首页 > 最新文献

Molecular plant pathology最新文献

英文 中文
A fatty acid elongase complex regulates cell membrane integrity and septin-dependent host infection by the rice blast fungus. 脂肪酸伸长酶复合物调控细胞膜的完整性以及稻瘟病真菌对隔膜依赖性宿主的感染。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13494
Jia Su, Youpin Xu, Mingliang Lei, Yingying Meng, Siqi Zhang, Hongrui Liu, Caicun Zhu, Jinhua Chen, Tianxin Zhang, Jiawei Liu, Yunxiang Lin, Zhaorui Yan, Weitao Li, Jing Wang, Xuewei Chen, Min He

Very-long-chain fatty acids (VLCFAs) regulate biophysical properties of cell membranes to determine growth and development of eukaryotes, such as the pathogenesis of the rice blast fungus Magnaporthe oryzae. The fatty acid elongase Elo1 regulates pathogenesis of M. oryzae by modulating VLCFA biosynthesis. However, it remains unknown whether and how Elo1 associates with other factors to regulate VLCFA biosynthesis in fungal pathogens. Here, we identified Ifa38, Phs1 and Tsc13 as interacting proteins of Elo1 by proximity labelling in M. oryzae. Elo1 associated with Ifa38, Phs1 and Tsc13 on the endoplasmic reticulum (ER) membrane to control VLCFA biosynthesis. Targeted gene deletion mutants Δifa38, Δphs1 and Δtsc13 were all similarly impaired as Δelo1 in vegetative growth, conidial morphology, stress responses in ER, cell wall and membrane. These deletion mutants also displayed severe damage in cell membrane integrity and failed to organize the septin ring that is essential for penetration peg formation and pathogenicity. Our study demonstrates that M. oryzae employs a fatty acid elongase complex to regulate VLCFAs for maintaining or remodelling cell membrane structure, which is important for septin-mediated host penetration.

超长链脂肪酸(VLCFA)调节细胞膜的生物物理特性,从而决定真核生物的生长和发育,例如稻瘟病真菌Magnaporthe oryzae的致病机理。脂肪酸伸长酶 Elo1 通过调节 VLCFA 的生物合成来调控 M. oryzae 的致病机理。然而,Elo1 是否以及如何与其他因子结合以调控真菌病原体中的 VLCFA 生物合成仍然未知。在这里,我们通过近距离标记法在 M. oryzae 中鉴定出了 Ifa38、Phs1 和 Tsc13 作为 Elo1 的互作蛋白。Elo1 与内质网(ER)膜上的 Ifa38、Phs1 和 Tsc13 相互作用,控制 VLCFA 的生物合成。靶向基因缺失突变体Δifa38、Δphs1和Δtsc13在无性生殖、分生孢子形态、ER、细胞壁和细胞膜的应激反应方面都与Δelo1有类似的缺陷。这些缺失突变体的细胞膜完整性也受到了严重破坏,无法组织对穿刺钉的形成和致病性至关重要的隔膜环。我们的研究表明,M. oryzae 利用脂肪酸伸长酶复合物来调节 VLCFAs,以维持或重塑细胞膜结构,这对于肽键介导的宿主穿透非常重要。
{"title":"A fatty acid elongase complex regulates cell membrane integrity and septin-dependent host infection by the rice blast fungus.","authors":"Jia Su, Youpin Xu, Mingliang Lei, Yingying Meng, Siqi Zhang, Hongrui Liu, Caicun Zhu, Jinhua Chen, Tianxin Zhang, Jiawei Liu, Yunxiang Lin, Zhaorui Yan, Weitao Li, Jing Wang, Xuewei Chen, Min He","doi":"10.1111/mpp.13494","DOIUrl":"10.1111/mpp.13494","url":null,"abstract":"<p><p>Very-long-chain fatty acids (VLCFAs) regulate biophysical properties of cell membranes to determine growth and development of eukaryotes, such as the pathogenesis of the rice blast fungus Magnaporthe oryzae. The fatty acid elongase Elo1 regulates pathogenesis of M. oryzae by modulating VLCFA biosynthesis. However, it remains unknown whether and how Elo1 associates with other factors to regulate VLCFA biosynthesis in fungal pathogens. Here, we identified Ifa38, Phs1 and Tsc13 as interacting proteins of Elo1 by proximity labelling in M. oryzae. Elo1 associated with Ifa38, Phs1 and Tsc13 on the endoplasmic reticulum (ER) membrane to control VLCFA biosynthesis. Targeted gene deletion mutants Δifa38, Δphs1 and Δtsc13 were all similarly impaired as Δelo1 in vegetative growth, conidial morphology, stress responses in ER, cell wall and membrane. These deletion mutants also displayed severe damage in cell membrane integrity and failed to organize the septin ring that is essential for penetration peg formation and pathogenicity. Our study demonstrates that M. oryzae employs a fatty acid elongase complex to regulate VLCFAs for maintaining or remodelling cell membrane structure, which is important for septin-mediated host penetration.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13494"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology. 组蛋白(去)乙酰化在植病菌病理生物学表观遗传学调控中的作用。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13497
Yufeng Guan, Joanna Gajewska, Jolanta Floryszak-Wieczorek, Umesh Kumar Tanwar, Ewa Sobieszczuk-Nowicka, Magdalena Arasimowicz-Jelonek

Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.

噬菌体是一种卵菌纲真菌,已进化出多种生物过程和改进策略,以应对宿主和环境的挑战。越来越多的证据表明,病原体的高度可塑性是基于基因表达的表观遗传调控,这与噬菌体快速适应内源线索和各种压力有关。由于尚未在噬菌体中发现 5mC DNA 甲基化,组蛋白乙酰化/去乙酰化的可逆过程似乎在卵菌基因表达的表观遗传调控中发挥着关键作用。为了探讨这个问题,我们综述了六种危害植物的疫霉菌中组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)的结构、多样性和系统发育:P. capsici、P. cinnamomi、P. infestans、P. parasitica、P. ramorum 和 P. sojae。为了进一步整合和提高我们对系统发育分类、进化关系和功能特征的理解,我们利用最新的基因组和蛋白质组级数据库对 HATs 和 HDACs 进行了全面的分析,以补充本综述。最后,我们还简要讨论了在硝基氧化胁迫下,由表观遗传变化介导的转录重编程在噬菌体物种萎缩期和寄生期的潜在功能作用。
{"title":"Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology.","authors":"Yufeng Guan, Joanna Gajewska, Jolanta Floryszak-Wieczorek, Umesh Kumar Tanwar, Ewa Sobieszczuk-Nowicka, Magdalena Arasimowicz-Jelonek","doi":"10.1111/mpp.13497","DOIUrl":"10.1111/mpp.13497","url":null,"abstract":"<p><p>Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13497"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphatidylethanolamines link ferroptosis and autophagy during appressorium formation of rice blast fungus. 磷脂酰乙醇胺在稻瘟病真菌的附属体形成过程中连接了铁突变和自噬。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13489
Qiao Liu, Ruhui Long, Chaoxiang Lin, Xinping Bi, Zhibin Liang, Yi Zhen Deng

A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.

在稻瘟病真菌 Magnaporthe oryzae 中,分生孢子细胞中存在一种细胞死亡途径--铁突变,这种途径对于感染结构--附着体--的形成和功能至关重要。在这项研究中,我们发现了一种同源的溶血磷脂酸酰基转移酶(Lpaat),它作用于磷脂酰乙醇胺(PEs)生物合成的上游,是这种真菌铁突变和致病性所必需的。依赖 Lpaat 功能产生的两种 PE(DOPE 和 SLPE)足以诱导脂质过氧化反应和随之而来的铁变态反应,从而对真菌的致病性起到积极的调节作用。另一方面,DOPE 和 SLPE 对自噬有积极的调节作用。LPAAT 基因缺失导致自噬蛋白 Atg8 的脂化形式减少,这可能是 lpaatΔ 突变体自噬缺陷的原因。GFP-Lpaat主要定位于被荧光染料单丹戊烷(MDH)染色的脂滴(LDs)膜上,这表明LDs是膜PE生物合成的脂质来源,也可能是自噬体的膜来源。总之,我们的研究结果揭示了基于 Lpaat 介导的脂质代谢的新型细胞内膜结合细胞器动力学,为铁突变和自噬提供了时空联系。
{"title":"Phosphatidylethanolamines link ferroptosis and autophagy during appressorium formation of rice blast fungus.","authors":"Qiao Liu, Ruhui Long, Chaoxiang Lin, Xinping Bi, Zhibin Liang, Yi Zhen Deng","doi":"10.1111/mpp.13489","DOIUrl":"10.1111/mpp.13489","url":null,"abstract":"<p><p>A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13489"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri. 环状双GMP结合适配蛋白与N5-谷氨酰胺甲基转移酶相互作用,调控柠檬黄单胞菌亚种的致病机理。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13496
Yu Shi, Tianfang Cheng, Qing Wei Cheang, Xiaoyan Zhao, Zeling Xu, Zhao-Xun Liang, Linghui Xu, Junxia Wang

The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.

