和融合蛋白来增加两种酶(ispA和CnVS)的空间接近性,这两种酶参与价位形成。结合最成功的策略,聚囊藻的价产物为19 mg/g DCW。在这项工作中,我们为未来的工程步骤设计了一个有用的平台。
{"title":"Metabolic engineering of Synechocystis sp. PCC 6803 for the photoproduction of the sesquiterpene valencene","authors":"Maximilian Dietsch ,&nbsp;Anna Behle ,&nbsp;Philipp Westhoff ,&nbsp;Ilka M. Axmann","doi":"10.1016/j.mec.2021.e00178","DOIUrl":"10.1016/j.mec.2021.e00178","url":null,"abstract":"<div><p>Cyanobacteria are extremely adaptable, fast-growing, solar-powered cell factories that, like plants, are able to convert carbon dioxide into sugar and oxygen and thereby produce a large number of important compounds. Due to their unique phototrophy-associated physiological properties, i.e. naturally occurring isoprenoid metabolic pathway, they represent a highly promising platform for terpenoid biosynthesis. Here, we implemented a carefully devised engineering strategy to boost the biosynthesis of commercially attractive plant sequiterpenes, in particular valencene. Sesquiterpenes are a diverse group of bioactive metabolites, mainly produced in higher plants, but with often low concentrations and expensive downstream extraction. In this work we successfully demonstrate a multi-component engineering approach towards the photosynthetic production of valencene in the cyanobacterium <em>Synechocystis</em> sp. PCC 6803. First, we improved the flux towards valencene by markerless genomic deletions of <em>shc</em> and <em>sqs</em>. Secondly, we downregulated the formation of carotenoids, which are essential for viability of the cell, using CRISPRi on <em>crtE</em>. Finally, we intended to increase the spatial proximity of the two enzymes, <em>ispA</em> and <em>CnVS</em>, involved in valencene formation by creating an operon construct, as well as a fusion protein. Combining the most successful strategies resulted in a valencene production of 19 mg/g DCW in <em>Synechocystis</em>. In this work, we have devised a useful platform for future engineering steps.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00178"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39371563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Electronic signals are electrogenetically relayed to control cell growth and co-culture composition 电子信号通过电学传递来控制细胞生长和共培养成分
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00176
Kristina Stephens , Fauziah Rahma Zakaria , Eric VanArsdale , Gregory F. Payne , William E. Bentley

There is much to be gained by enabling electronic interrogation and control of biological function. While the benefits of bioelectronics that rely on potential-driven ionic flows are well known (electrocardiograms, defibrillators, neural prostheses, etc) there are relatively few advances targeting nonionic molecular networks, including genetic circuits. Redox activities combine connectivity to electronics with the potential for specific genetic control in cells. Here, electrode-generated hydrogen peroxide is used to actuate an electrogenetic “relay” cell population, which interprets the redox cue and synthesizes a bacterial signaling molecule (quorum sensing autoinducer AI-1) that, in turn, signals increased growth rate in a second population. The dramatically increased growth rate of the second population is enabled by expression of a phosphotransferase system protein, HPr, which is important for glucose transport. The potential to electronically modulate cell growth via direct genetic control will enable new opportunities in the treatment of disease and manufacture of biological therapeutics and other molecules.

