Pub Date : 2024-06-08DOI: 10.1016/j.mce.2024.112309
Amir Ajoolabady , Domenico Pratico , Jun Ren
Angiotensin II (Ang II) is a protein hormone capable of physiologically regulating blood pressure through diverse mechanisms. Ang II is mainly produced by the liver at homeostatic levels. However, excessive production of Ang II is closely associated with a series of pathological events in the body. The endothelial dysfunction is one of these pathological events that can drive vascular anomalies. The excessive exposure of endothelial cells (ECs) to Ang II may induce endothelial dysfunction via diverse mechanisms. One of these mechanisms is Ang II-mediated mitochondrial oxidative stress. In this mini-review, we aimed to discuss the molecular mechanisms of Ang II-mediated endothelial dysfunction through mitochondrial oxidative stress and the protective role of nitric oxide in ECs. Deciphering these mechanisms may disclose novel therapeutic strategies to prevent endothelial dysfunction and associated diseases induced by elevated leves of Ang II in the blood.
血管紧张素 II(Ang II)是一种蛋白质激素,能够通过多种机制对血压进行生理调节。血管紧张素 II 主要由肝脏产生,处于平衡状态。然而,Ang II 的过量产生与体内一系列病理事件密切相关。内皮功能障碍就是其中一种可导致血管异常的病理事件。内皮细胞(ECs)过度暴露于 Ang II 可通过多种机制诱发内皮功能障碍。其中一种机制是 Ang II 介导的线粒体氧化应激。在这篇微型综述中,我们旨在讨论 Ang II 通过线粒体氧化应激介导的内皮功能障碍的分子机制以及一氧化氮在 EC 中的保护作用。破译这些机制可能会发现新的治疗策略,以预防血液中 Ang II 浓度升高引起的内皮功能障碍和相关疾病。
{"title":"Angiotensin II: Role in oxidative stress, endothelial dysfunction, and diseases","authors":"Amir Ajoolabady , Domenico Pratico , Jun Ren","doi":"10.1016/j.mce.2024.112309","DOIUrl":"10.1016/j.mce.2024.112309","url":null,"abstract":"<div><p>Angiotensin II (Ang II) is a protein hormone capable of physiologically regulating blood pressure through diverse mechanisms. Ang II is mainly produced by the liver at homeostatic levels. However, excessive production of Ang II is closely associated with a series of pathological events in the body. The endothelial dysfunction is one of these pathological events that can drive vascular anomalies. The excessive exposure of endothelial cells (ECs) to Ang II may induce endothelial dysfunction via diverse mechanisms. One of these mechanisms is Ang II-mediated mitochondrial oxidative stress. In this mini-review, we aimed to discuss the molecular mechanisms of Ang II-mediated endothelial dysfunction through mitochondrial oxidative stress and the protective role of nitric oxide in ECs. Deciphering these mechanisms may disclose novel therapeutic strategies to prevent endothelial dysfunction and associated diseases induced by elevated leves of Ang II in the blood.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1016/j.mce.2024.112291
Tingting Shu , Yan Zhang , Tong Sun , Yunxia Zhu
{"title":"Corrigendum to “Polypeptide N-Acetylgalactosaminyl transferase 14 is a novel mediator in pancreatic β-cell function and growth” [Mol. Cell. Endocrinol., 591(2024) 112269-112278, 0303–7207]","authors":"Tingting Shu , Yan Zhang , Tong Sun , Yunxia Zhu","doi":"10.1016/j.mce.2024.112291","DOIUrl":"https://doi.org/10.1016/j.mce.2024.112291","url":null,"abstract":"","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303720724001473/pdfft?md5=2e1292566c5ba3966e0763866504ace3&pid=1-s2.0-S0303720724001473-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ovarian cancer (OC) adjusts energy metabolism in favor of its progression and dissemination. Because melatonin (Mel) has antitumor actions, we investigated its impact on energy metabolism and kinase signaling in OC cells (SKOV-3 and CAISMOV-24). Cells were divided into control and Mel-treated groups, in the presence or absence of the antagonist luzindole. There was a decrease in the levels of HIF-1α, G6PDH, GAPDH, PDH, and CS after Mel treatment even in the presence of luzindole in both OC cells. Mel treatment also reduced the activity of OC-related enzymes including PFK-1, G6PDH, LDH, CS, and GS whereas PDH activity was increased. Lactate and glutamine levels dropped after Mel treatment. Mel further promoted a reduction in the concentrations of CREB, JNK, NF-kB, p-38, ERK1/2, AKT, P70S6K, and STAT in both cell lines. Mel reverses Warburg-type metabolism and possibly reduces glutaminolysis, thereby attenuating various oncogenic molecules associated with OC progression and invasion.
