首页 > 最新文献

Metabolic Engineering Communications最新文献

英文 中文
Development of antisense RNA-mediated quantifiable inhibition for metabolic regulation 反义rna介导的可量化代谢调控抑制的发展
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00168
Ruihua Zhang, Yan Zhang, Jian Wang, Yaping Yang, Yajun Yan

Trans-regulating elements such as noncoding RNAs are crucial in modifying cells, and has shown broad application in synthetic biology, metabolic engineering and RNA therapies. Although effective, titration of the regulatory levels of such elements is less explored. Encouraged by the need of fine-tuning cellular functions, we studied key parameters of the antisense RNA design including oligonucleotide length, targeting region and relative dosage to achieve differentiated inhibition. We determined a 30-nucleotide configuration that renders efficient and robust inhibition. We found that by targeting the core RBS region proportionally, quantifiable inhibition levels can be rationally obtained. A mathematic model was established accordingly with refined energy terms and successfully validated by depicting the inhibition levels for genomic targets. Additionally, we applied this fine-tuning approach for 4-hydroxycoumarin biosynthesis by simultaneous and quantifiable knockdown of multiple targets, resulting in a 3.58-fold increase in titer of the engineered strain comparing to that of the non-regulated. We believe the developed tool is broadly compatible and provides an extra layer of control in modifying living systems.

非编码RNA等反式调控元件在细胞修饰中起着至关重要的作用,在合成生物学、代谢工程和RNA治疗中有着广泛的应用。虽然有效,但对这些元素的调节水平的滴定研究较少。由于需要微调细胞功能,我们研究了反义RNA设计的关键参数,包括寡核苷酸长度、靶向区域和相对剂量,以实现差异化抑制。我们确定了一个30个核苷酸的配置,使有效和强大的抑制。我们发现,通过比例靶向核心RBS区域,可以合理地获得可量化的抑制水平。建立了具有精细能量项的数学模型,并成功地通过描述基因组靶点的抑制水平进行了验证。此外,我们将这种微调方法应用于4-羟基香豆素的生物合成,通过同时可量化地敲除多个靶点,使工程菌株的滴度比未调节菌株提高3.58倍。我们相信开发的工具是广泛兼容的,并为修改生命系统提供了额外的控制层。
{"title":"Development of antisense RNA-mediated quantifiable inhibition for metabolic regulation","authors":"Ruihua Zhang,&nbsp;Yan Zhang,&nbsp;Jian Wang,&nbsp;Yaping Yang,&nbsp;Yajun Yan","doi":"10.1016/j.mec.2021.e00168","DOIUrl":"10.1016/j.mec.2021.e00168","url":null,"abstract":"<div><p>Trans-regulating elements such as noncoding RNAs are crucial in modifying cells, and has shown broad application in synthetic biology, metabolic engineering and RNA therapies. Although effective, titration of the regulatory levels of such elements is less explored. Encouraged by the need of fine-tuning cellular functions, we studied key parameters of the antisense RNA design including oligonucleotide length, targeting region and relative dosage to achieve differentiated inhibition. We determined a 30-nucleotide configuration that renders efficient and robust inhibition. We found that by targeting the core RBS region proportionally, quantifiable inhibition levels can be rationally obtained. A mathematic model was established accordingly with refined energy terms and successfully validated by depicting the inhibition levels for genomic targets. Additionally, we applied this fine-tuning approach for 4-hydroxycoumarin biosynthesis by simultaneous and quantifiable knockdown of multiple targets, resulting in a 3.58-fold increase in titer of the engineered strain comparing to that of the non-regulated. We believe the developed tool is broadly compatible and provides an extra layer of control in modifying living systems.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00168"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25477408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Co-expressing Eranthis hyemalis lysophosphatidic acid acyltransferase 2 and elongase improves two very long chain polyunsaturated fatty acid production in Brassica carinata 共表达Eranthis hyemalis溶血磷脂酸酰基转移酶2和延长酶提高了两种超长链多不饱和脂肪酸的产量
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00171
Dauenpen Meesapyodsuk , Yi Chen , Shengjian Ye , Robert G. Chapman , Xiao Qiu

Docosadienoic acid (DDA, 22:2–13,16) and docosatrienoic acid (DTA, 22:3–13,16,19) are two very long chain polyunsaturated fatty acids (VLCPUFAs) that are recently shown to possess strong anti-inflammatory and antitumor properties. An ELO type elongase (EhELO1) from wild plant Eranthis hyemalis can synthesize the two fatty acids by sequential elongation of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop Brassica carinata produced a considerable amount of DDA and DTA in transgenic seeds. However, these fatty acids were excluded from the sn-2 position of triacylglycerols (TAGs). To improve the production level and nutrition value of the VLCPUFAs in the transgenic oilseed crop, a cytoplasmic lysophosphatidic acid acyltransferase (EhLPAAT2) for the incorporation of the two fatty acids into the sn-2 position of triacylglycerols was identified from E. hyemalis. RT-PCR analysis showed that it was preferentially expressed in developing seeds where EhELO1 was exclusively expressed in E. hyemalis. Seed specific expression of EhLPAAT2 along with EhELO1 in B. carinata resulted in the effective incorporation of DDA and DTA at the sn-2 position of TAGs, thereby increasing the total amount of DDA and DTA in transgenic seeds. To our knowledge, this is the first plant LPAAT that can incorporate VLCPUFAs into TAGs. Improved production of DDA and DTA in the oilseed crop using EhLPAAT2 and EhELO1 provides a real commercial opportunity for high value agriculture products for nutraceutical uses.

