Introduction: Few studies have analyzed the effect of preoperative opioid use on postoperative outcomes after total shoulder arthroplasty (TSA).
Methods: Patients undergoing TSA were identified in the Pearldiver Humana Claims Dataset and stratified by level of preoperative opioid use. Primary outcomes were 90-day complications, readmissions, and revision surgery. Chi-square test and ANOVA were used to evaluate categorical and continuous variables respectively. A multivariable logistic regression analysis and a sub analysis excluding fracture as a primary diagnosis were completed.
Results: 18,791 patients underwent aTSA and rTSA including 9933 opioid naïve patients, 3016 sporadic opioid users and 5842 persistent opioid users. Significant differences were found in complications (6.0% vs 6.1% vs 9.1%, p < .001), readmission (7.6% vs 8.2% vs 12.6%, p < .001), and revision procedures (1.1% vs 1.1% vs 2.3%, p < .001) which remained significant after excluding fractures. After adjusting for comorbidity burden, persistent opioid use was associated with increased likelihood of complications (OR 1.4, 1.2-1.6), readmission (OR 1.6, 1.5-1.8) and revision procedures (OR 1.9, 1.5-2.4). This association remained after excluding fractures.
Conclusion: Persistent preoperative opioid use is associated with increased risk of early postoperative complications, readmission, and revision surgery for patients undergoing shoulder arthroplasty.
During the 1970s and 1980s, L. R. Hesler and A. H. Smith, alone, together, or Smith with other authors such as V. S. Evenson and D. H. Mitchel, described numerous North American taxa in Hebeloma. With the inclusion of an early work by Smith and a later work by E. Grilli, who described a species based on material from Smith, 130 taxa were described and form the subject of this paper. Apart from two taxa that were (deliberately) invalidly published and two that were illegitimately published, all others are valid and legitimate names. After study of morphology, habitat, and location of collection (based on available material and information) as well as molecular analysis (insofar as this was successful), of these 128 validly published taxa we regard 14 as being current names; the remaining 114 are synonymized with other current names. These 14 species are Hebeloma albomarginatum, H. alpinicola, H. angelesiense, H. caulocystidiosum, H. immutabile, H. incarnatulum, H. kelloggense, H. mackinawense, H. nitidum, H. olympianum, H. parcivelum, H. praeolidum, H. pungens, and H. sporadicum. This brings up the number of currently recognized, validly published, Hebeloma species in America to 72.
Cortinarius sect. Camphorati consists of telamonioid species with violet basidioma, strong odor, and distinct cheilocystidia. In this study, phylogenetic analysis based on nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and partial nuc rDNA 28S sequences has revealed three new species of the section from southwestern China, namely, C. longicystidiatus, C. megacystidiatus, and C. paraputorius, and a newly recorded species from southwestern China, viz., C. camphoratus, supplemented by the support from calculations of genetic distances of ITS sequences. Detailed descriptions of the four species are given with photographs, and their micromorphological characteristics are statistically compared. For species delimitation within the section, the size of basidiospores, the morphology of cheilocystidia, and the associated vegetation types and tree species are informative. A key to species in section Camphorati from the Northern Hemisphere is provided, and their geographic distributions and ecology are discussed.