第二信使环二甘氨酸单磷酸酯(c-di-GMP)通过不同的机制和结合受体调节细菌的各种行为。单链 PilZ 蛋白是细菌中已知最广泛和最丰富的 c-di-GMP 受体,它作为反式作用适配蛋白,使 c-di-GMP 能够以高度特异性控制信号通路。本研究从植物病原黄单胞菌柠檬亚种(Xcc)中发现了一种单链 PilZ 蛋白 XAC3402(更名为 N5MapZ),它通过与甲基转移酶 HemK 直接相互作用来调节 Xcc 的毒力。通过酵母双杂交、共免疫沉淀和免疫荧光染色,我们证明了 N5MapZ 和 HemK 在体外和体内条件下都能直接相互作用,在高 c-di-GMP 浓度下,蛋白质间相互作用的强度降低。这一发现将 N5MapZ 与其他特征性单域 PilZ 蛋白区分开来,因为之前已知 c-di-GMP 会增强这些单域 PilZ 与其蛋白伙伴之间的相互作用。c-di-GMP 结合缺陷突变体 N5MapZR10A 能与 HemK 相互作用,抑制 1 类翻译终止释放因子 PrfA 的甲基化,这一事实进一步证实了这一观点。此外,我们还发现 HemK 在 Xcc 的致病过程中起着重要作用,因为缺失 hemK 会导致广泛的表型变化,包括柑橘植株的毒力降低、运动能力下降、胞外酶的产生和抗逆性降低。基因表达分析表明,c-di-GMP 和 HemK 介导的途径可调控多种毒力效应蛋白的表达,从而发现了一种新的调控机制,即 c-di-GMP 通过单链 PilZ 适配蛋白 N5MapZ 介导 PrfA 甲基化,从而调控 Xcc 的毒力。
{"title":"A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri.","authors":"Yu Shi, Tianfang Cheng, Qing Wei Cheang, Xiaoyan Zhao, Zeling Xu, Zhao-Xun Liang, Linghui Xu, Junxia Wang","doi":"10.1111/mpp.13496","DOIUrl":"10.1111/mpp.13496","url":null,"abstract":"<p><p>The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZ<sup>R10A</sup> can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13496"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to 'Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum'. 对 "抗性与易感性蓝莓栽培品种在受到Colletotrichum acutatum感染后差异表达基因的鉴定 "的更正。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13495
{"title":"Correction to 'Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum'.","authors":"","doi":"10.1111/mpp.13495","DOIUrl":"10.1111/mpp.13495","url":null,"abstract":"","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13495"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel MAP kinase-interacting protein MoSmi1 regulates development and pathogenicity in Magnaporthe oryzae. 一种新的与 MAP 激酶相互作用的蛋白 MoSmi1 可调控木格氏真菌的发育和致病性。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13493
Yu Wang, Xinyue Cui, Junlian Xiao, Xiaoru Kang, Jinmei Hu, Zhicheng Huang, Na Li, Chuyu Yang, Yuemin Pan, Shulin Zhang

The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.

细胞壁是抵御外部逆境的第一道屏障,在维持真菌正常生理功能方面发挥作用。此前,我们报道了一种核糖体组装蛋白--MoNap1,它在木格氏真菌的细胞壁完整性(CWI)、应激反应和致病性中发挥作用。此外,MoNap1 负向调节由 MGG_03970 编码的 MoSMI1 的表达。在这里,我们证明了缺失 MoSMI1 会导致贴壁功能、CWI、细胞形态和致病性的显著缺陷。进一步研究发现,MoSmi1与MoOsm1和MoMps1相互作用,并影响MoOsm1、MoMps1和MoPmk1的磷酸化水平,表明MoSmi1通过介导有丝分裂原激活蛋白激酶(MAPK)信号通路调控M.此外,转录组数据显示,MoSmi1 还调控着许多与 M. oryzae 感染相关的过程,如膜相关途径和氧化还原过程。总之,我们的研究表明,MoSmi1 通过介导 MAPK 通路来调控 CWI,从而影响 M. oryzae 的发育和致病性。
{"title":"A novel MAP kinase-interacting protein MoSmi1 regulates development and pathogenicity in Magnaporthe oryzae.","authors":"Yu Wang, Xinyue Cui, Junlian Xiao, Xiaoru Kang, Jinmei Hu, Zhicheng Huang, Na Li, Chuyu Yang, Yuemin Pan, Shulin Zhang","doi":"10.1111/mpp.13493","DOIUrl":"10.1111/mpp.13493","url":null,"abstract":"<p><p>The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13493"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence. 利用 PSTVd 基因组序列预测受 PSTVd 感染的番茄植株的症状严重程度。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13469
Jianqiang Sun, Yosuke Matsushita

Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.

病毒病是已知的最小传染源之一,根据病毒病分离株和寄主植物种类的组合,可引起不同严重程度的症状,从潜伏到严重不等。由于病毒病可在植物物种间传播,无症状的病毒感染植物可能成为其他物种的潜伏传染源,从而表现出严重症状,有时会导致农业和经济损失。因此,在不进行生物实验的情况下预测病毒病在寄主植物中诱发的症状,可以大大加强病毒病危害的控制措施。在此,我们利用无监督机器学习开发了一种算法,用于预测寄主植物(如番茄)中由病毒病(如马铃薯纺锤形块茎病毒;PSTVd)引起的疾病症状的严重程度。该算法模仿被认为与病毒致病性有关的 RNA 沉默机制,只需要病毒和宿主植物的基因组序列。它包括三个步骤:将病毒体的合成短序列与宿主植物基因组进行比对、计算比对覆盖率,以及使用 UMAP 和 DBSCAN 根据覆盖率对病毒体进行聚类。通过接种实验验证了该算法在预测病毒引起的病害症状严重程度方面的有效性。由于该算法只需要基因组序列数据,因此可以应用于任何病毒和植物的组合。这些发现强调了拟病毒致病性与拟病毒分离株和寄主植物基因组序列之间的相关性,可能有助于预防拟病毒爆发和培育抗拟病毒作物。
{"title":"Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence.","authors":"Jianqiang Sun, Yosuke Matsushita","doi":"10.1111/mpp.13469","DOIUrl":"10.1111/mpp.13469","url":null,"abstract":"<p><p>Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13469"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism. 根结线虫效应子MiEFF12以宿主ER质量控制系统为靶标,抑制免疫反应,实现寄生。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 DOI: 10.1111/mpp.13491
Salomé Soulé, Kaiwei Huang, Karine Mulet, Joffrey Mejias, Jérémie Bazin, Nhat My Truong, Junior Lusu Kika, Stéphanie Jaubert, Pierre Abad, Jianlong Zhao, Bruno Favery, Michaël Quentin

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.

根结线虫(RKNs)是一种微小的寄生蠕虫,能够侵染数千种植物的根部,造成全球农作物的大量减产。它们躲避植物的免疫系统,操纵植物细胞的生理机能和新陈代谢,将少数根细胞转化为巨细胞,作为线虫的取食场所。RKN 通过在植物体内分泌效应分子(主要是劫持宿主细胞过程的蛋白质)来促进寄生。我们在此描述了一种保守的 RKN 特异性效应分子--效应分子 12(EFF12),它只在线虫的食道腺中合成,我们还证明了它在寄生中的功能。在植物体内,MiEFF12 定位于内质网(ER)。RNA 序列分析和免疫抑制生物测定相结合,揭示了 MiEFF12 对宿主免疫调节的贡献。酵母双杂交、分离荧光素酶和共免疫沉淀等方法确定了ER质量控制系统的一个重要组成部分--茄属植物bap-like(PBL)和碱性亮氨酸拉链60(BZIP60)蛋白是MiEFF12的宿主靶标。最后,在烟草中沉默 PBL 基因会降低对 Meloidogyne incognita 感染的易感性。我们的研究结果表明,EFF12操纵了PBL功能,从而改变了植物的免疫反应,使其能够寄生。
{"title":"The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism.","authors":"Salomé Soulé, Kaiwei Huang, Karine Mulet, Joffrey Mejias, Jérémie Bazin, Nhat My Truong, Junior Lusu Kika, Stéphanie Jaubert, Pierre Abad, Jianlong Zhao, Bruno Favery, Michaël Quentin","doi":"10.1111/mpp.13491","DOIUrl":"10.1111/mpp.13491","url":null,"abstract":"<p><p>Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13491"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. 单端孢霉烯霉菌毒素脱氧雪腐镰刀菌醇(deoxynivalenol)在禾谷镰刀菌的小麦组织定殖过程中促进了细胞间的侵染。
IF 4.9 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13485
Victoria J Armer, Martin Urban, Tom Ashfield, Michael J Deeks, Kim E Hammond-Kosack

Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.