二十二碳二烯酸(DDA, 22:2 - 13,16)和二十二碳三烯酸(DTA, 22:3 - 13,16,19)是两种非常长链的多不饱和脂肪酸(VLCPUFAs),最近被证明具有很强的抗炎和抗肿瘤特性。野生植物叶毛花ELO型延长酶EhELO1可以分别通过亚油酸和α -亚麻酸的顺序延长合成这两种脂肪酸。该基因在油料作物芸苔(Brassica carinata)中的种子特异性表达可在转基因种子中产生大量的DDA和DTA。然而,这些脂肪酸被排除在三酰基甘油(TAGs)的sn-2位置之外。为了提高转基因油籽作物中VLCPUFAs的生产水平和营养价值,从叶毛孢中鉴定出一种细胞质溶血磷脂酸酰基转移酶(EhLPAAT2),该酶能将这两种脂肪酸转移到三酰基甘油的n-2位置。RT-PCR分析结果显示,EhELO1基因在萌发种子中优先表达,而EhELO1基因仅在胚膜菊中表达。EhLPAAT2和EhELO1的种子特异性表达使DDA和DTA在tag的sn-2位置有效结合,从而增加了转基因种子中DDA和DTA的总量。据我们所知,这是第一个可以将VLCPUFAs整合到tag中的植物LPAAT。利用EhLPAAT2和EhELO1在油籽作物中提高DDA和DTA的产量,为高价值的营养保健农产品提供了真正的商业机会。
{"title":"Co-expressing Eranthis hyemalis lysophosphatidic acid acyltransferase 2 and elongase improves two very long chain polyunsaturated fatty acid production in Brassica carinata","authors":"Dauenpen Meesapyodsuk ,&nbsp;Yi Chen ,&nbsp;Shengjian Ye ,&nbsp;Robert G. Chapman ,&nbsp;Xiao Qiu","doi":"10.1016/j.mec.2021.e00171","DOIUrl":"10.1016/j.mec.2021.e00171","url":null,"abstract":"<div><p>Docosadienoic acid (DDA, 22:2–13,16) and docosatrienoic acid (DTA, 22:3–13,16,19) are two very long chain polyunsaturated fatty acids (VLCPUFAs) that are recently shown to possess strong anti-inflammatory and antitumor properties. An ELO type elongase (EhELO1) from wild plant <em>Eranthis hyemalis</em> can synthesize the two fatty acids by sequential elongation of linoleic acid and alpha-linolenic acid, respectively. Seed-specific expression of this gene in oilseed crop <em>Brassica carinata</em> produced a considerable amount of DDA and DTA in transgenic seeds. However, these fatty acids were excluded from the <em>sn-2</em> position of triacylglycerols (TAGs). To improve the production level and nutrition value of the VLCPUFAs in the transgenic oilseed crop, a cytoplasmic lysophosphatidic acid acyltransferase (EhLPAAT2) for the incorporation of the two fatty acids into the <em>sn</em>-2 position of triacylglycerols was identified from <em>E. hyemalis</em>. RT-PCR analysis showed that it was preferentially expressed in developing seeds where <em>EhELO1</em> was exclusively expressed in <em>E. hyemalis</em>. Seed specific expression of <em>EhLPAAT2</em> along with <em>EhELO1</em> in <em>B. carinata</em> resulted in the effective incorporation of DDA and DTA at the <em>sn-2</em> position of TAGs, thereby increasing the total amount of DDA and DTA in transgenic seeds. To our knowledge, this is the first plant LPAAT that can incorporate VLCPUFAs into TAGs. Improved production of DDA and DTA in the oilseed crop using EhLPAAT2 and EhELO1 provides a real commercial opportunity for high value agriculture products for nutraceutical uses.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00171"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00171","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38941339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus 引入褐家鼠α-酮异己酸双加氧酶对褐家鼠PCC 6803产异丁烯的影响
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00163
Henna Mustila , Amit Kugler, Karin Stensjö

Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 ​± ​9 ​ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 ​ng ​l−1 OD750−1 ​h−1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts.

蓝藻可以作为直接光养转换二氧化碳的平台,以生产几种碳中性生物燃料。异丁烯是一种在蓝藻中产生光生物学的有前途的化合物。作为一种挥发性化合物,异丁烯会迅速逃离细胞,而不会在生长培养基中形成毒性水平,也不会被细胞膜捕获。与液体生物燃料不同,气态异丁烯可以从顶空收集,从而避免了从培养基或细胞中提取化学物质的昂贵费用。在这里,我们研究了一种适用于光自养寄主的异丁烯合成途径。首先,我们在大肠杆菌中表达褐家鼠α-酮异己酸双加氧酶(RnKICD)。我们发现纯化的RnKICD以α-酮异己酸酯为底物形成异丁烯的速率为104.6±9 ng (mg蛋白)-1 min-1。通过引入RnKICD酶,我们进一步证明了蓝细菌synnechocystis sp. PCC 6803中异丁烯的产生。异源表达RnKICD的胞囊菌产生91 ng l−1 OD750−1 h−1。因此,我们展示了一个新的可持续平台的蓝藻生产的一个重要的构建块化学品,异丁烯。这些结果表明,RnKICD可以通过蛋白质和代谢工程的努力进一步优化合成异丁烯途径。
{"title":"Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus","authors":"Henna Mustila ,&nbsp;Amit Kugler,&nbsp;Karin Stensjö","doi":"10.1016/j.mec.2021.e00163","DOIUrl":"10.1016/j.mec.2021.e00163","url":null,"abstract":"<div><p>Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO<sub>2</sub> to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from <em>Rattus norvegicus</em> (<em>Rn</em>KICD) in <em>Escherichia coli</em>. We discovered isobutene formation with the purified <em>Rn</em>KICD with the rate of 104.6 ​± ​9 ​ng (mg protein)<sup>-1</sup> min<sup>-1</sup> using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium <em>Synechocystis</em> sp. PCC 6803 by introducing the <em>Rn</em>KICD enzyme. <em>Synechocystis</em> strain heterologously expressing the <em>Rn</em>KICD produced 91 ​ng ​l<sup>−1</sup> OD<sub>750</sub><sup>−1</sup> ​h<sup>−1</sup>. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that <em>Rn</em>KICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00163"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25344117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Analysis of metabolic network disruption in engineered microbial hosts due to enzyme promiscuity 酶乱交导致工程微生物宿主代谢网络中断的分析
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00170
Vladimir Porokhin , Sara A. Amin , Trevor B. Nicks , Venkatesh Endalur Gopinarayanan , Nikhil U. Nair , Soha Hassoun

