Pub Date : 2025-06-01Epub Date: 2025-05-15DOI: 10.1007/s11307-025-02019-y
Anju R Nath, Kiruthika Thenmozhi, Jeyakumar Natarajan
Purpose: This study aims to integrate CT (Computed Tomography) radiomic features, gene expression profiles, and clinical data to identify radiogenomic biomarkers and improve overall survival prediction in gastric cancer (GC) patients.
Procedures: Quantitative radiomic analysis was performed on 37 GC CT images, alongside gene expression and clinical data, to identify biomarkers associated with overall survival. Tumor segmentation and radiomic feature extraction were followed by Pearson correlation for feature selection. Gene Set Enrichment Analysis (GSEA) identified pathways linking gene expression changes with radiomic features. Regression models were applied to explore the relationships between these pathways, radiomic features, and clinical data in survival prediction.
Results: A total of 107 radiomic features were extracted, with 46 radiomic features, 1,032 genes, and one clinical feature (age) selected for further analysis. GSEA identified 29 significant KEGG pathways, mainly involving immune, signal transduction, and catabolism pathways. In survival analysis, the SVM model performed best, identifying age, genes CSF1R and CXCL12, and image features ShortRunHighGrayLevelEmphasis and Idn (Inverse Difference Normalized) as independent predictors.
Conclusion: This study highlights the potential of integrating imaging, genomics, and clinical data for prognosis in GC patients, with identified genes suggesting new radiogenomic biomarker candidates for future evaluation.
{"title":"Radiogenomic Profiling for Survival Analysis in Gastric Cancer: Integrating CT Imaging, Gene Expression, and Clinical Data.","authors":"Anju R Nath, Kiruthika Thenmozhi, Jeyakumar Natarajan","doi":"10.1007/s11307-025-02019-y","DOIUrl":"10.1007/s11307-025-02019-y","url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to integrate CT (Computed Tomography) radiomic features, gene expression profiles, and clinical data to identify radiogenomic biomarkers and improve overall survival prediction in gastric cancer (GC) patients.</p><p><strong>Procedures: </strong>Quantitative radiomic analysis was performed on 37 GC CT images, alongside gene expression and clinical data, to identify biomarkers associated with overall survival. Tumor segmentation and radiomic feature extraction were followed by Pearson correlation for feature selection. Gene Set Enrichment Analysis (GSEA) identified pathways linking gene expression changes with radiomic features. Regression models were applied to explore the relationships between these pathways, radiomic features, and clinical data in survival prediction.</p><p><strong>Results: </strong>A total of 107 radiomic features were extracted, with 46 radiomic features, 1,032 genes, and one clinical feature (age) selected for further analysis. GSEA identified 29 significant KEGG pathways, mainly involving immune, signal transduction, and catabolism pathways. In survival analysis, the SVM model performed best, identifying age, genes CSF1R and CXCL12, and image features ShortRunHighGrayLevelEmphasis and Idn (Inverse Difference Normalized) as independent predictors.</p><p><strong>Conclusion: </strong>This study highlights the potential of integrating imaging, genomics, and clinical data for prognosis in GC patients, with identified genes suggesting new radiogenomic biomarker candidates for future evaluation.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"353-364"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144079120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: This study explored the relationship between mRNA expression profiles obtained through next-generation sequencing (NGS) and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) texture analysis in patients with treatment-resistant oral squamous cell carcinoma (OSCC) who were treated with molecular-targeted drugs. We analyzed the correlation between 18F-FDG PET texture features and NGS data in a small cohort of five patients with recurrent or metastatic OSCC who received molecular-targeted drugs after surgery. Patients were categorized into two groups based on treatment response: responders (n = 3) and non-responders (n = 2). To validate our findings, we examined transcriptomic data from 292 OSCC patients in The Cancer Genome Atlas (TCGA) database.
Results: The gene ankyrin repeat and SOCS box containing two (ASB2) was significantly overexpressed in non-responders and strongly correlated with specific PET radiomic features, including GLRLM_GLNU, GLRLM_RLNU, and GLZLM_GLNU (p < 0.05). High ASB2 expression was also associated with poor prognosis in OSCC patients (p < 0.05) and decreased overall survival, as shown by Kaplan-Meier analysis of the TCGA database (p = 0.017).
Conclusions: Integrating ASB2 expression data with 18F-FDG PET texture features could potentially improve the prediction of treatment outcomes in treatment-resistant OSCC patients undergoing molecular-targeted therapy.
{"title":"Integrative Analysis of <sup>18</sup>F-FDG PET Radiomics and mRNA Expression in Recurrent/Metastatic Oral Squamous Cell Carcinoma: A Cross-Sectional Study.","authors":"Mai Kim, Wenchao Gu, Reika Kawabata- Iwakawa, Shinichiro Kina, Takahito Nakajima, Tetsuya Higuchi, Masaru Ogawa, Keisuke Suzuki, Yoshito Tsushima, Satoshi Yokoo","doi":"10.1007/s11307-025-02012-5","DOIUrl":"10.1007/s11307-025-02012-5","url":null,"abstract":"<p><strong>Background: </strong>This study explored the relationship between mRNA expression profiles obtained through next-generation sequencing (NGS) and <sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG PET) texture analysis in patients with treatment-resistant oral squamous cell carcinoma (OSCC) who were treated with molecular-targeted drugs. We analyzed the correlation between <sup>18</sup>F-FDG PET texture features and NGS data in a small cohort of five patients with recurrent or metastatic OSCC who received molecular-targeted drugs after surgery. Patients were categorized into two groups based on treatment response: responders (n = 3) and non-responders (n = 2). To validate our findings, we examined transcriptomic data from 292 OSCC patients in The Cancer Genome Atlas (TCGA) database.</p><p><strong>Results: </strong>The gene ankyrin repeat and SOCS box containing two (ASB2) was significantly overexpressed in non-responders and strongly correlated with specific PET radiomic features, including GLRLM_GLNU, GLRLM_RLNU, and GLZLM_GLNU (p < 0.05). High ASB2 expression was also associated with poor prognosis in OSCC patients (p < 0.05) and decreased overall survival, as shown by Kaplan-Meier analysis of the TCGA database (p = 0.017).</p><p><strong>Conclusions: </strong>Integrating ASB2 expression data with <sup>18</sup>F-FDG PET texture features could potentially improve the prediction of treatment outcomes in treatment-resistant OSCC patients undergoing molecular-targeted therapy.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"421-430"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144079119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Dopamine transporter (DAT) in the central nervous system is an attractive biomarker for the diagnosis and study of various neurodegenerative diseases. To develop in vivo metabolically stable positron emission tomography (PET) probes for DAT imaging with a high target/background ratio, two 18F-labeled tropane derivatives with deuteration on both the N-fluoropropyl and 2β-carbomethoxy groups of the tropane scaffold were synthesized and evaluated.