使电子审讯和控制生物功能成为可能将大有裨益。虽然依赖于电位驱动离子流的生物电子学的好处是众所周知的(心电图、除颤器、神经假体等),但针对非离子分子网络(包括遗传电路)的进展相对较少。氧化还原活动结合了与电子的连接以及细胞中特定遗传控制的潜力。在这里,电极产生的过氧化氢被用来驱动一个电遗传“中继”细胞群,它解释氧化还原信号并合成一种细菌信号分子(群体感应自诱导剂AI-1),反过来,在第二个群体中发出增长速度的信号。第二种群的生长速度急剧增加是由于磷酸转移酶系统蛋白HPr的表达,这对葡萄糖运输很重要。通过直接遗传控制电子调节细胞生长的潜力将为疾病治疗和生物疗法和其他分子的制造提供新的机会。
{"title":"Electronic signals are electrogenetically relayed to control cell growth and co-culture composition","authors":"Kristina Stephens ,&nbsp;Fauziah Rahma Zakaria ,&nbsp;Eric VanArsdale ,&nbsp;Gregory F. Payne ,&nbsp;William E. Bentley","doi":"10.1016/j.mec.2021.e00176","DOIUrl":"10.1016/j.mec.2021.e00176","url":null,"abstract":"<div><p>There is much to be gained by enabling electronic interrogation and control of biological function. While the benefits of bioelectronics that rely on potential-driven ionic flows are well known (electrocardiograms, defibrillators, neural prostheses, etc) there are relatively few advances targeting nonionic molecular networks, including genetic circuits. Redox activities combine connectivity to electronics with the potential for specific genetic control in cells. Here, electrode-generated hydrogen peroxide is used to actuate an electrogenetic “relay” cell population, which interprets the redox cue and synthesizes a bacterial signaling molecule (quorum sensing autoinducer AI-1) that, in turn, signals increased growth rate in a second population. The dramatically increased growth rate of the second population is enabled by expression of a phosphotransferase system protein, HPr, which is important for glucose transport. The potential to electronically modulate cell growth via direct genetic control will enable new opportunities in the treatment of disease and manufacture of biological therapeutics and other molecules.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00176"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39058216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Erratum regarding previously published articles in volumes 9, 10 and 11 关于第9卷、第10卷和第11卷以前发表的文章的勘误
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00186
{"title":"Erratum regarding previously published articles in volumes 9, 10 and 11","authors":"","doi":"10.1016/j.mec.2021.e00186","DOIUrl":"10.1016/j.mec.2021.e00186","url":null,"abstract":"","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00186"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569586/pdf/main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39613167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel inhibitory metabolites and impact verification on growth and protein synthesis in mammalian cells 新型抑制代谢物的鉴定及其对哺乳动物细胞生长和蛋白质合成的影响验证
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00182
Bingyu Kuang , Venkata Gayatri Dhara , Duc Hoang , Jack Jenkins , Pranay Ladiwala , Yanglan Tan , Scott A. Shaffer , Shaun C. Galbraith , Michael J. Betenbaugh , Seongkyu Yoon

Mammalian cells consume large amount of nutrients during growth and production. However, endogenous metabolic inefficiencies often prevent cells to fully utilize nutrients to support growth and protein production. Instead, significant fraction of fed nutrients is diverted into extracellular accumulation of waste by-products and metabolites, further inhibiting proliferation and protein synthesis. In this study, an LC-MS/MS based metabolomics pipeline was used to screen Chinese hamster ovary (CHO) extracellular metabolites. Six out of eight identified inhibitory metabolites, caused by the inefficient cell metabolism, were not previously studied in CHO cells: aconitic acid, 2-hydroxyisocaproic acid, methylsuccinic acid, cytidine monophosphate, trigonelline, and n-acetyl putrescine. When supplemented back into a fed-batch culture, significant reduction in cellular growth was observed in the presence of each metabolite and all the identified metabolites were shown to impact the glycosylation of a model secreted antibody, with seven of these also reducing CHO cellular productivity (titer) and all eight inhibiting the formation of mono-galactosylated biantennary (G1F) and biantennary galactosylated (G2F) N-glycans. These inhibitory metabolites further impact the metabolism of cells, leading to a significant reduction in CHO cellular growth and specific productivity in fed-batch culture (maximum reductions of 27.2% and 40.6% respectively). In-depth pathway analysis revealed that these metabolites are produced when cells utilize major energy sources such as glucose and select amino acids (tryptophan, arginine, isoleucine, and leucine) for growth, maintenance, and protein production. Furthermore, these novel inhibitory metabolites were observed to accumulate in multiple CHO cell lines (CHO–K1 and CHO-GS) as well as HEK293 cell line. This study provides a robust and holistic methodology to incorporate global metabolomic analysis into cell culture studies for elucidation and structural verification of novel metabolites that participate in key metabolic pathways to growth, production, and post-translational modification in biopharmaceutical production.