{"title":"Melatonin changes energy metabolism and reduces oncogenic signaling in ovarian cancer cells","authors":"Henrique Spaulonci Silveira , Roberta Carvalho Cesário , Renan Aparecido Vígaro , Leticia Barbosa Gaiotte , Maira Smaniotto Cucielo , Fernando Guimarães , Fábio Rodrigues Ferreira Seiva , Debora Aparecida P.C. Zuccari , Russel J. Reiter , Luiz Gustavo de Almeida Chuffa","doi":"10.1016/j.mce.2024.112296","DOIUrl":"10.1016/j.mce.2024.112296","url":null,"abstract":"<div><p>Ovarian cancer (OC) adjusts energy metabolism in favor of its progression and dissemination. Because melatonin (Mel) has antitumor actions, we investigated its impact on energy metabolism and kinase signaling in OC cells (SKOV-3 and CAISMOV-24). Cells were divided into control and Mel-treated groups, in the presence or absence of the antagonist luzindole. There was a decrease in the levels of HIF-1α, G6PDH, GAPDH, PDH, and CS after Mel treatment even in the presence of luzindole in both OC cells. Mel treatment also reduced the activity of OC-related enzymes including PFK-1, G6PDH, LDH, CS, and GS whereas PDH activity was increased. Lactate and glutamine levels dropped after Mel treatment. Mel further promoted a reduction in the concentrations of CREB, JNK, NF-kB, p-38, ERK1/2, AKT, P70S6K, and STAT in both cell lines. Mel reverses Warburg-type metabolism and possibly reduces glutaminolysis, thereby attenuating various oncogenic molecules associated with OC progression and invasion.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1016/j.mce.2024.112293
Jani Liimatta , Therina du Toit , Clarissa D. Voegel , Jarmo Jääskeläinen , Timo A. Lakka , Christa E. Flück
Context
Adrenarche is a normal developmental event in mid-childhood characterized by increasing adrenal androgen secretion. The role of the classic androgen pathway has been well described in adrenarche, but the role of newer active androgens and additional androgen pathways is less clear.
Objective
To study the contribution of novel androgens and related steroid biosynthesis pathways to the development of adrenarche, and to identify additional steroid biomarkers of adrenarche.
Design
A longitudinal study of children aged 6–8 years at baseline, followed up at ages 8–10 and 14–16 years. A total of 34 children (20 girls) with clinical and/or biochemical signs of adrenarche (cases) and 24 children (11 girls) without these signs (controls) at age 8–10 years were included. Serum steroid profiling was performed by liquid chromatography high-resolution mass spectrometry.
Main outcome measures
Thirty-two steroids compartmentalized in progestagens, gluco- and mineralocorticoid pathways, and four androgen related pathways, including the classic, backdoor, 11-oxy, and 11-oxy backdoor pathways.
Results
The classic and 11-oxy androgen pathways were more active, and serum concentrations of main androgens in the classic (dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione and androsterone) and 11-oxy (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione, and 11-ketotestosterone) pathways were higher in cases at ages 6–8 and 8–10 years. Pregnenolone concentrations at adrenarchal age (8–10 years) and cortisol concentrations at adolescence (14–16 years) were higher in cases. 11β-hydroxyandrosterone and 11-ketoandrosterone tended to be higher in cases with clinical signs compared to cases who had only biochemical evidence of adrenarche, albeit they were detected at low levels. In biomarker analyses, calculated steroid ratios with cortisol, cortisone, or 11-deoxycortisone as dividers were better classifiers for adrenarche than single steroids. Among these ratios, androstenedione/cortisone was the best.
Conclusions
The classic and 11-oxy androgen pathways are active in adrenarche. Children with earlier timing of adrenarche have higher serum cortisol levels at late pubertal age, suggesting that early adrenarche might have long-term effects on adrenal steroidogenesis by increasing the activity of the glucocorticoid pathway. Future studies should employ comprehensive steroid profiling to define novel classifiers and biomarkers for adrenarche and premature adrenarche.