Methods: Radioligands [18F]6 and [18F]10 were synthesized from anhydroecgonine and radiolabeled with 18F through a "two-step one-pot" method. Lipophilicity, in vitro binding assay and microPET imaging in rats were performed. [18F]10 showed a higher standardized uptake value ratio (SUVr) and was selected for further evaluations by in vivo metabolism and biodistribution.
Results: The radioligands [18F]6 and [18F]10 were obtained in radiochemical purities > 98% and molar activity of about 30 GBq/μmol. [18F]6 or [18F]10 demonstrated high specificity and binding affinity to DAT in vitro, with IC50 values between 2 ~ 3 nM. MicroPET imaging in wild type Sprague-Dawley rats revealed that [18F]10 has a higher SUVr than [18F]6. Blocking experiments demonstrated the selectivity and reversibility of [18F]10 for DAT binding in microPET imaging. The diagnostic efficacy of [18F]10 for DAT-related disorders was verified in semi-PD model rats with microPET. In vivo metabolic studies in rats indicated that [18F]10 exhibited enhanced stability. Biodistribution experiments further confirmed that [18F]10 accumulated in the DAT-rich region of the striatum.
Conclusion: [18F]10 is a highly promising metabolically stable 18F-labeled PET probe for DAT imaging, with potential clinical applications in detecting and monitoring DAT-related neurological disorders.
{"title":"Development of <sup>18</sup>F-Labeled Deuterated Tropane Derivatives with High Metabolic Stability for PET Imaging of the Dopamine Transporter.","authors":"Jingjing Hong, Jing Kang, Jiaojiao Zuo, Yi Fang, Chunyi Liu, Jingwen Li, Zhengping Chen","doi":"10.1007/s11307-025-02018-z","DOIUrl":"10.1007/s11307-025-02018-z","url":null,"abstract":"<p><strong>Purpose: </strong>Dopamine transporter (DAT) in the central nervous system is an attractive biomarker for the diagnosis and study of various neurodegenerative diseases. To develop in vivo metabolically stable positron emission tomography (PET) probes for DAT imaging with a high target/background ratio, two <sup>18</sup>F-labeled tropane derivatives with deuteration on both the N-fluoropropyl and 2β-carbomethoxy groups of the tropane scaffold were synthesized and evaluated.</p><p><strong>Methods: </strong>Radioligands [<sup>18</sup>F]6 and [<sup>18</sup>F]10 were synthesized from anhydroecgonine and radiolabeled with <sup>18</sup>F through a \"two-step one-pot\" method. Lipophilicity, in vitro binding assay and microPET imaging in rats were performed. [<sup>18</sup>F]10 showed a higher standardized uptake value ratio (SUVr) and was selected for further evaluations by in vivo metabolism and biodistribution.</p><p><strong>Results: </strong>The radioligands [<sup>18</sup>F]6 and [<sup>18</sup>F]10 were obtained in radiochemical purities > 98% and molar activity of about 30 GBq/μmol. [<sup>18</sup>F]6 or [<sup>18</sup>F]10 demonstrated high specificity and binding affinity to DAT in vitro, with IC<sub>50</sub> values between 2 ~ 3 nM. MicroPET imaging in wild type Sprague-Dawley rats revealed that [<sup>18</sup>F]10 has a higher SUVr than [<sup>18</sup>F]6. Blocking experiments demonstrated the selectivity and reversibility of [<sup>18</sup>F]10 for DAT binding in microPET imaging. The diagnostic efficacy of [<sup>18</sup>F]10 for DAT-related disorders was verified in semi-PD model rats with microPET. In vivo metabolic studies in rats indicated that [<sup>18</sup>F]10 exhibited enhanced stability. Biodistribution experiments further confirmed that [<sup>18</sup>F]10 accumulated in the DAT-rich region of the striatum.</p><p><strong>Conclusion: </strong>[<sup>18</sup>F]10 is a highly promising metabolically stable <sup>18</sup>F-labeled PET probe for DAT imaging, with potential clinical applications in detecting and monitoring DAT-related neurological disorders.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"431-441"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144079117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-20DOI: 10.1007/s11307-025-01998-2
Christian Happel, Larissa Völler, Benjamin Bockisch, Daniel Groener, Britta Leonhäuser, Frank Grünwald, Amir Sabet
Purpose: Targeted radioligand therapy of metastatic castration-resistant prostate cancer (mCRPC) with 177Lu-PSMA (RLT) requires sufficient dose monitoring of the kidneys. Currently, dosimetry using SPECT/CT-imaging is the most preferred method. However, SPECT/CT is a time-consuming procedure and comprises additional radiation exposure to the patient. Moreover, not every therapeutic nuclear medicine facility has access to SPECT/CT. Therefore, the aim of this study was to develop a new procedure of kidney dosimetry without the use of SPECT/CT and evaluate this method in a large cohort of patients with mCRPC undergoing RLT.
Procedures: A dedicated torso phantom with kidneys filled with a solution of 177Lu-PSMA was used for quantitative calibration of a SPECT-camera. The calculated sensitivity was adapted according to the individual attenuation of the patient in four directions from the kidney surface to the body surface (ventral, dorsal, left and right) obtained from a previously performed CT. A total of 196 patients undergoing 926 cycles of 177Lu-PSMA therapy were retrospectively analyzed. Abdominal SPECT was performed 24, 48 and 72 h after administration of 177Lu-PSMA including scatter and dead-time correction in every patient. Kidney dose was calculated using an individual attenuation-based procedure and compared to values from international literature.