Increasing understanding of metabolic and regulatory networks underlying microbial physiology has enabled creation of progressively more complex synthetic biological systems for biochemical, biomedical, agricultural, and environmental applications. However, despite best efforts, confounding phenotypes still emerge from unforeseen interplay between biological parts, and the design of robust and modular biological systems remains elusive. Such interactions are difficult to predict when designing synthetic systems and may manifest during experimental testing as inefficiencies that need to be overcome. Transforming organisms such as Escherichia coli into microbial factories is achieved via several engineering strategies, used individually or in combination, with the goal of maximizing the production of chosen target compounds. One technique relies on suppressing or overexpressing selected genes; another involves introducing heterologous enzymes into a microbial host. These modifications steer mass flux towards the set of desired metabolites but may create unexpected interactions. In this work, we develop a computational method, termed Metabolic Disruption Workflow (MDFlow), for discovering interactions and network disruptions arising from enzyme promiscuity – the ability of enzymes to act on a wide range of molecules that are structurally similar to their native substrates. We apply MDFlow to two experimentally verified cases where strains with essential genes knocked out are rescued by interactions resulting from overexpression of one or more other genes. We demonstrate how enzyme promiscuity may aid cells in adapting to disruptions of essential metabolic functions. We then apply MDFlow to predict and evaluate a number of putative promiscuous reactions that can interfere with two heterologous pathways designed for 3-hydroxypropionic acid (3-HP) production. Using MDFlow, we can identify putative enzyme promiscuity and the subsequent formation of unintended and undesirable byproducts that are not only disruptive to the host metabolism but also to the intended end-objective of high biosynthetic productivity and yield. As we demonstrate, MDFlow provides an innovative workflow to systematically identify incompatibilities between the native metabolism of the host and its engineered modifications due to enzyme promiscuity.

对微生物生理学基础上的代谢和调控网络的日益了解,使越来越复杂的合成生物系统能够用于生化、生物医学、农业和环境应用。然而,尽管尽了最大的努力,混淆表型仍然出现在不可预见的生物部分之间的相互作用,稳健和模块化的生物系统的设计仍然难以捉摸。这种相互作用在设计合成系统时很难预测,并可能在实验测试中表现为需要克服的低效率。将大肠杆菌等生物转化为微生物工厂是通过几种工程策略来实现的,这些策略可以单独使用,也可以组合使用,目的是使选定的目标化合物的产量最大化。一种技术依赖于抑制或过度表达选定的基因;另一种方法是将异源酶引入微生物宿主。这些修饰将质量通量导向所需的代谢物集,但可能产生意想不到的相互作用。在这项工作中,我们开发了一种称为代谢破坏工作流(MDFlow)的计算方法,用于发现酶滥交引起的相互作用和网络破坏-酶作用于结构上与其天然底物相似的广泛分子的能力。我们将MDFlow应用于两个经过实验验证的案例,其中必需基因被敲除的菌株通过一个或多个其他基因过表达引起的相互作用而获救。我们展示了酶乱交如何帮助细胞适应基本代谢功能的破坏。然后,我们应用MDFlow来预测和评估一些可能干扰3-羟基丙酸(3-HP)生产的两种异源途径的假定混杂反应。使用MDFlow,我们可以识别假定的酶乱交和随后形成的意外和不希望的副产物,这些副产物不仅破坏宿主代谢,而且破坏高生物合成生产力和产量的预期最终目标。正如我们所展示的,MDFlow提供了一种创新的工作流程,可以系统地识别宿主的天然代谢与其由于酶混杂而引起的工程修饰之间的不兼容性。
{"title":"Analysis of metabolic network disruption in engineered microbial hosts due to enzyme promiscuity","authors":"Vladimir Porokhin ,&nbsp;Sara A. Amin ,&nbsp;Trevor B. Nicks ,&nbsp;Venkatesh Endalur Gopinarayanan ,&nbsp;Nikhil U. Nair ,&nbsp;Soha Hassoun","doi":"10.1016/j.mec.2021.e00170","DOIUrl":"10.1016/j.mec.2021.e00170","url":null,"abstract":"<div><p>Increasing understanding of metabolic and regulatory networks underlying microbial physiology has enabled creation of progressively more complex synthetic biological systems for biochemical, biomedical, agricultural, and environmental applications. However, despite best efforts, confounding phenotypes still emerge from unforeseen interplay between biological parts, and the design of robust and modular biological systems remains elusive. Such interactions are difficult to predict when designing synthetic systems and may manifest during experimental testing as inefficiencies that need to be overcome. Transforming organisms such as <em>Escherichia coli</em> into microbial factories is achieved via several engineering strategies, used individually or in combination, with the goal of maximizing the production of chosen target compounds. One technique relies on suppressing or overexpressing selected genes; another involves introducing heterologous enzymes into a microbial host. These modifications steer mass flux towards the set of desired metabolites but may create unexpected interactions. In this work, we develop a computational method, termed <u>M</u>etabolic <u>D</u>isruption Work<u>flow</u> (<em>MDFlow</em>), for discovering interactions and network disruptions arising from enzyme promiscuity – the ability of enzymes to act on a wide range of molecules that are structurally similar to their native substrates. We apply <em>MDFlow</em> to two experimentally verified cases where strains with essential genes knocked out are rescued by interactions resulting from overexpression of one or more other genes. We demonstrate how enzyme promiscuity may aid cells in adapting to disruptions of essential metabolic functions. We then apply <em>MDFlow</em> to predict and evaluate a number of putative promiscuous reactions that can interfere with two heterologous pathways designed for 3-hydroxypropionic acid (3-HP) production. Using <em>MDFlow</em>, we can identify putative enzyme promiscuity and the subsequent formation of unintended and undesirable byproducts that are not only disruptive to the host metabolism but also to the intended end-objective of high biosynthetic productivity and yield. As we demonstrate, <em>MDFlow</em> provides an innovative workflow to systematically identify incompatibilities between the native metabolism of the host and its engineered modifications due to enzyme promiscuity.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00170"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25586461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering 通过组合代谢工程提高快速生长蓝藻的柠檬烯产量
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00164
Po-Cheng Lin , Fuzhong Zhang , Himadri B. Pakrasi