哺乳动物细胞在生长和生产过程中消耗大量的营养物质。然而,内源性代谢效率低下往往阻止细胞充分利用营养来支持生长和蛋白质生产。相反,大量的营养物质被转移到细胞外积累的废物副产品和代谢物中,进一步抑制了增殖和蛋白质合成。本研究采用基于LC-MS/MS的代谢组学方法筛选中国仓鼠卵巢(CHO)细胞外代谢物。由细胞代谢效率低下引起的8种已确定的抑制性代谢物中有6种以前未在CHO细胞中研究过:乌头酸、2-羟基异己酸、甲基琥珀酸、单磷酸胞苷、葫芦巴碱和n-乙酰腐胺。当补充回补料批培养时,观察到每种代谢物存在时细胞生长显著减少,所有鉴定的代谢物都显示影响模型分泌抗体的糖基化,其中7种也降低CHO细胞生产力(滴度),所有8种都抑制单半乳糖化双天线(G1F)和双天线半乳糖化(G2F) n -聚糖的形成。这些抑制性代谢物进一步影响细胞的代谢,导致CHO细胞生长和比产率显著降低(最大降幅分别为27.2%和40.6%)。深入的途径分析表明,当细胞利用葡萄糖等主要能量来源和选择氨基酸(色氨酸、精氨酸、异亮氨酸和亮氨酸)进行生长、维持和蛋白质生产时,这些代谢物就会产生。此外,这些新的抑制性代谢物被观察到在多种CHO细胞系(CHO - k1和CHO- gs)以及HEK293细胞系中积累。本研究提供了一种强大而全面的方法,将全球代谢组学分析纳入细胞培养研究,以阐明和结构验证参与生物制药生产中生长,生产和翻译后修饰关键代谢途径的新型代谢物。
{"title":"Identification of novel inhibitory metabolites and impact verification on growth and protein synthesis in mammalian cells","authors":"Bingyu Kuang ,&nbsp;Venkata Gayatri Dhara ,&nbsp;Duc Hoang ,&nbsp;Jack Jenkins ,&nbsp;Pranay Ladiwala ,&nbsp;Yanglan Tan ,&nbsp;Scott A. Shaffer ,&nbsp;Shaun C. Galbraith ,&nbsp;Michael J. Betenbaugh ,&nbsp;Seongkyu Yoon","doi":"10.1016/j.mec.2021.e00182","DOIUrl":"10.1016/j.mec.2021.e00182","url":null,"abstract":"<div><p>Mammalian cells consume large amount of nutrients during growth and production. However, endogenous metabolic inefficiencies often prevent cells to fully utilize nutrients to support growth and protein production. Instead, significant fraction of fed nutrients is diverted into extracellular accumulation of waste by-products and metabolites, further inhibiting proliferation and protein synthesis. In this study, an LC-MS/MS based metabolomics pipeline was used to screen Chinese hamster ovary (CHO) extracellular metabolites. Six out of eight identified inhibitory metabolites, caused by the inefficient cell metabolism, were not previously studied in CHO cells: aconitic acid, 2-hydroxyisocaproic acid, methylsuccinic acid, cytidine monophosphate, trigonelline, and n-acetyl putrescine. When supplemented back into a fed-batch culture, significant reduction in cellular growth was observed in the presence of each metabolite and all the identified metabolites were shown to impact the glycosylation of a model secreted antibody, with seven of these also reducing CHO cellular productivity (titer) and all eight inhibiting the formation of mono-galactosylated biantennary (G1F) and biantennary galactosylated (G2F) N-glycans. These inhibitory metabolites further impact the metabolism of cells, leading to a significant reduction in CHO cellular growth and specific productivity in fed-batch culture (maximum reductions of 27.2% and 40.6% respectively). In-depth pathway analysis revealed that these metabolites are produced when cells utilize major energy sources such as glucose and select amino acids (tryptophan, arginine, isoleucine, and leucine) for growth, maintenance, and protein production. Furthermore, these novel inhibitory metabolites were observed to accumulate in multiple CHO cell lines (CHO–K1 and CHO-GS) as well as HEK293 cell line. This study provides a robust and holistic methodology to incorporate global metabolomic analysis into cell culture studies for elucidation and structural verification of novel metabolites that participate in key metabolic pathways to growth, production, and post-translational modification in biopharmaceutical production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00182"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00182","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39416572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Production of thermostable phycocyanin in a mesophilic cyanobacterium 嗜温蓝藻菌中耐热藻蓝蛋白的产生
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00175
Anton Puzorjov , Katherine E. Dunn , Alistair J. McCormick

Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (cpcBACD) is functional in the mesophile Synechocystis sp. PCC 6803. Expression of cpcBACD in an ‘Olive’ mutant strain of Synechocystis lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g−1 DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from T. elongatus, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from T. elongatus in Synechocystis cultures. Our model showed that the higher yields and lower cultivation temperatures of Synechocystis resulted in a 3.5-fold increase in energy efficiency compared to T. elongatus, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.