{"title":"Multiple androgen pathways contribute to the steroid signature of adrenarche","authors":"Jani Liimatta , Therina du Toit , Clarissa D. Voegel , Jarmo Jääskeläinen , Timo A. Lakka , Christa E. Flück","doi":"10.1016/j.mce.2024.112293","DOIUrl":"10.1016/j.mce.2024.112293","url":null,"abstract":"<div><h3>Context</h3><p>Adrenarche is a normal developmental event in mid-childhood characterized by increasing adrenal androgen secretion. The role of the classic androgen pathway has been well described in adrenarche, but the role of newer active androgens and additional androgen pathways is less clear.</p></div><div><h3>Objective</h3><p>To study the contribution of novel androgens and related steroid biosynthesis pathways to the development of adrenarche, and to identify additional steroid biomarkers of adrenarche.</p></div><div><h3>Design</h3><p>A longitudinal study of children aged 6–8 years at baseline, followed up at ages 8–10 and 14–16 years. A total of 34 children (20 girls) with clinical and/or biochemical signs of adrenarche (cases) and 24 children (11 girls) without these signs (controls) at age 8–10 years were included. Serum steroid profiling was performed by liquid chromatography high-resolution mass spectrometry.</p></div><div><h3>Main outcome measures</h3><p>Thirty-two steroids compartmentalized in progestagens, gluco- and mineralocorticoid pathways, and four androgen related pathways, including the classic, backdoor, 11-oxy, and 11-oxy backdoor pathways.</p></div><div><h3>Results</h3><p>The classic and 11-oxy androgen pathways were more active, and serum concentrations of main androgens in the classic (dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione and androsterone) and 11-oxy (11β-hydroxyandrostenedione, 11β-hydroxytestosterone, 11-ketoandrostenedione, and 11-ketotestosterone) pathways were higher in cases at ages 6–8 and 8–10 years. Pregnenolone concentrations at adrenarchal age (8–10 years) and cortisol concentrations at adolescence (14–16 years) were higher in cases. 11β-hydroxyandrosterone and 11-ketoandrosterone tended to be higher in cases with clinical signs compared to cases who had only biochemical evidence of adrenarche, albeit they were detected at low levels. In biomarker analyses, calculated steroid ratios with cortisol, cortisone, or 11-deoxycortisone as dividers were better classifiers for adrenarche than single steroids. Among these ratios, androstenedione/cortisone was the best.</p></div><div><h3>Conclusions</h3><p>The classic and 11-oxy androgen pathways are active in adrenarche. Children with earlier timing of adrenarche have higher serum cortisol levels at late pubertal age, suggesting that early adrenarche might have long-term effects on adrenal steroidogenesis by increasing the activity of the glucocorticoid pathway. Future studies should employ comprehensive steroid profiling to define novel classifiers and biomarkers for adrenarche and premature adrenarche.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303720724001497/pdfft?md5=c50e3103660dbcb51d4ce770eb2658b0&pid=1-s2.0-S0303720724001497-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of the present research was to explore the mechanisms underlying the role of dopamine in the regulation of insulin secretion in beta cells. The effect of dopamine on insulin secretion was investigated on INS 832/13 cell line upon glucose and other secretagogues stimulation. Results show that dopamine significantly inhibits insulin secretion stimulated by both glucose and other secretagogues, while it has no effect on the basal secretion. This effect requires the presence of dopamine during incubation with the various secretagogues. Both electron microscopy and immunohistochemistry indicate that in beta cells the D2 dopamine receptor is localized within the insulin granules. Blocking dopamine entry into the insulin granules by inhibiting the VMAT2 transporter with tetrabenazine causes a significant increase in ROS production. Our results confirm that dopamine plays an important role in the regulation of insulin secretion by pancreatic beta cells through a regulated and precise compartmentalization mechanisms.