Terpenoids are a large and diverse group of natural products with commercial applications. Microbial production of terpenes is considered as a feasible approach for the stable supply of these complex hydrocarbons. Cyanobacteria, photosynthetic prokaryotes, are attractive hosts for sustainable bioproduction, because these autotrophs require only light and CO2 for growth. Despite cyanobacteria having been engineered to produce a variety of compounds, their productivities of terpenes are generally low. Further research is needed to determine the bottleneck reactions for enhancing terpene production in cyanobacteria. In this study, we engineered the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce a commercially-used terpenoid, limonene. We identified a beneficial mutation in the gene encoding geranylgeranyl pyrophosphate synthase crtE, leading to a 2.5-fold increase in limonene production. The engineered strain produced 16.4 ​mg ​L−1 of limonene at a rate of 8.2 ​mg ​L−1 day−1, which is 8-fold higher than limonene productivities previously reported in other cyanobacterial species. Furthermore, we employed a combinatorial metabolic engineering approach to optimize genes involved in the upstream pathway of limonene biosynthesis. By modulating the expression of genes encoding the enzymes in the MEP pathway and the geranyl pyrophosphate synthase, we showed that optimization of the expression level is critical to enhance limonene production in cyanobacteria.

萜类化合物是一大类具有商业用途的天然产物。微生物生产萜烯被认为是稳定供应这些复杂碳氢化合物的可行途径。蓝藻,光合原核生物,是可持续生物生产的有吸引力的宿主,因为这些自养生物只需要光和二氧化碳来生长。尽管蓝藻经过改造可以产生多种化合物,但它们的萜烯产量通常很低。需要进一步的研究来确定提高蓝藻中萜烯产量的瓶颈反应。在这项研究中,我们设计了快速生长的蓝藻长聚球菌UTEX 2973,以生产一种商业用途的萜类化合物柠檬烯。我们在编码香叶基焦磷酸合成酶crtE的基因中发现了一个有益的突变,导致柠檬烯产量增加2.5倍。该工程菌株以8.2 mg L−1 day−1的速率产生16.4 mg L−1柠檬烯,比以前报道的其他蓝藻物种的柠檬烯产量高8倍。此外,我们采用组合代谢工程的方法来优化参与柠檬烯生物合成上游途径的基因。通过调节MEP通路和香叶基焦磷酸合成酶编码基因的表达,我们发现优化表达水平对提高蓝藻柠檬烯的产量至关重要。
{"title":"Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering","authors":"Po-Cheng Lin ,&nbsp;Fuzhong Zhang ,&nbsp;Himadri B. Pakrasi","doi":"10.1016/j.mec.2021.e00164","DOIUrl":"10.1016/j.mec.2021.e00164","url":null,"abstract":"<div><p>Terpenoids are a large and diverse group of natural products with commercial applications. Microbial production of terpenes is considered as a feasible approach for the stable supply of these complex hydrocarbons. Cyanobacteria, photosynthetic prokaryotes, are attractive hosts for sustainable bioproduction, because these autotrophs require only light and CO<sub>2</sub> for growth. Despite cyanobacteria having been engineered to produce a variety of compounds, their productivities of terpenes are generally low. Further research is needed to determine the bottleneck reactions for enhancing terpene production in cyanobacteria. In this study, we engineered the fast-growing cyanobacterium <em>Synechococcus elongatus</em> UTEX 2973 to produce a commercially-used terpenoid, limonene. We identified a beneficial mutation in the gene encoding geranylgeranyl pyrophosphate synthase <em>crtE</em>, leading to a 2.5-fold increase in limonene production. The engineered strain produced 16.4 ​mg ​L<sup>−1</sup> of limonene at a rate of 8.2 ​mg ​L<sup>−1</sup> day<sup>−1</sup>, which is 8-fold higher than limonene productivities previously reported in other cyanobacterial species. Furthermore, we employed a combinatorial metabolic engineering approach to optimize genes involved in the upstream pathway of limonene biosynthesis. By modulating the expression of genes encoding the enzymes in the MEP pathway and the geranyl pyrophosphate synthase, we showed that optimization of the expression level is critical to enhance limonene production in cyanobacteria.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00164"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25427491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
The identification of novel promoters and terminators for protein expression and metabolic engineering applications in Kluyveromyces marxianus 马氏克鲁维菌蛋白表达新启动子和终止子的鉴定及其代谢工程应用
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2020.e00160
Pradeep Kumar , Debendra Kumar Sahoo , Deepak Sharma

The K. marxianus has emerged as a potential yeast strain for various biotechnological applications. However, the limited number of available genetic tools has hindered the widespread usage of this yeast. In the current study we have expanded the molecular tool box by identifying novel sets of promoters and terminators for increased recombinant protein expression in K. marxianus. The previously available transcriptomic data were analyzed to identify top 10 promoters of highest gene expression activity. We further characterized and compared strength of these identified promoters using eGFP as a reporter protein, at different temperatures and carbon sources. To examine the regulatory region driving protein expression, serially truncated shorter versions of two selected strong promoters were designed, and examined for their ability to drive eGFP protein expression. The activities of these two promoters were further enhanced using different combinations of native transcription terminators of K. marxianus. We further utilized the identified DNA cassette encoding strong promoter in metabolic engineering of K. marxianus for enhanced β-galactosidase activity. The present study thus provides novel sets of promoters and terminators as well as engineered K. marxianus strain for its wider utility in applications requiring lactose degradation such as in cheese whey and milk.