藻蓝蛋白(PC)是一种可溶性藻胆蛋白,存在于蓝藻和红藻的光收集藻胆体复合体中,由于其明亮的蓝色和荧光特性而被认为是一种高价值的产品。然而,商用PC具有相对较低的温度稳定性。嗜热物种产生更耐热的PC变种,但具有挑战性和能量昂贵的培养。本研究表明,来自嗜热蓝藻热共生球菌(Thermosynechococcus elongatus) BP-1 (cpcBACD)的PC操纵子在嗜热共生菌(Synechocystis sp. PCC 6803)中具有功能。在缺乏内源性PC的聚囊菌' Olive '突变株中,cpcBACD的表达导致耐热PC的高产(112±1 mg g−1 DW),与野生型细胞中的内源性PC相当。外源PC也促进了橄榄突变体的生长,这进一步得到了与藻胆异构体的内源异藻蓝蛋白核心的功能相互作用的证据的支持。外源PC的热稳定性与长叶葡萄的PC相当,可以用低成本的热处理方法从橄榄突变体中纯化得到。最后,我们建立了一个可扩展的模型来计算在聚囊藻培养物中从长形霉中生产PC的能量效益。我们的模型显示,与T. elongatus相比,更高的产量和更低的栽培温度导致能量效率提高3.5倍,这表明在非本地宿主中生产耐热PC是一种成本效益高的规模化商业生产策略。
{"title":"Production of thermostable phycocyanin in a mesophilic cyanobacterium","authors":"Anton Puzorjov ,&nbsp;Katherine E. Dunn ,&nbsp;Alistair J. McCormick","doi":"10.1016/j.mec.2021.e00175","DOIUrl":"10.1016/j.mec.2021.e00175","url":null,"abstract":"<div><p>Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium <em>Thermosynechococcus elongatus</em> BP-1 (<em>cpcBACD</em>) is functional in the mesophile <em>Synechocystis</em> sp. PCC 6803. Expression of <em>cpcBACD</em> in an ‘Olive’ mutant strain of <em>Synechocystis</em> lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g<sup>−1</sup> DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from <em>T. elongatus</em>, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from <em>T. elongatus</em> in <em>Synechocystis</em> cultures. Our model showed that the higher yields and lower cultivation temperatures of <em>Synechocystis</em> resulted in a 3.5-fold increase in energy efficiency compared to <em>T. elongatus</em>, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00175"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39106410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Erratum regarding missing Declaration of competing interest statements in previously published articles 关于先前发表的文章中缺少竞争利益声明的勘误表
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00189
{"title":"Erratum regarding missing Declaration of competing interest statements in previously published articles","authors":"","doi":"10.1016/j.mec.2021.e00189","DOIUrl":"https://doi.org/10.1016/j.mec.2021.e00189","url":null,"abstract":"","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00189"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030121000298/pdfft?md5=40f55f2d13a05cd5e89ecc924b894482&pid=1-s2.0-S2214030121000298-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136696720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversion of metabolic flux towards 5-deoxy(iso)flavonoid production via enzyme self-assembly in Escherichia coli 大肠杆菌通过酶自组装将代谢通量转向生产5-脱氧(异)类黄酮
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.mec.2021.e00185
Jianhua Li , Fanglin Xu , Dongni Ji , Chenfei Tian , Yuwei Sun , Ishmael Mutanda , Yuhong Ren , Yong Wang

5-Deoxy(iso)flavonoids are structural representatives of phenylpropanoid-derived compounds and play critical roles in plant ecophysiology. Recently, 5-deoxy(iso)flavonoids gained significant interest due to their potential applications as pharmaceuticals, nutraceuticals, and food additives. Given the difficulties in their isolation from native plant sources, engineered biosynthesis of 5-deoxy(iso)flavonoids in a microbial host is a highly promising alternative approach. However, the production of 5-deoxy(iso)flavonoids is hindered by metabolic flux imbalances that result in a product profile predominated by non-reduced analogues. In this study, GmCHS7 (chalcone synthase from Glycine max) and GuCHR (chalcone reductase from Glycyrrhizza uralensis) were preliminarily utilized to improve the CHR ratio (CHR product to total CHS product). The use of this enzyme combination improved the final CHR ratio from 39.7% to 50.3%. For further optimization, a protein-protein interaction strategy was employed, basing on the spatial adhesion of GmCHS7:PDZ and GuCHR:PDZlig. This strategy further increased the ratio towards the CHR-derived product (54.7%), suggesting partial success of redirecting metabolic flux towards the reduced branch. To further increase the total carbon metabolic flux, 15 protein scaffolds were programmed with stoichiometric arrangement of the three sequential catalysts GmCHS7, GuCHR and MsCHI (chalcone isomerase from Medicago sativa), resulting in a 1.4-fold increase in total flavanone production, from 69.4 mg/L to 97.0 mg/L in shake flasks. The protein self-assembly strategy also improved the production and direction of the lineage-specific compounds 7,4′-dihydroxyflavone and daidzein in Escherichia coli. This study presents a significant advancement of 5-deoxy(iso)flavonoid production and provides the foundation for production of value-added 5-deoxy(iso)flavonoids in microbial hosts.