Results: Volumes of interest of the kidneys were drawn in the three sequential SPECT-images to calculate intra-renal effective half-life. Absolute quantification of activity in the kidneys was accomplished obtaining a patient individual sensitivity based on the individual attenuation in the patient. Kidney dose was then calculated applying a bi-exponential time activity curve in Microsoft EXCEL. Mean kidney dose per administered activity was 0.54 (± 0.26) Gy/GBq.
Conclusions: With the presented procedure a reliable kidney dosimetry is possible without the use of SPECT/CT. Facilities without SPECT/CT are therefore able to perform an adequate kidney dosimetry without additional radiation exposure for the patient.
{"title":"Development of a CT-less SPECT Acquisition Protocol for Kidney Dosimetry in <sup>177</sup>Lu-PSMA-617 Radioligand Therapy.","authors":"Christian Happel, Larissa Völler, Benjamin Bockisch, Daniel Groener, Britta Leonhäuser, Frank Grünwald, Amir Sabet","doi":"10.1007/s11307-025-01998-2","DOIUrl":"10.1007/s11307-025-01998-2","url":null,"abstract":"<p><strong>Purpose: </strong>Targeted radioligand therapy of metastatic castration-resistant prostate cancer (mCRPC) with <sup>177</sup>Lu-PSMA (RLT) requires sufficient dose monitoring of the kidneys. Currently, dosimetry using SPECT/CT-imaging is the most preferred method. However, SPECT/CT is a time-consuming procedure and comprises additional radiation exposure to the patient. Moreover, not every therapeutic nuclear medicine facility has access to SPECT/CT. Therefore, the aim of this study was to develop a new procedure of kidney dosimetry without the use of SPECT/CT and evaluate this method in a large cohort of patients with mCRPC undergoing RLT.</p><p><strong>Procedures: </strong>A dedicated torso phantom with kidneys filled with a solution of <sup>177</sup>Lu-PSMA was used for quantitative calibration of a SPECT-camera. The calculated sensitivity was adapted according to the individual attenuation of the patient in four directions from the kidney surface to the body surface (ventral, dorsal, left and right) obtained from a previously performed CT. A total of 196 patients undergoing 926 cycles of <sup>177</sup>Lu-PSMA therapy were retrospectively analyzed. Abdominal SPECT was performed 24, 48 and 72 h after administration of <sup>177</sup>Lu-PSMA including scatter and dead-time correction in every patient. Kidney dose was calculated using an individual attenuation-based procedure and compared to values from international literature.</p><p><strong>Results: </strong>Volumes of interest of the kidneys were drawn in the three sequential SPECT-images to calculate intra-renal effective half-life. Absolute quantification of activity in the kidneys was accomplished obtaining a patient individual sensitivity based on the individual attenuation in the patient. Kidney dose was then calculated applying a bi-exponential time activity curve in Microsoft EXCEL. Mean kidney dose per administered activity was 0.54 (± 0.26) Gy/GBq.</p><p><strong>Conclusions: </strong>With the presented procedure a reliable kidney dosimetry is possible without the use of SPECT/CT. Facilities without SPECT/CT are therefore able to perform an adequate kidney dosimetry without additional radiation exposure for the patient.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"400-409"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143670502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-21DOI: 10.1007/s11307-024-01972-4
Nisha K Ramakrishnan, Annie Ziyi Zhao, Stephen Thompson, Selena Milicevic Sephton, David J Williamson, Tomáš Smolek, Norbert Žilka, Franklin I Aigbirhio
Purpose: Positron Emission Tomography (PET) scans with radioligands targeting tau neurofibrillary tangles (NFT) have accelerated our understanding of the role of misfolded tau in neurodegeneration. While intended for human research, applying these radioligands to small animals establishes a vital translational link. Transgenic animal models of dementia, such as the tau rat SHR24, play a crucial role in enhancing our understanding of these disorders. This study aims to evaluate the utility of SHR24 rat model for PET studies.
Procedures: Dynamic PET scans were conducted in male SHR24 rats and their wild-type SHR (SHRwt) littermates using [18F]AV1451. Rapid blood sampling and metabolite analysis were performed to acquire input curves. Time activity curves were obtained from various brain regions over 60 min. Blood-based, 2-Tissue Compartment Model (2-TCM) and Logan graphical analysis were used to obtain kinetic modelling parameters. The ability of reference tissue models to predict the binding potential (BPND) were assessed. Autoradiography studies were performed to corroborate the scan data.
Results: Total distribution volume (VT) was the best predicted parameter which revealed significantly higher uptake of [18F]AV1451 in the cortex (5.8 ± 1.1 vs 4.6 ± 0.7, P < 0.05) of SHR24 rats compared to SHRwt rats. Binding potential obtained from 2-TCM was variable, however BPND from reference tissue models detected significantly higher binding in cortex (0.28 ± 0.07 vs 0.20 ± 0.04, P < 0.01 by SRTM) and brainstem (0.14 ± 0.04 vs 0.08 ± 0.02, P < 0.01, by SRTM).
Conclusions: With the ability to detect binding of established radioligand [18F]AV1451 in these rats, we have demonstrated the utility of this model for assessing aggregated tau neurobiology by PET, with reference tissue models providing potential for longitudinal studies.