马氏酵母菌已成为一种潜在的生物技术应用酵母菌株。然而,可用的遗传工具数量有限,阻碍了这种酵母的广泛使用。在目前的研究中,我们通过鉴定新的启动子和终止子,扩大了分子工具箱,以增加K. marxianus中重组蛋白的表达。通过分析已有的转录组学数据,鉴定出基因表达活性最高的前10个启动子。我们使用eGFP作为报告蛋白,在不同温度和碳源下进一步表征和比较了这些鉴定的启动子的强度。为了检测驱动蛋白表达的调控区域,设计了两个选定的强启动子的连续截短版本,并检测了它们驱动eGFP蛋白表达的能力。这两个启动子的活性通过不同组合的方式进一步增强。我们进一步利用鉴定出的编码强启动子的DNA盒在马氏酵母代谢工程中增强β-半乳糖苷酶活性。因此,本研究提供了一套新的启动子和终止子,以及改造的马氏乳杆菌菌株,使其在奶酪乳清和牛奶等需要乳糖降解的应用中得到更广泛的应用。
{"title":"The identification of novel promoters and terminators for protein expression and metabolic engineering applications in Kluyveromyces marxianus","authors":"Pradeep Kumar ,&nbsp;Debendra Kumar Sahoo ,&nbsp;Deepak Sharma","doi":"10.1016/j.mec.2020.e00160","DOIUrl":"10.1016/j.mec.2020.e00160","url":null,"abstract":"<div><p>The <em>K. marxianus</em> has emerged as a potential yeast strain for various biotechnological applications. However, the limited number of available genetic tools has hindered the widespread usage of this yeast. In the current study we have expanded the molecular tool box by identifying novel sets of promoters and terminators for increased recombinant protein expression in <em>K. marxianus</em>. The previously available transcriptomic data were analyzed to identify top 10 promoters of highest gene expression activity. We further characterized and compared strength of these identified promoters using eGFP as a reporter protein, at different temperatures and carbon sources. To examine the regulatory region driving protein expression, serially truncated shorter versions of two selected strong promoters were designed, and examined for their ability to drive eGFP protein expression. The activities of these two promoters were further enhanced using different combinations of native transcription terminators of <em>K. marxianus</em>. We further utilized the identified DNA cassette encoding strong promoter in metabolic engineering of <em>K. marxianus</em> for enhanced β-galactosidase activity. The present study thus provides novel sets of promoters and terminators as well as engineered <em>K. marxianus</em> strain for its wider utility in applications requiring lactose degradation such as in cheese whey and milk.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00160"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2020.e00160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38854735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Surfactin, a quorum sensing signal molecule, globally affects the carbon metabolism in Bacillus amyloliquefaciens 表面蛋白是一种群体感应信号分子,对解淀粉芽孢杆菌的碳代谢具有全局影响
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00174
Jiahong Wen, Xiuyun Zhao, Fengmei Si, Gaofu Qi

Surfactin, a quorum sensing signal molecule, is correlated with carbon metabolism in Bacillus amyloliquefaciens. In the present work, we found that mutation of srfAsrfA) led to an obviously changed carbon metabolism in B. amyloliquefaciens. Firstly, the PTS-glucose system was significantly increased as a feedback to glucose exhaustion. Secondly, the basic carbon metabolism such as glycolysis and TCA cycle was obviously weakened in ΔsrfA. Thirdly, the global regulator of CcpA (carbon catabolite protein A) and P ~ Ser46-HPr (seryl-phosphorylated form of histidine-containing protein) to mediate the CcpA-dependent CCR (carbon catabolite repression) were not increased, but the ability to use extracellular non- and less-preferred carbon sources was down-regulated in ΔsrfA. Fourthly, the carbon overflow metabolism such as biosynthesis of acetate was enhanced while biosynthesis of acetoin/2,3-butanediol and branched-chain amino acids were weakened in ΔsrfA. Finally, ΔsrfA could use most of non- and less-preferred carbon sources except for fatty acids, branched chain amino acids, and some organic acids (e.g. pyruvate, citrate and glutamate) after glucose exhaustion. Collectively, surfactin showed a global influence on carbon metabolism in B. amyloliquefaciens. Our studies highlighted a way to correlate quorum sensing with carbon metabolism via surfactin in Bacillus species.