本研究旨在探索多巴胺在调节β细胞胰岛素分泌中的作用机制。研究人员在 INS 832/13 细胞系上研究了多巴胺在葡萄糖和其他促泌剂刺激下对胰岛素分泌的影响。结果表明,多巴胺能明显抑制葡萄糖和其他促泌剂刺激下的胰岛素分泌,而对基础分泌没有影响。这种作用需要在与各种分泌物一起孵育期间多巴胺的存在。电子显微镜和免疫组化都表明,在β细胞中,D2多巴胺受体位于胰岛素颗粒内。用四苯巴嗪抑制 VMAT2 转运体,阻止多巴胺进入胰岛素颗粒,会导致 ROS 生成显著增加。我们的研究结果证实,多巴胺通过调节和精确的分区机制在调节胰岛β细胞分泌胰岛素的过程中发挥着重要作用。
{"title":"Dopamine-mediated autocrine inhibition of insulin secretion","authors":"Edoardo Ferrero , Matilde Masini , Marco Carli , Stefania Moscato , Pascale Beffy , Francesca Vaglini , Letizia Mattii , Alessandro Corti , Marco Scarselli , Michela Novelli , Vincenzo De Tata","doi":"10.1016/j.mce.2024.112294","DOIUrl":"10.1016/j.mce.2024.112294","url":null,"abstract":"<div><p>The aim of the present research was to explore the mechanisms underlying the role of dopamine in the regulation of insulin secretion in beta cells<strong>.</strong> The effect of dopamine on insulin secretion was investigated on INS 832/13 cell line upon glucose and other secretagogues stimulation. Results show that dopamine significantly inhibits insulin secretion stimulated by both glucose and other secretagogues, while it has no effect on the basal secretion. This effect requires the presence of dopamine during incubation with the various secretagogues. Both electron microscopy and immunohistochemistry indicate that in beta cells the D<sub>2</sub> dopamine receptor is localized within the insulin granules. Blocking dopamine entry into the insulin granules by inhibiting the VMAT2 transporter with tetrabenazine causes a significant increase in ROS production. Our results confirm that dopamine plays an important role in the regulation of insulin secretion by pancreatic beta cells through a regulated and precise compartmentalization mechanisms.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0303720724001503/pdfft?md5=e59767a1462545784302bdd8ddfab110&pid=1-s2.0-S0303720724001503-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.mce.2024.112292
Yun-Yun Jiao , Ning Song , Xing-Yu Fang , Xiao-Tong Lu, Ning Sun, Hai-Xia Jin, Lei Chen, Xian-Ju Huang, Shuang Wen, Zhao-Ting Wu, Xiao-Peng Wang, Ting-Ting Cheng, Gui-Dong Yao, Wen-Yan Song
Research question
Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients?
Design
Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition.
Results
In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of LDHA, PFKP and PKM.
Conclusions
YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.
{"title":"YTHDF2 regulates MSS51 expression contributing to mitochondria dysfunction of granulosa cells in polycystic ovarian syndrome patients","authors":"Yun-Yun Jiao , Ning Song , Xing-Yu Fang , Xiao-Tong Lu, Ning Sun, Hai-Xia Jin, Lei Chen, Xian-Ju Huang, Shuang Wen, Zhao-Ting Wu, Xiao-Peng Wang, Ting-Ting Cheng, Gui-Dong Yao, Wen-Yan Song","doi":"10.1016/j.mce.2024.112292","DOIUrl":"10.1016/j.mce.2024.112292","url":null,"abstract":"<div><h3>Research question</h3><p>Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients?</p></div><div><h3>Design</h3><p>Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition.</p></div><div><h3>Results</h3><p>In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of <em>LDHA, PFKP</em> and <em>PKM</em>.</p></div><div><h3>Conclusions</h3><p>YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141235621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.mce.2024.112290
Sudipta Dutta , JeHoon Lee , Sakhila K. Banu, Joe A. Arosh
Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. Progesterone resistance, loss of progesterone receptor -B (PR-B) in the stromal cells of the endometrium, is one of the hallmarks of endometriosis and a major contributing factor for infertility in endometriosis patients. Loss of PR-B in the stromal cells of the endometriotic lesions poses resistance to the success of progesterone-based therapy. The working hypothesis is that PR-B is hypermethylated and epigenetically silenced, and inhibition of AKT and ERK1/2 pathways will decrease the hypermethylation, reverse the epigenetic silencing, and restore the expression of PR-B via DNA methylation and histone modification mechanisms in the endometriotic lesions. The objectives are to (i) determine the effects of dual inhibition of AKT and ERK1/2 pathways on the expression of PR-B and DNA methylation and histone modification protein machinery in the endometriotic lesions and (ii) identify the underlying epigenetic mechanisms of PR-B restoration in the endometriotic lesions. The results indicate that dual inhibition of AKT and ERK1/2 pathways decreases the hypermethylation, reverses the epigenetic silencing, and restores the expression of PR-B via DNA methylation and H3K9 and H3K27 methylation mechanisms in the endometriotic lesions or endometriotic stromal cells of human origin. These results support the novel concept that restored expression of PR-B in the endometriotic lesions and endometrium may improve the clinical outcome of progesterone therapy in endometriosis patients.