目的:针对tau神经原纤维缠结(NFT)的放射性配体正电子发射断层扫描(PET)加速了我们对错误折叠tau在神经变性中的作用的理解。虽然用于人类研究,但将这些放射性配体应用于小动物身上建立了重要的转化联系。痴呆的转基因动物模型,如tau鼠SHR24,在增强我们对这些疾病的理解方面发挥着至关重要的作用。本研究旨在评价SHR24大鼠模型在PET研究中的实用性。方法:采用[18F]AV1451对雄性SHR24大鼠及其野生型SHR (SHRwt)仔鼠进行动态PET扫描。快速采血和代谢物分析获得输入曲线。在60分钟内获得脑各区域的时间活动曲线。基于血液,2-组织室模型(2-TCM)和Logan图形分析获得动力学建模参数。评估了参考组织模型预测结合电位(BPND)的能力。进行放射自显影研究以证实扫描数据。结果:总分布体积(VT)是最佳预测参数,显示[18F]AV1451在皮质的摄取显著增加(5.8±1.1 vs 4.6±0.7),参考组织模型的P ND在皮质的结合显著增加(0.28±0.07 vs 0.20±0.04,P)。由于能够在这些大鼠中检测到已建立的放射性配体[18F]AV1451的结合,我们已经证明了该模型在PET评估聚集tau神经生物学方面的实用性,参考组织模型为纵向研究提供了潜力。
{"title":"PET Imaging of a Transgenic Tau Rat Model SHR24 with [<sup>18</sup>F]AV1451.","authors":"Nisha K Ramakrishnan, Annie Ziyi Zhao, Stephen Thompson, Selena Milicevic Sephton, David J Williamson, Tomáš Smolek, Norbert Žilka, Franklin I Aigbirhio","doi":"10.1007/s11307-024-01972-4","DOIUrl":"10.1007/s11307-024-01972-4","url":null,"abstract":"<p><strong>Purpose: </strong>Positron Emission Tomography (PET) scans with radioligands targeting tau neurofibrillary tangles (NFT) have accelerated our understanding of the role of misfolded tau in neurodegeneration. While intended for human research, applying these radioligands to small animals establishes a vital translational link. Transgenic animal models of dementia, such as the tau rat SHR24, play a crucial role in enhancing our understanding of these disorders. This study aims to evaluate the utility of SHR24 rat model for PET studies.</p><p><strong>Procedures: </strong>Dynamic PET scans were conducted in male SHR24 rats and their wild-type SHR (SHRwt) littermates using [<sup>18</sup>F]AV1451. Rapid blood sampling and metabolite analysis were performed to acquire input curves. Time activity curves were obtained from various brain regions over 60 min. Blood-based, 2-Tissue Compartment Model (2-TCM) and Logan graphical analysis were used to obtain kinetic modelling parameters. The ability of reference tissue models to predict the binding potential (BP<sub>ND</sub>) were assessed. Autoradiography studies were performed to corroborate the scan data.</p><p><strong>Results: </strong>Total distribution volume (V<sub>T</sub>) was the best predicted parameter which revealed significantly higher uptake of [<sup>18</sup>F]AV1451 in the cortex (5.8 ± 1.1 vs 4.6 ± 0.7, P < 0.05) of SHR24 rats compared to SHRwt rats. Binding potential obtained from 2-TCM was variable, however BP<sub>ND</sub> from reference tissue models detected significantly higher binding in cortex (0.28 ± 0.07 vs 0.20 ± 0.04, P < 0.01 by SRTM) and brainstem (0.14 ± 0.04 vs 0.08 ± 0.02, P < 0.01, by SRTM).</p><p><strong>Conclusions: </strong>With the ability to detect binding of established radioligand [<sup>18</sup>F]AV1451 in these rats, we have demonstrated the utility of this model for assessing aggregated tau neurobiology by PET, with reference tissue models providing potential for longitudinal studies.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"238-249"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-03-10DOI: 10.1007/s11307-025-01992-8
Zahra Mansouri, Yazdan Salimi, Ghasem Hajianfar, Luisa Knappe, Nicola Bianchetto Wolf, Genti Xhepa, Adrien Gleyzolle, Alexis Ricoeur, Valentina Garibotto, Ismini Mainta, Habib Zaidi
Purpose: We evaluate the role of radiomics, dosiomics, and dose-volume constraints (DVCs) in predicting the response of hepatocellular carcinoma to selective internal radiation therapy with 90Y with glass microspheres.
Methods: 99mTc-macroagregated albumin (99mTc-MAA) and 90Y SPECT/CT images of 17 patients were included. Tumor responses at three months were evaluated using modified response evaluation criteria in solid tumors criteria and patients were categorized as responders or non-responders. Dosimetry was conducted using the local deposition method (Dose) and biologically effective dosimetry. A total of 264 DVCs, 321 radiomic features, and 321 dosiomic features were extracted from the tumor, normal perfused liver (NPL), and whole normal liver (WNL). Five different feature selection methods in combination with eight machine learning algorithms were employed. Model performance was evaluated using area under the AUC, accuracy, sensitivity, and specificity.
Results: No statistically significant differences were observed between neither the dose metrics nor radiomicas or dosiomics features of responders and non-responder groups. 90Y-dosiomics models with any given set of inputs outperformed other models. This was also true for 90Y-radiomics from SPECT and SPECT-clinical features, achieving an AUC, accuracy, sensitivity, and specificity of 1. Among MAA-dosiomic and radiomic models, two models showed AUC ≥ 0.91. While the performance of MAA-dose volume histogram (DVH)-based models were less promising, the 90Y-DVH-based models showed strong performance (AUC ≥ 0.91) when considered independently of clinical features.
Conclusion: This study demonstrated the potential of 99mTc-MAA and 90Y SPECT-derived radiomics, dosiomics, and dosimetry metrics in establishing predictive models for tumor response.