表面蛋白是一种群体感应信号分子,与解淀粉芽孢杆菌的碳代谢有关。在本研究中,我们发现srfA (ΔsrfA)突变导致解淀粉芽孢杆菌的碳代谢发生明显变化。首先,pts -葡萄糖系统作为葡萄糖耗竭的反馈显著增加。其次,糖酵解、TCA循环等基础碳代谢在ΔsrfA中明显减弱。第三,在ΔsrfA中,CcpA(碳分解代谢蛋白A)和P ~ Ser46-HPr(含组氨酸蛋白的丝氨酸磷酸化形式)介导CcpA依赖的CCR(碳分解代谢抑制)的全局调节因子没有增加,但使用细胞外非和不太受欢迎的碳源的能力被下调。第四,在ΔsrfA中,碳溢出代谢如醋酸酯的生物合成增强,而醋酸酯/2,3-丁二醇和支链氨基酸的生物合成减弱。最后,ΔsrfA在葡萄糖耗尽后,除了脂肪酸、支链氨基酸和一些有机酸(如丙酮酸、柠檬酸和谷氨酸)外,可以使用大多数非和不太优选的碳源。总的来说,表面素对解淀粉芽孢杆菌的碳代谢具有全局影响。我们的研究强调了一种在芽孢杆菌中通过表面蛋白将群体感应与碳代谢联系起来的方法。
{"title":"Surfactin, a quorum sensing signal molecule, globally affects the carbon metabolism in Bacillus amyloliquefaciens","authors":"Jiahong Wen,&nbsp;Xiuyun Zhao,&nbsp;Fengmei Si,&nbsp;Gaofu Qi","doi":"10.1016/j.mec.2021.e00174","DOIUrl":"10.1016/j.mec.2021.e00174","url":null,"abstract":"<div><p>Surfactin, a quorum sensing signal molecule, is correlated with carbon metabolism in <em>Bacillus amyloliquefaciens</em>. In the present work, we found that mutation of <em>srfA</em> (Δ<em>srfA</em>) led to an obviously changed carbon metabolism in <em>B. amyloliquefaciens</em>. Firstly, the PTS-glucose system was significantly increased as a feedback to glucose exhaustion. Secondly, the basic carbon metabolism such as glycolysis and TCA cycle was obviously weakened in Δ<em>srfA</em>. Thirdly, the global regulator of CcpA (carbon catabolite protein A) and P ~ Ser<sub>46</sub>-HPr (seryl-phosphorylated form of histidine-containing protein) to mediate the CcpA-dependent CCR (carbon catabolite repression) were not increased, but the ability to use extracellular non- and less-preferred carbon sources was down-regulated in Δ<em>srfA</em>. Fourthly, the carbon overflow metabolism such as biosynthesis of acetate was enhanced while biosynthesis of acetoin/2,3-butanediol and branched-chain amino acids were weakened in Δ<em>srfA</em>. Finally, Δ<em>srfA</em> could use most of non- and less-preferred carbon sources except for fatty acids, branched chain amino acids, and some organic acids (<em>e.g.</em> pyruvate, citrate and glutamate) after glucose exhaustion. Collectively, surfactin showed a global influence on carbon metabolism in <em>B. amyloliquefaciens</em>. Our studies highlighted a way to correlate quorum sensing with carbon metabolism via surfactin in <em>Bacillus</em> species.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00174"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39067862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica 增脂耶氏菌奇链脂肪酸的工程前体池
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2020.e00158
Young-Kyoung Park , Florence Bordes , Fabien Letisse , Jean-Marc Nicaud

Microbial production of lipids is one of the promising alternatives to fossil resources with increasing environmental and energy concern. Odd-chain fatty acids (OCFA), a type of unusual lipids, are recently gaining a lot of interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical, and chemical industries. In this study, we aimed to enhance the pool of precursors with three-carbon chain (propionyl-CoA) and five-carbon chain (β-ketovaleryl-CoA) for the production of OCFAs in Yarrowia lipolytica. We evaluated different propionate-activating enzymes and the overexpression of propionyl-CoA transferase gene from Ralstonia eutropha increased the accumulation of OCFAs by 3.8 times over control strain, indicating propionate activation is the limiting step of OCFAs synthesis. It was shown that acetate supplement was necessary to restore growth and to produce a higher OCFA contents in total lipids, suggesting the balance of the precursors between acetyl-CoA and propionyl-CoA is crucial for OCFA accumulation. To improve β-ketovaleryl-CoA pools for further increase of OCFA production, we co-expressed the bktB encoding β-ketothiolase in the producing strain, and the OCFA production was increased by 33% compared to control. Combining strain engineering and the optimization of the C/N ratio promoted the OCFA production up to 1.87 ​g/L representing 62% of total lipids, the highest recombinant OCFAs titer reported in yeast, up to date. This study provides a strong basis for the microbial production of OCFAs and its derivatives having high potentials in a wide range of applications.

随着环境和能源的日益关注,微生物生产的脂质是化石资源的有前途的替代品之一。奇链脂肪酸(OCFA)是一种特殊的脂类,由于其在医疗、制药和化学工业中的广泛应用,近年来作为微生物生产的目标化合物受到了广泛的关注。在这项研究中,我们的目的是增加三碳链(丙炔- coa)和五碳链(β-酮戊酰- coa)的前体池,用于在脂性耶氏菌中生产OCFAs。我们对不同的丙酸激活酶进行了评价,结果表明,过表达丙酰coa转移酶基因的富菌OCFAs的积累量比对照菌株增加了3.8倍,表明丙酸激活是OCFAs合成的限制步骤。结果表明,为了恢复生长和提高总脂质中OCFA的含量,补充乙酸是必要的,这表明乙酰辅酶a和丙酰辅酶a前体之间的平衡对OCFA的积累至关重要。为了改善β-酮戊酰辅酶a库,进一步提高OCFA产量,我们在产菌中共表达了编码β-酮硫酶的bktB, OCFA产量比对照提高了33%。结合菌株工程和优化C/N比,使OCFA产量达到1.87 g/L,占总脂质的62%,是迄今为止在酵母中报道的最高重组OCFA滴度。该研究为微生物生产OCFAs及其衍生物提供了强有力的基础,具有广泛的应用潜力。
{"title":"Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica","authors":"Young-Kyoung Park ,&nbsp;Florence Bordes ,&nbsp;Fabien Letisse ,&nbsp;Jean-Marc Nicaud","doi":"10.1016/j.mec.2020.e00158","DOIUrl":"10.1016/j.mec.2020.e00158","url":null,"abstract":"<div><p>Microbial production of lipids is one of the promising alternatives to fossil resources with increasing environmental and energy concern. Odd-chain fatty acids (OCFA), a type of unusual lipids, are recently gaining a lot of interest as target compounds in microbial production due to their diverse applications in the medical, pharmaceutical, and chemical industries. In this study, we aimed to enhance the pool of precursors with three-carbon chain (propionyl-CoA) and five-carbon chain (β-ketovaleryl-CoA) for the production of OCFAs in <em>Yarrowia lipolytica</em>. We evaluated different propionate-activating enzymes and the overexpression of propionyl-CoA transferase gene from <em>Ralstonia eutropha</em> increased the accumulation of OCFAs by 3.8 times over control strain, indicating propionate activation is the limiting step of OCFAs synthesis. It was shown that acetate supplement was necessary to restore growth and to produce a higher OCFA contents in total lipids, suggesting the balance of the precursors between acetyl-CoA and propionyl-CoA is crucial for OCFA accumulation. To improve β-ketovaleryl-CoA pools for further increase of OCFA production, we co-expressed the <em>bktB</em> encoding β-ketothiolase in the producing strain, and the OCFA production was increased by 33% compared to control. Combining strain engineering and the optimization of the C/N ratio promoted the OCFA production up to 1.87 ​g/L representing 62% of total lipids, the highest recombinant OCFAs titer reported in yeast, up to date. This study provides a strong basis for the microbial production of OCFAs and its derivatives having high potentials in a wide range of applications.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00158"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2020.e00158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38776272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Integrated laboratory evolution and rational engineering of GalP/Glk-dependent Escherichia coli for higher yield and productivity of L-tryptophan biosynthesis GalP/ glk依赖性大肠杆菌的综合实验室进化和合理工程,提高l -色氨酸生物合成的产量和生产力
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2021.e00167
Chen Minliang, Ma Chengwei, Chen Lin, An-Ping Zeng