5-Deoxy(iso)类黄酮是苯丙类化合物的结构代表,在植物生理生态中起着重要作用。近年来,5-脱氧(iso)类黄酮因其在药物、营养食品和食品添加剂方面的潜在应用而引起了人们的极大兴趣。考虑到从原生植物中分离5-脱氧黄酮类化合物的困难,在微生物宿主中工程生物合成5-脱氧黄酮类化合物是一种非常有前途的替代方法。然而,5-脱氧(iso)类黄酮的生产受到代谢通量不平衡的阻碍,导致产品轮廓以非还原类似物为主。本研究初步利用GmCHS7 (Glycine max查尔酮合成酶)和GuCHR (Glycyrrhizza uralensis查尔酮还原酶)提高CHR (CHR产物与总CHS产物的比值)。使用该酶组合后,最终CHR比由39.7%提高到50.3%。为了进一步优化,采用基于GmCHS7:PDZ和GuCHR:PDZlig空间粘附的蛋白-蛋白相互作用策略。这一策略进一步增加了chr衍生产物的比例(54.7%),表明部分成功地将代谢通量重定向到减少的分支。为了进一步提高总碳代谢通量,我们对15个蛋白质支架进行了化学量学排列,将三种顺序的催化剂GmCHS7、GuCHR和MsCHI(紫花苜蓿查尔酮异构酶)进行了编程,使摇瓶中总黄酮的产量增加了1.4倍,从69.4 mg/L增加到97.0 mg/L。蛋白质自组装策略还改善了大肠杆菌中具有谱系特异性的化合物7,4 ' -二羟黄酮和大豆苷元的产生和方向。该研究为5-脱氧(iso)类黄酮的生产提供了重要进展,为微生物宿主生产增值5-脱氧(iso)类黄酮提供了基础。
{"title":"Diversion of metabolic flux towards 5-deoxy(iso)flavonoid production via enzyme self-assembly in Escherichia coli","authors":"Jianhua Li ,&nbsp;Fanglin Xu ,&nbsp;Dongni Ji ,&nbsp;Chenfei Tian ,&nbsp;Yuwei Sun ,&nbsp;Ishmael Mutanda ,&nbsp;Yuhong Ren ,&nbsp;Yong Wang","doi":"10.1016/j.mec.2021.e00185","DOIUrl":"10.1016/j.mec.2021.e00185","url":null,"abstract":"<div><p>5-Deoxy(iso)flavonoids are structural representatives of phenylpropanoid-derived compounds and play critical roles in plant ecophysiology. Recently, 5-deoxy(iso)flavonoids gained significant interest due to their potential applications as pharmaceuticals, nutraceuticals, and food additives. Given the difficulties in their isolation from native plant sources, engineered biosynthesis of 5-deoxy(iso)flavonoids in a microbial host is a highly promising alternative approach. However, the production of 5-deoxy(iso)flavonoids is hindered by metabolic flux imbalances that result in a product profile predominated by non-reduced analogues. In this study, GmCHS7 (chalcone synthase from <em>Glycine max</em>) and GuCHR (chalcone reductase from <em>Glycyrrhizza uralensis</em>) were preliminarily utilized to improve the CHR ratio (CHR product to total CHS product). The use of this enzyme combination improved the final CHR ratio from 39.7% to 50.3%. For further optimization, a protein-protein interaction strategy was employed, basing on the spatial adhesion of GmCHS7:PDZ and GuCHR:PDZlig. This strategy further increased the ratio towards the CHR-derived product (54.7%), suggesting partial success of redirecting metabolic flux towards the reduced branch. To further increase the total carbon metabolic flux, 15 protein scaffolds were programmed with stoichiometric arrangement of the three sequential catalysts GmCHS7, GuCHR and MsCHI (chalcone isomerase from <em>Medicago sativa</em>), resulting in a 1.4-fold increase in total flavanone production, from 69.4 mg/L to 97.0 mg/L in shake flasks. The protein self-assembly strategy also improved the production and direction of the lineage-specific compounds 7,4′-dihydroxyflavone and daidzein in <em>Escherichia coli</em>. This study presents a significant advancement of 5-deoxy(iso)flavonoid production and provides the foundation for production of value-added 5-deoxy(iso)flavonoids in microbial hosts.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"13 ","pages":"Article e00185"},"PeriodicalIF":5.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f2/32/main.PMC8488244.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39503749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A lysate proteome engineering strategy for enhancing cell-free metabolite production 提高细胞游离代谢物产生的裂解物蛋白质组工程策略
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00162
David C. Garcia , Jaime Lorenzo N. Dinglasan , Him Shrestha , Paul E. Abraham , Robert L. Hettich , Mitchel J. Doktycz