{"title":"Potential of Radiomics, Dosiomics, and Dose Volume Histograms for Tumor Response Prediction in Hepatocellular Carcinoma following <sup>90</sup>Y-SIRT.","authors":"Zahra Mansouri, Yazdan Salimi, Ghasem Hajianfar, Luisa Knappe, Nicola Bianchetto Wolf, Genti Xhepa, Adrien Gleyzolle, Alexis Ricoeur, Valentina Garibotto, Ismini Mainta, Habib Zaidi","doi":"10.1007/s11307-025-01992-8","DOIUrl":"10.1007/s11307-025-01992-8","url":null,"abstract":"<p><strong>Purpose: </strong>We evaluate the role of radiomics, dosiomics, and dose-volume constraints (DVCs) in predicting the response of hepatocellular carcinoma to selective internal radiation therapy with <sup>90</sup>Y with glass microspheres.</p><p><strong>Methods: </strong><sup>99m</sup>Tc-macroagregated albumin (<sup>99m</sup>Tc-MAA) and <sup>90</sup>Y SPECT/CT images of 17 patients were included. Tumor responses at three months were evaluated using modified response evaluation criteria in solid tumors criteria and patients were categorized as responders or non-responders. Dosimetry was conducted using the local deposition method (Dose) and biologically effective dosimetry. A total of 264 DVCs, 321 radiomic features, and 321 dosiomic features were extracted from the tumor, normal perfused liver (NPL), and whole normal liver (WNL). Five different feature selection methods in combination with eight machine learning algorithms were employed. Model performance was evaluated using area under the AUC, accuracy, sensitivity, and specificity.</p><p><strong>Results: </strong>No statistically significant differences were observed between neither the dose metrics nor radiomicas or dosiomics features of responders and non-responder groups. <sup>90</sup>Y-dosiomics models with any given set of inputs outperformed other models. This was also true for <sup>90</sup>Y-radiomics from SPECT and SPECT-clinical features, achieving an AUC, accuracy, sensitivity, and specificity of 1. Among MAA-dosiomic and radiomic models, two models showed AUC ≥ 0.91. While the performance of MAA-dose volume histogram (DVH)-based models were less promising, the <sup>90</sup>Y-DVH-based models showed strong performance (AUC ≥ 0.91) when considered independently of clinical features.</p><p><strong>Conclusion: </strong>This study demonstrated the potential of <sup>99m</sup>Tc-MAA and <sup>90</sup>Y SPECT-derived radiomics, dosiomics, and dosimetry metrics in establishing predictive models for tumor response.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"201-214"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-04DOI: 10.1007/s11307-025-01986-6
Tapas Bhattacharyya, Christiane L Mallett, Jeremy M-L Hix, Erik M Shapiro
Purpose: Hepatic organic anion transporting polypeptides (OATPs) transport off-the-shelf, FDA-approved, hepatospecific Gd-based MRI contrast agents into cells that express the transporters enhancing signal on T1-weighted MRI. Studies have used MRI to identify OATP-overexpressing tumors and metastases transplanted in mice following the delivery of Gd-EOB-DTPA at 27-67-fold higher than clinical doses. With safety and regulatory concerns over Gd-based contrast agents, translating OATPs as an MRI reporter protein to humans for regenerative medicine will require substantially lower doses of agent.
Procedures: We engineered the MyC-CaP mouse tumor cell line to express rat OATP1B2, which influxes both Gd-EOB-DTPA and Gd-BOPTA, resulting in signal enhancement on T1-weighted MRI. We then inoculated mice with rat OATP1B2 and non-expressing cells bilaterally to generate tumors. 3-4 weeks after inoculation, when tumors had formed, in-vivo MRI imaging was performed with delivery of 0.025 mmol/kg or 0.25 mmol/kg of the Gd-based contrast agents. We complemented static T1-weighted MRI and T1-mapping with dynamic contrast enhanced (DCE)-MRI and performed area under the curve (AUC) analysis to discriminate the two tumor types.
Results: While all OATP1B2-expressing tumors were easily visible at the high dose of 0.25 mmol/kg on T1-weighted MRI and easy to distinguish from control tumors, OATP1B2-expressing tumors were hard to identify and distinguish from non-expressing tumors at the lower, clinical dose of 0.025 mmol/kg with standard T1-weighted MRI or T1-mapping. However, AUC analyses of the DCE-MRI curves could identify and distinguish these tumors, needing 30 (Gd-EOB-DTPA) or 45 (Gd-BOPTA) minutes acquisition time.
Conclusions: By performing AUC analyses of DCE-MRI curves following delivery of clinical concentration of MRI contrast agents, OATP1B2-expressing tumors could be identified and distinguished from control tumors, suggesting this imaging approach as a path to substantially reducing the amount of contrast agent needed to use OATPs as a clinically viable reporter protein for imaging regenerative medicine.
{"title":"DCE-MRI Detects OATP-expressing Transplanted Cells Using Clinical Doses of Gadolinium Contrast Agent.","authors":"Tapas Bhattacharyya, Christiane L Mallett, Jeremy M-L Hix, Erik M Shapiro","doi":"10.1007/s11307-025-01986-6","DOIUrl":"10.1007/s11307-025-01986-6","url":null,"abstract":"<p><strong>Purpose: </strong>Hepatic organic anion transporting polypeptides (OATPs) transport off-the-shelf, FDA-approved, hepatospecific Gd-based MRI contrast agents into cells that express the transporters enhancing signal on T1-weighted MRI. Studies have used MRI to identify OATP-overexpressing tumors and metastases transplanted in mice following the delivery of Gd-EOB-DTPA at 27-67-fold higher than clinical doses. With safety and regulatory concerns over Gd-based contrast agents, translating OATPs as an MRI reporter protein to humans for regenerative medicine will require substantially lower doses of agent.</p><p><strong>Procedures: </strong>We engineered the MyC-CaP mouse tumor cell line to express rat OATP1B2, which influxes both Gd-EOB-DTPA and Gd-BOPTA, resulting in signal enhancement on T1-weighted MRI. We then inoculated mice with rat OATP1B2 and non-expressing cells bilaterally to generate tumors. 3-4 weeks after inoculation, when tumors had formed, in-vivo MRI imaging was performed with delivery of 0.025 mmol/kg or 0.25 mmol/kg of the Gd-based contrast agents. We complemented static T1-weighted MRI and T1-mapping with dynamic contrast enhanced (DCE)-MRI and performed area under the curve (AUC) analysis to discriminate the two tumor types.</p><p><strong>Results: </strong>While all OATP1B2-expressing tumors were easily visible at the high dose of 0.25 mmol/kg on T1-weighted MRI and easy to distinguish from control tumors, OATP1B2-expressing tumors were hard to identify and distinguish from non-expressing tumors at the lower, clinical dose of 0.025 mmol/kg with standard T1-weighted MRI or T1-mapping. However, AUC analyses of the DCE-MRI curves could identify and distinguish these tumors, needing 30 (Gd-EOB-DTPA) or 45 (Gd-BOPTA) minutes acquisition time.</p><p><strong>Conclusions: </strong>By performing AUC analyses of DCE-MRI curves following delivery of clinical concentration of MRI contrast agents, OATP1B2-expressing tumors could be identified and distinguished from control tumors, suggesting this imaging approach as a path to substantially reducing the amount of contrast agent needed to use OATPs as a clinically viable reporter protein for imaging regenerative medicine.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"184-191"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-26DOI: 10.1007/s11307-025-01991-9
Mani Salarian, Shuanglong Liu, Hsiu-Ming Tsai, Shannon N Leslie, Thomas Hayes, Su-Tang Lo, Anna K Szardenings, Wei Zhang, Gang Chen, Christine Sandiego, Lisa Wells, Dileep G Nair, Hartmuth C Kolb, Chunfang A Xia
Purpose: Colony-stimulating factor 1 receptor (CSF1R) signaling plays a pivotal role in neuroinflammation, driving microglia proliferation and activation. CSF1R is considered a hallmark of inflammation in many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our study aims to evaluate the potential value of 5-cyano-N-(4-(4-(2-([18F]fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]JNJ-CSF1R-1) as a positron emission tomography (PET) ligand targeting CSF1R in preclinical models of neuroinflammation.