L-Tryptophan (Trp) is a high-value aromatic amino acid with diverse applications in food and pharmaceutical industries. Although production of Trp by engineered Escherichia coli has been extensively studied, the need of multiple precursors for its synthesis and the complex regulations of the biosynthetic pathways make the achievement of a high product yield still very challenging. Metabolic flux analysis suggests that the use of a phosphoenolpyruvate:sugar phosphotransferase system (PTS) independent glucose uptake system, i.e. the galactose permease/glucokinase (GalP/Glk) system, can theoretically double the Trp yield from glucose. To explore this possibility, a PTS and GalP/Glk-dependent E. coli strain was constructed from a previously rationally developed Trp producer strain S028. However, the growth rate of the S028 mutant was severely impaired. To overcome this problem, promoter screening for modulated gene expression of GalP/Glk was carried out, following by a batch mode of adaptive laboratory evolution (ALE) which resulted in a strain K3 with a similar Trp yield and concentration as S028. In order to obtain a more efficient Trp producer, a novel continuous ALE system was developed by combining CRISPR/Cas9-facilitated in vivo mutagenesis with real-time measurement of cell growth and online monitoring of Trp-mediated fluorescence intensity. With the aid of this automatic system (auto-CGSS), a promising strain T5 was obtained and fed-batch fermentations showed an increase of Trp yield by 19.71% with this strain compared with that obtained by the strain K3 (0.164 vs. 0.137 ​g/g). At the same time, the specific production rate was increased by 52.93% (25.28 vs. 16.53 ​mg/g DCW/h). Two previously engineered enzyme variants AroGD6G−D7A and AnTrpCR378F were integrated into the strain T5, resulting in a highly productive strain T5AA with a Trp yield of 0.195 ​g/g and a specific production rate of 28.83 ​mg/g DCW/h.

l -色氨酸(Trp)是一种高价值的芳香氨基酸,在食品和制药工业中有着广泛的应用。尽管利用工程大肠杆菌生产色氨酸已经得到了广泛的研究,但合成色氨酸需要多种前体,生物合成途径的复杂调控使得实现高产量仍然非常具有挑战性。代谢通量分析表明,使用磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)独立的葡萄糖摄取系统,即半乳糖渗透酶/葡萄糖激酶(GalP/Glk)系统,理论上可以使葡萄糖的色氨酸产量翻倍。为了探索这种可能性,我们利用先前合理开发的色氨酸产生菌S028构建了依赖PTS -和GalP/ glk的大肠杆菌菌株。然而,S028突变体的生长速率严重受损。为了克服这一问题,我们对GalP/Glk调控基因表达的启动子进行了筛选,然后进行了批量适应实验室进化(ALE)模式,结果菌株K3具有与S028相似的Trp产量和浓度。为了获得更高效的色氨酸产生物,我们将CRISPR/ cas9介导的体内诱变与实时测量细胞生长和在线监测色氨酸介导的荧光强度相结合,开发了一种新型的连续ALE系统。在该自动系统(auto-CGSS)的辅助下,获得了一个很有前途的菌株T5,与菌株K3相比,该菌株的色氨酸产量提高了19.71% (0.164 g/g比0.137 g/g)。同时,比产率提高52.93%(25.28比16.53 mg/g DCW/h)。将先前设计的两种酶变体AroGD6G−D7A和AnTrpCR378F整合到菌株T5中,得到了Trp产量为0.195 g/g,比产率为28.83 mg/g DCW/h的高产菌株T5AA。
{"title":"Integrated laboratory evolution and rational engineering of GalP/Glk-dependent Escherichia coli for higher yield and productivity of L-tryptophan biosynthesis","authors":"Chen Minliang,&nbsp;Ma Chengwei,&nbsp;Chen Lin,&nbsp;An-Ping Zeng","doi":"10.1016/j.mec.2021.e00167","DOIUrl":"10.1016/j.mec.2021.e00167","url":null,"abstract":"<div><p>L-Tryptophan (Trp) is a high-value aromatic amino acid with diverse applications in food and pharmaceutical industries. Although production of Trp by engineered <em>Escherichia coli</em> has been extensively studied, the need of multiple precursors for its synthesis and the complex regulations of the biosynthetic pathways make the achievement of a high product yield still very challenging. Metabolic flux analysis suggests that the use of a phosphoenolpyruvate:sugar phosphotransferase system (PTS) independent glucose uptake system, i.e. the galactose permease/glucokinase (GalP/Glk) system, can theoretically double the Trp yield from glucose. To explore this possibility, a PTS<sup>−</sup> and GalP/Glk-dependent <em>E. coli</em> strain was constructed from a previously rationally developed Trp producer strain S028. However, the growth rate of the S028 mutant was severely impaired. To overcome this problem, promoter screening for modulated gene expression of GalP/Glk was carried out, following by a batch mode of adaptive laboratory evolution (ALE) which resulted in a strain K3 with a similar Trp yield and concentration as S028. In order to obtain a more efficient Trp producer, a novel continuous ALE system was developed by combining CRISPR/Cas9-facilitated <em>in vivo</em> mutagenesis with real-time measurement of cell growth and online monitoring of Trp-mediated fluorescence intensity. With the aid of this automatic system (auto-CGSS), a promising strain T5 was obtained and fed-batch fermentations showed an increase of Trp yield by 19.71% with this strain compared with that obtained by the strain K3 (0.164 vs. 0.137 ​g/g). At the same time, the specific production rate was increased by 52.93% (25.28 vs. 16.53 ​mg/g <sub>DCW</sub>/h). Two previously engineered enzyme variants AroG<sup>D6G−D7A</sup> and <em>An</em>TrpC<sup>R378F</sup> were integrated into the strain T5, resulting in a highly productive strain T5AA with a Trp yield of 0.195 ​g/g and a specific production rate of 28.83 ​mg/g <sub>DCW</sub>/h.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00167"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2021.e00167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25431234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Engineering of a new Escherichia coli strain efficiently metabolizing cellobiose with promising perspectives for plant biomass-based application design 一株高效代谢纤维素二糖的新型大肠杆菌的工程设计及其在植物生物量应用设计中的前景
IF 5.2 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2021-06-01 DOI: 10.1016/j.mec.2020.e00157
Romain Borne , Nicolas Vita , Nathalie Franche , Chantal Tardif, Stéphanie Perret, Henri-Pierre Fierobe