{"title":"Dual inhibition of AKT and ERK1/2 pathways restores the expression of progesterone Receptor-B in endometriotic lesions through epigenetic mechanisms","authors":"Sudipta Dutta , JeHoon Lee , Sakhila K. Banu, Joe A. Arosh","doi":"10.1016/j.mce.2024.112290","DOIUrl":"10.1016/j.mce.2024.112290","url":null,"abstract":"<div><p>Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. Progesterone resistance, loss of progesterone receptor -B (PR-B) in the stromal cells of the endometrium, is one of the hallmarks of endometriosis and a major contributing factor for infertility in endometriosis patients. Loss of PR-B in the stromal cells of the endometriotic lesions poses resistance to the success of progesterone-based therapy. The working hypothesis is that PR-B is hypermethylated and epigenetically silenced, and inhibition of AKT and ERK1/2 pathways will decrease the hypermethylation, reverse the epigenetic silencing, and restore the expression of PR-B via DNA methylation and histone modification mechanisms in the endometriotic lesions. The objectives are to (i) determine the effects of dual inhibition of AKT and ERK1/2 pathways on the expression of PR-B and DNA methylation and histone modification protein machinery in the endometriotic lesions and (ii) identify the underlying epigenetic mechanisms of PR-B restoration in the endometriotic lesions. The results indicate that dual inhibition of AKT and ERK1/2 pathways decreases the hypermethylation, reverses the epigenetic silencing, and restores the expression of PR-B via DNA methylation and H3K9 and H3K27 methylation mechanisms in the endometriotic lesions or endometriotic stromal cells of human origin. These results support the novel concept that restored expression of PR-B in the endometriotic lesions and endometrium may improve the clinical outcome of progesterone therapy in endometriosis patients.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1016/j.mce.2024.112283
Wanyu Zhang , Shuowen Wang , Zhuo Liu , Ping Qian , Yuanyuan Li , Jianxin Wu
Adipose tissue macrophages (ATMs) are key players in the development of obesity and associated metabolic inflammation, which contributes to systemic metabolic dysfunction, and understanding the interaction between macrophages and adipocytes is crucial for developing novel macrophage-based strategies against obesity. Here, we found that Legumain (Lgmn), a well-known lysosomal cysteine protease, is expressed mainly in the ATMs of obese mice. To further define the potential role of Lgmn-expressing macrophages in the generation of an aberrant metabolic state, LgmnF/F; LysMCre mice, which do not express Lgmn in macrophages, were maintained on a high-fat diet (HFD), and metabolic parameters were assessed. Macrophage-specific Lgmn deficiency protects mice against HFD-induced obesity, diminishes the quantity of proinflammatory macrophages in obese adipose tissues, and alleviates hepatic steatosis and insulin resistance. By analysing the transcriptome and proteome of murine visceral white adipose tissue (vWAT) after HFD feeding, we determined that macrophage Lgmn deficiency causes changes in lipid metabolism and the inflammatory response. Furthermore, the reciprocity of macrophage-derived Lgmn with integrin α5β1 in adipocytes was tested via colocalization analyses. It is further demonstrated in macrophage and adipocyte coculture system that macrophage derived Lgmn bound to integrin α5β1 in adipocytes, therefore attenuating PKA activation, downregulating lipolysis-related proteins and eventually exacerbating obesity development. Overall, our study identified Lgmn as a previously unrecognized regulator involved in the interaction between ATMs and adipocytes contributing to diet-induced obesity and suggested that Lgmn is a potential target for treating metabolic disorders.