Procedures: A cell-based MSD assay was used to measure the IC50 of 5-cyano-N-(4-(4-(2-(fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (JNJ-CSF1R-1). JNJ-CSF1R-1 was radiolabeled with fluorine-18. PET imaging was used to evaluate brain uptake, and target engagement of [18F]JNJ-CSF1R-1 in two neuroinflammation mouse models, including systemic lipopolysaccharide (LPS) and AppSAA knock in (KI). CSF1R protein levels in brain tissue were determined by western blot and ELISA assays. [18F]JNJ-CSF1R-1 brain uptake was also measured in a non-human primate (NHP) PET study.
Results: JNJ-CSF1R-1 is a 12 nM (IC50) inhibitor of CSF1R. [18F]JNJ-CSF1R-1 demonstrated significantly higher brain uptake in both LPS and AD mouse models as measured by the area under the time activity curves (AUC) compared to control animals. In the AppSAA KI model, CSF1R levels increased near amyloid plaques as detected by IHC. [18F]JNJ-CSF1R-1 PET imaging signal showed a good correlation with CSF1R expression levels measured by western blot and ELISA. In an NHP study, [18F]JNJ-CSF1R-1 readily entered the brain and demonstrated reversible kinetics.
Conclusion: [18F]JNJ-CSF1R-1 is a potent and promising CSF1R PET tracer with translational potential for measuring microglia-based neuroinflammatory processes and for tracking the impact of anti-inflammatory therapies.
{"title":"Evaluation of [<sup>18</sup>F]JNJ-CSF1R-1 as a Positron Emission Tomography Ligand Targeting Colony-Stimulating Factor 1 Receptor.","authors":"Mani Salarian, Shuanglong Liu, Hsiu-Ming Tsai, Shannon N Leslie, Thomas Hayes, Su-Tang Lo, Anna K Szardenings, Wei Zhang, Gang Chen, Christine Sandiego, Lisa Wells, Dileep G Nair, Hartmuth C Kolb, Chunfang A Xia","doi":"10.1007/s11307-025-01991-9","DOIUrl":"10.1007/s11307-025-01991-9","url":null,"abstract":"<p><strong>Purpose: </strong>Colony-stimulating factor 1 receptor (CSF1R) signaling plays a pivotal role in neuroinflammation, driving microglia proliferation and activation. CSF1R is considered a hallmark of inflammation in many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our study aims to evaluate the potential value of 5-cyano-N-(4-(4-(2-([<sup>18</sup>F]fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([<sup>18</sup>F]JNJ-CSF1R-1) as a positron emission tomography (PET) ligand targeting CSF1R in preclinical models of neuroinflammation.</p><p><strong>Procedures: </strong>A cell-based MSD assay was used to measure the IC<sub>50</sub> of 5-cyano-N-(4-(4-(2-(fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (JNJ-CSF1R-1). JNJ-CSF1R-1 was radiolabeled with fluorine-18. PET imaging was used to evaluate brain uptake, and target engagement of [<sup>18</sup>F]JNJ-CSF1R-1 in two neuroinflammation mouse models, including systemic lipopolysaccharide (LPS) and App<sup>SAA</sup> knock in (KI). CSF1R protein levels in brain tissue were determined by western blot and ELISA assays. [<sup>18</sup>F]JNJ-CSF1R-1 brain uptake was also measured in a non-human primate (NHP) PET study.</p><p><strong>Results: </strong>JNJ-CSF1R-1 is a 12 nM (IC<sub>50</sub>) inhibitor of CSF1R. [<sup>18</sup>F]JNJ-CSF1R-1 demonstrated significantly higher brain uptake in both LPS and AD mouse models as measured by the area under the time activity curves (AUC) compared to control animals. In the App<sup>SAA</sup> KI model, CSF1R levels increased near amyloid plaques as detected by IHC. [<sup>18</sup>F]JNJ-CSF1R-1 PET imaging signal showed a good correlation with CSF1R expression levels measured by western blot and ELISA. In an NHP study, [<sup>18</sup>F]JNJ-CSF1R-1 readily entered the brain and demonstrated reversible kinetics.</p><p><strong>Conclusion: </strong>[<sup>18</sup>F]JNJ-CSF1R-1 is a potent and promising CSF1R PET tracer with translational potential for measuring microglia-based neuroinflammatory processes and for tracking the impact of anti-inflammatory therapies.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"163-172"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-03-06DOI: 10.1007/s11307-025-01993-7
Jianwei Zhu, Can Zhou, Jian Yang, Zhenhua Wang
Purpose: Early diagnosis and complete resection of cancer are pivotal for enhancing patient survival rates and prognosis. However, a significant current challenge lies in the lack of specific imaging probes for the identifying various tumor types. The expression levels of neuropilin-1 (NRP1) and glucose transporter 1 (GLUT1) in most tumors, including breast cancer, are closely linked to tumor proliferation and metastasis. This study seeks to develop a novel near-infrared fluorescence (NIRF) probe aimed at precise tumor detection by targeting NRP1 and GLUT1.