The necessity to decrease our fossil energy dependence requests bioprocesses based on biomass degradation. Cellobiose is the main product released by cellulases when acting on the major plant cell wall polysaccharide constituent, the cellulose. Escherichia coli, one of the most common model organisms for the academy and the industry, is unable to metabolize this disaccharide. In this context, the remodeling of E. coli to catabolize cellobiose should thus constitute an important progress for the design of such applications. Here, we developed a robust E. coli strain able to metabolize cellobiose by integration of a small set of modifications in its genome. Contrary to previous studies that use adaptative evolution to achieve some growth on this sugar by reactivating E. coli cryptic operons coding for cellobiose metabolism, we identified easily insertable modifications impacting the cellobiose import (expression of a gene coding a truncated variant of the maltoporin LamB, modification of the expression of lacY encoding the lactose permease) and its intracellular degradation (genomic insertion of a gene encoding either a cytosolic β-glucosidase or a cellobiose phosphorylase). Taken together, our results provide an easily transferable set of mutations that confers to E. coli an efficient growth phenotype on cellobiose (doubling time of 2.2 ​h in aerobiosis) without any prior adaptation.

减少我们对化石能源依赖的必要性要求基于生物质降解的生物过程。纤维素二糖是纤维素酶作用于植物细胞壁的主要多糖成分纤维素时所释放的主要产物。大肠杆菌是学术界和工业界最常见的模式生物之一,它无法代谢这种双糖。在这种情况下,重塑大肠杆菌以分解纤维素糖应该是设计此类应用的重要进展。在这里,我们开发了一种强大的大肠杆菌菌株,能够通过整合其基因组中的一小组修饰来代谢纤维二糖。与先前的研究相反,通过重新激活编码纤维素二糖代谢的大肠杆菌隐操作子,利用适应性进化来实现这种糖的一些生长,我们发现了容易插入的修饰,影响纤维素二糖的进口(编码麦芽糖蛋白LamB的截断变体的基因的表达)。编码乳糖渗透酶的lacY表达的修饰及其细胞内降解(编码胞质β-葡萄糖苷酶或纤维素二糖磷酸化酶的基因的基因组插入)。综上所述,我们的研究结果提供了一组易于转移的突变,这些突变赋予了大肠杆菌在纤维素二糖上的高效生长表型(在有氧状态下翻倍时间为2.2 h),而无需任何预先适应。
{"title":"Engineering of a new Escherichia coli strain efficiently metabolizing cellobiose with promising perspectives for plant biomass-based application design","authors":"Romain Borne ,&nbsp;Nicolas Vita ,&nbsp;Nathalie Franche ,&nbsp;Chantal Tardif,&nbsp;Stéphanie Perret,&nbsp;Henri-Pierre Fierobe","doi":"10.1016/j.mec.2020.e00157","DOIUrl":"10.1016/j.mec.2020.e00157","url":null,"abstract":"<div><p>The necessity to decrease our fossil energy dependence requests bioprocesses based on biomass degradation. Cellobiose is the main product released by cellulases when acting on the major plant cell wall polysaccharide constituent, the cellulose. <em>Escherichia coli</em>, one of the most common model organisms for the academy and the industry, is unable to metabolize this disaccharide. In this context, the remodeling of <em>E. coli</em> to catabolize cellobiose should thus constitute an important progress for the design of such applications. Here, we developed a robust <em>E. coli</em> strain able to metabolize cellobiose by integration of a small set of modifications in its genome. Contrary to previous studies that use adaptative evolution to achieve some growth on this sugar by reactivating <em>E. coli</em> cryptic operons coding for cellobiose metabolism, we identified easily insertable modifications impacting the cellobiose import (expression of a gene coding a truncated variant of the maltoporin LamB, modification of the expression of <em>lacY</em> encoding the lactose permease) and its intracellular degradation (genomic insertion of a gene encoding either a cytosolic β-glucosidase or a cellobiose phosphorylase). Taken together, our results provide an easily transferable set of mutations that confers to <em>E. coli</em> an efficient growth phenotype on cellobiose (doubling time of 2.2 ​h in aerobiosis) without any prior adaptation.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"12 ","pages":"Article e00157"},"PeriodicalIF":5.2,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mec.2020.e00157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38829882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Metabolic Engineering Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1