小粒谷物上的镰刀菌头枯病主要由子囊真菌病原体禾谷镰刀菌(Fusarium graminearum)引起。感染花穗组织的特征是生物合成和分泌强效单端孢霉烯霉菌毒素,其中脱氧雪腐镰刀菌烯醇(DON)因其对谷物质量和消费者安全的负面影响而被广泛报道。TRI5 基因编码 DON 生物合成途径中的一个重要酶,单基因缺失突变体 ΔTri5 被广泛报道可限制病害向接种小穗的发展。在本研究中,我们提出了新的生物成像证据,揭示了 DON 有助于通过质膜穿越细胞壁,这是成功定殖宿主组织所必需的过程。ΔTri5的化学互补不能恢复宏观或微观表型,这表明DON的分泌在空间和时间上都受到严格调控。细胞形态定性和定量比较分析表明,感染对植物细胞壁厚度没有影响。感染期间质膜上胼胝质的免疫标记表明,外源施加 DON 会增加沉积物,但当禾谷镰孢菌丝存在时,沉积物会减少。这项研究强调了霉菌毒素生产、细胞壁结构和质粒在这种高度专业化的相互作用中相互关联的复杂作用。
{"title":"The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum.","authors":"Victoria J Armer, Martin Urban, Tom Ashfield, Michael J Deeks, Kim E Hammond-Kosack","doi":"10.1111/mpp.13485","DOIUrl":"10.1111/mpp.13485","url":null,"abstract":"<p><p>Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13485"},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana. 一种来自霉菌的新型木聚糖酶会引发烟草中的植物免疫反应。
IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Pub Date : 2024-06-01 DOI: 10.1111/mpp.13488
Yuqiang Zhao, Kun Yang, Yanxin Wang, Xu Li, Chengyao Xia, Yan Huang, Zhoukun Li, Cancan Zhu, Zhongli Cui, Xianfeng Ye

Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.

众所周知,从真菌(包括植物病原真菌和非病原真菌)中提取的木聚糖酶可引发植物免疫反应。然而,有关细菌衍生的木聚糖酶触发植物免疫反应能力的研究却很有限。本文从囊胞杆菌(Cystobacter sp. 0969)中发现了一种名为 CcXyn 的新型木聚糖酶,它对植物病原真菌和细菌都具有广谱活性。CcXyn 属于糖苷水解酶(GH)11 家族,与已知会引发植物免疫反应的真菌木聚糖酶的序列相同度约为 32.0%-45.0%。用纯化的 CcXyn 处理烟草,可诱导超敏反应(HR)和防御反应,如产生活性氧(ROS)和上调防御基因的表达,最终增强烟草对烟草疫霉的抗性。这些研究结果表明,CcXyn 是一种微生物相关分子模式(MAMP)诱导剂,可引起植物免疫反应,与其酶活性无关。与真菌木聚糖酶类似,CcXyn 也能被 N. benthamiana 细胞膜上的 NbRXEGL1 受体识别。下游信号传导与 BAK1 和 SOBIR1 共受体无关,这表明在 N. benthamiana 中 CcXyn 被识别后,其他共受体参与了信号传导。此外,其他木霉菌中的木聚糖酶也有能力触发本根玉米中的植物免疫反应,这表明木霉菌中的木聚糖酶在触发植物免疫功能方面无所不在。这项研究拓展了人们对具有植物免疫反应诱导特性的木聚糖酶的认识,并为粘杆菌在针对植物病原体的生物防治策略中的潜在应用提供了理论基础。
{"title":"A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana.","authors":"Yuqiang Zhao, Kun Yang, Yanxin Wang, Xu Li, Chengyao Xia, Yan Huang, Zhoukun Li, Cancan Zhu, Zhongli Cui, Xianfeng Ye","doi":"10.1111/mpp.13488","DOIUrl":"10.1111/mpp.13488","url":null,"abstract":"<p><p>Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13488"},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular plant pathology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1