Procedures: G0 was conjugated with N3-PEG4-ALKADK and 2-Azido-2-deoxy-D-glucose to synthesize the NGF probe. The spectral properties (fluorescence and absorbance spectra) of NGF were studied in both methanol and water. The targeting specificity of NGF towards NRP1 and GLUT1 was evaluated using confocal fluorescence microscopy imaging, flow cytometry assays and in vivo IVIS spectrum imaging.
Results: A dual-targeting fluorescent probe named NGF was successfully synthesized to bind to both NRP1 and GLUT1 receptors. NGF exhibited greater hydrophilicity (Log P = -0.95 ± 0.07) and superior optical properties compared to its precursor, G0. Confocal fluorescence imaging, flow cytometry assays, and blocking studies revealed that the cellular uptake of NGF correlated with the NRP1 and GLUT1 expression levels across cell lines. Moreover, a strong linear relationship (R2 = 0.98) was observed between fluorescence intensity and increasing NGF concentrations in MDA-MB-231 cells. In vivo IVIS imaging in animal models demonstrated specific binding of NGF to breast cancer (MDA-MB-231) and colorectal cancer (HCT116), with prolonged retention observed up to 72 h.
Conclusions: This study highlighted the efficient targeting and sustained retention of the dual-target heterodimeric fluorescent probe NGF, binding to NRP1 and GLUT1 receptors. These findings suggest significant potential for clinical applications in early cancer detection and fluorescence image-guided surgery.
目的:早期诊断和完全切除肿瘤是提高患者生存率和预后的关键。然而,目前的一个重大挑战在于缺乏用于识别各种肿瘤类型的特异性成像探针。神经匹林-1 (NRP1)和葡萄糖转运蛋白1 (GLUT1)在包括乳腺癌在内的大多数肿瘤中的表达水平与肿瘤的增殖和转移密切相关。本研究旨在开发一种新的近红外荧光(NIRF)探针,旨在通过靶向NRP1和GLUT1来精确检测肿瘤。步骤:G0与N3-PEG4-ALKADK和2-叠氮-2-脱氧-d -葡萄糖偶联合成NGF探针。研究了NGF在甲醇和水中的光谱特性(荧光光谱和吸光度光谱)。通过共聚焦荧光显微镜成像、流式细胞术和体内IVIS光谱成像评估NGF对NRP1和GLUT1的靶向特异性。结果:成功合成了一种名为NGF的双靶向荧光探针,可同时结合NRP1和GLUT1受体。与G0相比,NGF具有更强的亲水性(Log P = -0.95±0.07)和更好的光学性能。共聚焦荧光成像、流式细胞术分析和阻断研究显示,NGF的细胞摄取与NRP1和GLUT1在细胞系中的表达水平相关。此外,在MDA-MB-231细胞中,荧光强度与NGF浓度的增加之间存在很强的线性关系(R2 = 0.98)。动物模型的体内IVIS成像显示NGF与乳腺癌(MDA-MB-231)和结直肠癌(HCT116)特异性结合,其滞留时间长达72小时。结论:本研究强调了双靶点异二聚体荧光探针NGF与NRP1和GLUT1受体结合的有效靶向和持续滞留。这些发现提示了在早期癌症检测和荧光图像引导手术中的临床应用潜力。
{"title":"Dual Targeting of Neuropilin-1 and Glucose Transporter for Efficient Fluorescence Imaging of Cancer.","authors":"Jianwei Zhu, Can Zhou, Jian Yang, Zhenhua Wang","doi":"10.1007/s11307-025-01993-7","DOIUrl":"10.1007/s11307-025-01993-7","url":null,"abstract":"<p><strong>Purpose: </strong>Early diagnosis and complete resection of cancer are pivotal for enhancing patient survival rates and prognosis. However, a significant current challenge lies in the lack of specific imaging probes for the identifying various tumor types. The expression levels of neuropilin-1 (NRP1) and glucose transporter 1 (GLUT1) in most tumors, including breast cancer, are closely linked to tumor proliferation and metastasis. This study seeks to develop a novel near-infrared fluorescence (NIRF) probe aimed at precise tumor detection by targeting NRP1 and GLUT1.</p><p><strong>Procedures: </strong>G<sub>0</sub> was conjugated with N<sub>3</sub>-PEG<sub>4</sub>-ALKADK and 2-Azido-2-deoxy-D-glucose to synthesize the NGF probe. The spectral properties (fluorescence and absorbance spectra) of NGF were studied in both methanol and water. The targeting specificity of NGF towards NRP1 and GLUT1 was evaluated using confocal fluorescence microscopy imaging, flow cytometry assays and in vivo IVIS spectrum imaging.</p><p><strong>Results: </strong>A dual-targeting fluorescent probe named NGF was successfully synthesized to bind to both NRP1 and GLUT1 receptors. NGF exhibited greater hydrophilicity (Log P = -0.95 ± 0.07) and superior optical properties compared to its precursor, G<sub>0</sub>. Confocal fluorescence imaging, flow cytometry assays, and blocking studies revealed that the cellular uptake of NGF correlated with the NRP1 and GLUT1 expression levels across cell lines. Moreover, a strong linear relationship (R<sup>2</sup> = 0.98) was observed between fluorescence intensity and increasing NGF concentrations in MDA-MB-231 cells. In vivo IVIS imaging in animal models demonstrated specific binding of NGF to breast cancer (MDA-MB-231) and colorectal cancer (HCT116), with prolonged retention observed up to 72 h.</p><p><strong>Conclusions: </strong>This study highlighted the efficient targeting and sustained retention of the dual-target heterodimeric fluorescent probe NGF, binding to NRP1 and GLUT1 receptors. These findings suggest significant potential for clinical applications in early cancer detection and fluorescence image-guided surgery.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"250-259"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143567629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-20DOI: 10.1007/s11307-025-01989-3
Sven H Hausner, Ryan A Davis, Tanushree Ganguly, Rebecca Harris, Julie L Sutcliffe
Purpose: Peptide-based probes targeting integrin αvβ6 have shown promise in clinical trials for cancer imaging based on the high over-expression of this epithelial-specific cell surface receptor in many cancerous tissues. Recently, the αvβ6-targeting gallium-68 labeled DOTA-5G peptide, [68Ga]Ga DOTA-5G, demonstrated diagnostic value in patients with metastatic pancreatic cancer. To facilitate adoption at sites without access to gallium-68 and take advantage of the characteristics of fluorine-18 through convenient [18F]fluoride chelation chemistry, this study evaluated the fluorine-18 labeled analog, [18F]AlF NOTA-5G, in vitro and in vivo in a tumor mouse model, and compared it to [68Ga]Ga DOTA-5G.