{"title":"Legumain-deficient macrophages regulate inflammation and lipid metabolism in adipose tissues to protect against diet-induced obesity","authors":"Wanyu Zhang , Shuowen Wang , Zhuo Liu , Ping Qian , Yuanyuan Li , Jianxin Wu","doi":"10.1016/j.mce.2024.112283","DOIUrl":"10.1016/j.mce.2024.112283","url":null,"abstract":"<div><p>Adipose tissue macrophages (ATMs) are key players in the development of obesity and associated metabolic inflammation, which contributes to systemic metabolic dysfunction, and understanding the interaction between macrophages and adipocytes is crucial for developing novel macrophage-based strategies against obesity. Here, we found that Legumain (Lgmn), a well-known lysosomal cysteine protease, is expressed mainly in the ATMs of obese mice. To further define the potential role of Lgmn-expressing macrophages in the generation of an aberrant metabolic state, Lgmn<sup>F/F</sup>; LysM<sup>Cre</sup> mice, which do not express Lgmn in macrophages, were maintained on a high-fat diet (HFD), and metabolic parameters were assessed. Macrophage-specific Lgmn deficiency protects mice against HFD-induced obesity, diminishes the quantity of proinflammatory macrophages in obese adipose tissues, and alleviates hepatic steatosis and insulin resistance. By analysing the transcriptome and proteome of murine visceral white adipose tissue (vWAT) after HFD feeding, we determined that macrophage Lgmn deficiency causes changes in lipid metabolism and the inflammatory response. Furthermore, the reciprocity of macrophage-derived Lgmn with integrin α5β1 in adipocytes was tested via colocalization analyses. It is further demonstrated in macrophage and adipocyte coculture system that macrophage derived Lgmn bound to integrin α5β1 in adipocytes, therefore attenuating PKA activation, downregulating lipolysis-related proteins and eventually exacerbating obesity development. Overall, our study identified Lgmn as a previously unrecognized regulator involved in the interaction between ATMs and adipocytes contributing to diet-induced obesity and suggested that Lgmn is a potential target for treating metabolic disorders.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1016/j.mce.2024.112282
Qi Wei Guo , Jia Lin , Yi Lin Shen , Yan Jiang Zheng , Xu Chen , Mi Su , Ji Cheng Zhang , Jin Hua Wang , Hui Tang , Guo Ming Su , Zheng Ke Li , Ding Zhi Fang
Understanding the effects of psychosocial stress on serum cholesterol may offer valuable insights into the relationship between psychological disorders and endocrine diseases. However, these effects and their underlying mechanisms have not been elucidated yet. Here we show that serum corticosterone, total cholesterol and low-density lipoprotein cholesterol (LDL-C) are elevated in a mouse model of psychosocial stress. Furthermore, alterations occur in AdipoR2-mediated AMPK and PPARα signaling pathways in liver, accompanied by a decrease in LDL-C clearance and an increase in cholesterol synthesis. These changes are further verified in wild-type and AdipoR2 overexpression HepG2 cells incubated with cortisol and AdipoR agonist, and are finally confirmed by treating wild-type and hepatic-specific AdipoR2 overexpression mice with corticosterone. We conclude that increased glucocorticoid mediates the effects of psychosocial stress to elevate serum cholesterol by inhibiting AdipoR2-mediated AMPK and PPARα signaling to decrease LDL-C clearance and increase cholesterol synthesis in liver.
{"title":"Reduced hepatic AdipoR2 by increased glucocorticoid mediates effect of psychosocial stress to elevate serum cholesterol","authors":"Qi Wei Guo , Jia Lin , Yi Lin Shen , Yan Jiang Zheng , Xu Chen , Mi Su , Ji Cheng Zhang , Jin Hua Wang , Hui Tang , Guo Ming Su , Zheng Ke Li , Ding Zhi Fang","doi":"10.1016/j.mce.2024.112282","DOIUrl":"10.1016/j.mce.2024.112282","url":null,"abstract":"<div><p>Understanding the effects of psychosocial stress on serum cholesterol may offer valuable insights into the relationship between psychological disorders and endocrine diseases. However, these effects and their underlying mechanisms have not been elucidated yet. Here we show that serum corticosterone, total cholesterol and low-density lipoprotein cholesterol (LDL-C) are elevated in a mouse model of psychosocial stress. Furthermore, alterations occur in AdipoR2-mediated AMPK and PPARα signaling pathways in liver, accompanied by a decrease in LDL-C clearance and an increase in cholesterol synthesis. These changes are further verified in wild-type and <em>AdipoR2</em> overexpression HepG2 cells incubated with cortisol and AdipoR agonist, and are finally confirmed by treating wild-type and hepatic-specific <em>AdipoR2</em> overexpression mice with corticosterone. We conclude that increased glucocorticoid mediates the effects of psychosocial stress to elevate serum cholesterol by inhibiting AdipoR2-mediated AMPK and PPARα signaling to decrease LDL-C clearance and increase cholesterol synthesis in liver.</p></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1016/j.mce.2024.112281
Anam Ashraf, Md. Imtaiyaz Hassan
{"title":"Microbial Endocrinology: Host metabolism and appetite hormones interaction with gut microbiome","authors":"Anam Ashraf, Md. Imtaiyaz Hassan","doi":"10.1016/j.mce.2024.112281","DOIUrl":"10.1016/j.mce.2024.112281","url":null,"abstract":"","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}