Cell-free systems present a significant opportunity to harness the metabolic potential of diverse organisms. Removing the cellular context provides the ability to produce biological products without the need to maintain cell viability and enables metabolic engineers to explore novel chemical transformation systems. Crude extracts maintain much of a cell’s capabilities. However, only limited tools are available for engineering the contents of the extracts used for cell-free systems. Thus, our ability to take full advantage of the potential of crude extracts for cell-free metabolic engineering is constrained. Here, we employ Multiplex Automated Genomic Engineering (MAGE) to tag proteins for selective depletion from crude extracts so as to specifically direct chemical production. Specific edits to central metabolism are possible without significantly impacting cell growth. Selective removal of pyruvate degrading enzymes resulted in engineered crude lysates that are capable of up to 40-fold increases in pyruvate production when compared to the non-engineered extract. The described approach melds the tools of systems and synthetic biology to showcase the effectiveness of cell-free metabolic engineering for applications like bioprototyping and bioproduction.

无细胞系统为利用各种生物体的代谢潜力提供了一个重要的机会。去除细胞环境提供了在不需要维持细胞活力的情况下生产生物产品的能力,并使代谢工程师能够探索新的化学转化系统。粗提取物保留了细胞的大部分功能。然而,只有有限的工具可用于工程内容的提取物用于无细胞系统。因此,我们充分利用粗提取物的潜力进行无细胞代谢工程的能力受到限制。在这里,我们使用多重自动基因组工程(MAGE)来标记蛋白质,以便从粗提取物中选择性地去除,从而特异性地指导化学生产。在不显著影响细胞生长的情况下,对中枢代谢进行特异性编辑是可能的。丙酮酸降解酶的选择性去除导致工程粗裂解物的丙酮酸产量比非工程提取物增加了40倍。所描述的方法融合了系统和合成生物学的工具,以展示无细胞代谢工程在生物原型和生物生产等应用中的有效性。
{"title":"A lysate proteome engineering strategy for enhancing cell-free metabolite production","authors":"David C. Garcia ,&nbsp;Jaime Lorenzo N. Dinglasan ,&nbsp;Him Shrestha ,&nbsp;Paul E. Abraham ,&nbsp;Robert L. Hettich ,&nbsp;Mitchel J. Doktycz","doi":"10.1016/j.mec.2021.e00162","DOIUrl":"10.1016/j.mec.2021.e00162","url":null,"abstract":"<div><p>Cell-free systems present a significant opportunity to harness the metabolic potential of diverse organisms. Removing the cellular context provides the ability to produce biological products without the need to maintain cell viability and enables metabolic engineers to explore novel chemical transformation systems. Crude extracts maintain much of a cell’s capabilities. However, only limited tools are available for engineering the contents of the extracts used for cell-free systems. Thus, our ability to take full advantage of the potential of crude extracts for cell-free metabolic engineering is constrained. Here, we employ Multiplex Automated Genomic Engineering (MAGE) to tag proteins for selective depletion from crude extracts so as to specifically direct chemical production. Specific edits to central metabolism are possible without significantly impacting cell growth. Selective removal of pyruvate degrading enzymes resulted in engineered crude lysates that are capable of up to 40-fold increases in pyruvate production when compared to the non-engineered extract. The described approach melds the tools of systems and synthetic biology to showcase the effectiveness of cell-free metabolic engineering for applications like bioprototyping and bioproduction.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00162"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25344116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Metabolic Engineering Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1