Procedures: NOTA-5G was synthesized on solid phase and radiolabeled with aluminum [18F]fluoride to generate [18F]AlF NOTA-5G. Cell binding and internalization of [18F]AlF NOTA-5G were evaluated in paired DX3puroβ6 (αvβ6 +) and DX3puro (αvβ6 -), and pancreatic BxPC-3 (αvβ6 +) cells. Imaging (1-6 h) and biodistribution were performed in BxPC-3 tumor-bearing mice.
Results: [18F]AlF NOTA-5G was obtained in > 93% radiochemical purity. Cell binding was αvβ6-targeted (1 h: 66% bound to DX3puroβ6, vs 2% to DX3puro), and ≥ 50% of bound activity was internalized; analogous to [68Ga]Ga DOTA-5G, PET imaging showed clearly delineated tumors. Excretion remained primarily renal (1 to 4 h: 18.6 to 12.5% ID/g). Tumor uptake remained relatively steady (1 to 4 h: 2.3 ± 0.4 to 1.8 ± 0.6% ID/g - closely matching [68Ga]Ga DOTA-5G with 2.6 ± 0.8 and 2.0 ± 0.6% ID/g at 1 and 2 h), resulting in tumor/pancreas, tumor/liver, and tumor/blood ratios of 18/1, 24/1, and 162/1, respectively (4 h); by comparison, for [68Ga]Ga DOTA-5G the values were 21/1, 20/1, and 22/1 (2 h).
Conclusions: [18F]AlF NOTA-5G demonstrated selective αvβ6-targeting and tumor uptake similar to [68Ga]Ga DOTA-5G. The tumor-to-background ratio resulted high-contrast PET images, with an extended imaging window compared to [68Ga]Ga DOTA-5G. The synthesis of [18F]AlF NOTA-5G is currently being optimized for clinical production.
{"title":"Evaluation of [<sup>18</sup>F]AlF NOTA-5G, an Aluminum [<sup>18</sup>F]fluoride Labeled Peptide Targeting the Cell Surface Receptor Integrin Alpha(v)beta(6) for PET Imaging.","authors":"Sven H Hausner, Ryan A Davis, Tanushree Ganguly, Rebecca Harris, Julie L Sutcliffe","doi":"10.1007/s11307-025-01989-3","DOIUrl":"10.1007/s11307-025-01989-3","url":null,"abstract":"<p><strong>Purpose: </strong>Peptide-based probes targeting integrin α<sub>v</sub>β<sub>6</sub> have shown promise in clinical trials for cancer imaging based on the high over-expression of this epithelial-specific cell surface receptor in many cancerous tissues. Recently, the α<sub>v</sub>β<sub>6</sub>-targeting gallium-68 labeled DOTA-5G peptide, [<sup>68</sup>Ga]Ga DOTA-5G, demonstrated diagnostic value in patients with metastatic pancreatic cancer. To facilitate adoption at sites without access to gallium-68 and take advantage of the characteristics of fluorine-18 through convenient [<sup>18</sup>F]fluoride chelation chemistry, this study evaluated the fluorine-18 labeled analog, [<sup>18</sup>F]AlF NOTA-5G, in vitro and in vivo in a tumor mouse model, and compared it to [<sup>68</sup>Ga]Ga DOTA-5G.</p><p><strong>Procedures: </strong>NOTA-5G was synthesized on solid phase and radiolabeled with aluminum [<sup>18</sup>F]fluoride to generate [<sup>18</sup>F]AlF NOTA-5G. Cell binding and internalization of [<sup>18</sup>F]AlF NOTA-5G were evaluated in paired DX3puroβ6 (α<sub>v</sub>β<sub>6</sub> +) and DX3puro (α<sub>v</sub>β<sub>6</sub> -), and pancreatic BxPC-3 (α<sub>v</sub>β<sub>6</sub> +) cells. Imaging (1-6 h) and biodistribution were performed in BxPC-3 tumor-bearing mice.</p><p><strong>Results: </strong>[<sup>18</sup>F]AlF NOTA-5G was obtained in > 93% radiochemical purity. Cell binding was α<sub>v</sub>β<sub>6</sub>-targeted (1 h: 66% bound to DX3puroβ6, vs 2% to DX3puro), and ≥ 50% of bound activity was internalized; analogous to [<sup>68</sup>Ga]Ga DOTA-5G, PET imaging showed clearly delineated tumors. Excretion remained primarily renal (1 to 4 h: 18.6 to 12.5% ID/g). Tumor uptake remained relatively steady (1 to 4 h: 2.3 ± 0.4 to 1.8 ± 0.6% ID/g - closely matching [<sup>68</sup>Ga]Ga DOTA-5G with 2.6 ± 0.8 and 2.0 ± 0.6% ID/g at 1 and 2 h), resulting in tumor/pancreas, tumor/liver, and tumor/blood ratios of 18/1, 24/1, and 162/1, respectively (4 h); by comparison, for [<sup>68</sup>Ga]Ga DOTA-5G the values were 21/1, 20/1, and 22/1 (2 h).</p><p><strong>Conclusions: </strong>[<sup>18</sup>F]AlF NOTA-5G demonstrated selective α<sub>v</sub>β<sub>6</sub>-targeting and tumor uptake similar to [<sup>68</sup>Ga]Ga DOTA-5G. The tumor-to-background ratio resulted high-contrast PET images, with an extended imaging window compared to [<sup>68</sup>Ga]Ga DOTA-5G. The synthesis of [<sup>18</sup>F]AlF NOTA-5G is currently being optimized for clinical production.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":"285-292"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}