Diverse fungi colonize plant roots worldwide and include species from many orders of the phylum Ascomycota. These fungi include taxa with dark septate hyphae that colonize grass roots and may modulate plant responses to stress. We describe a novel group of fungal isolates and evaluate their effects on the grass Bouteloua gracilis in vitro. We isolated fungi from roots of six native grasses from 24 sites spanning replicated latitudinal gradients in the south-central US grasslands and characterized isolates phylogenetically using a genome analysis. We analyzed 14 isolates representing a novel clade within the family Montagnulaceae (order Pleosporales), here typified as Pleoardoris graminearum, closely related to the genera Didymocrea and Bimuria. This novel species produces asexual, light brown pycnidium-like conidioma, hyaline hyphae, and chlamydospores when cultured on quinoa and kiwicha agar. To evaluate its effects on B. gracilis, seeds were inoculated with one of three isolates (DS304, DS334, and DS1613) and incubated at 25 C for 20 d. We also tested the effect of volatile organic compounds (VOCs) produced by the same isolates on B. gracilis root and stem lengths. Isolates had variable effects on plant growth. One isolate increased B. gracilis root length up to 34% compared with uninoculated controls. VOCs produced by two isolates increased root and stem lengths (P < 0.05) compared with controls. Internal transcribed spacer ITS2 metabarcode data revealed that P. graminearum is distributed across a wide range of sites in North America (22 of 24 sites sampled), and its relative abundance is influenced by host species identity and latitude. Host species identity and site were the most important factors determining P. graminearum relative abundance in drought experiments at the Extreme Drought in the Grasslands Experiment (EDGE) sites. Variable responses of B. gracilis to inoculation highlight the potential importance of nonmycorrhizal root-associated fungi on plant survival in arid ecosystems.
The Globisporangium ultimum (formerly Pythium ultimum) species complex was previously composed of two morphological varieties: var. ultimum and var. sporangiiferum. Prior attempts to resolve this morphology-based species complex using molecular techniques have been inconclusive or conflicting. The increased availability of sequenced genomes and isolates identified as G. ultimum var. ultimum and var. sporangiiferum has allowed us to examine these relationships at a higher resolution and with a broader scope than previously possible. Using comparative genomics, we identified highly variable gene regions and designed primers for four new protein-coding genes for phylogenetics. These were then used alongside three known markers to generate a nuclear multigene genealogy of the species complex. From a collection of 163 isolates belonging to the target taxa, a subset of 29 was chosen to be included in this study (verified with nuclear rDNA internal transcribed spacer 1 [ITS1] and mitochondrial cytochrome c oxidase subunit 1 [cox1] sequences). Seventeen isolates of var. ultimum were selected to be representative of variations in genotype, morphology, and geographic collection location. The 12 isolates of var. sporangiiferum included all available specimens identified either morphologically (in previous studies) or through sequence similarity with ITS1 and cox1. Based on the fulfillment of reciprocal monophyly and observed genealogical concordance under the genealogical concordance phylogenetic species recognition, we determined that the Globisporangium ultimum species complex is composed of four genetically distinct species: Globisporangium ultimum, Globisporangium sporangiiferum, Globisporangium solveigiae, and Globisporangium bothae.
This is the fourth contribution within an ongoing series dedicated to the phylogeny and taxonomy of powdery mildews. This particular installment undertakes a comprehensive evaluation of a group previously referred to as the "Uncinula lineage" within Erysiphe. The genus Erysiphe is too large to be assessed in a single paper; thus, the treatment of Erysiphe is split into three parts, according to phylogenetic lineages. The first paper, presented here, discusses the most basal lineage of Erysiphe and its relationship to allied basal genera within tribe Erysipheae (i.e., Brasiliomyces and Salmonomyces). ITS+28S analyses are insufficient to resolve the basal assemblage of taxa within the Erysipheae. Therefore, phylogenetic multilocus examinations have been carried out to better understand the evolution of these taxa. The results of our analyses favor maintaining Brasiliomyces, Bulbomicroidium, and Salmonomyces as separate genera, at least for the interim, until further phylogenetic multilocus data are available for additional basal taxa within the Erysipheae. The current analyses also confirmed previous results that showed that the "Uncinula lineage" is not exclusively composed of Erysiphe species of sect. Uncinula but also includes some species that morphologically align with sect. Erysiphe, as well as species that had previously been assigned to Californiomyces and Typhulochaeta. Numerous sequences of Erysiphe species from the "Uncinula lineage" have been included in the present phylogenetic analyses and were confirmed by their position in well-supported species clades. Several species have been sequenced for the first time, including Erysiphe clintonii, E. couchii, E. geniculata, E. macrospora, and E. parvula. Ex-type sequences are provided for 16 taxa including E. nothofagi, E. trinae, and E. variabilis. Epitypes are designated and ex-epitype sequences are added for 18 taxa including Erysiphe carpophila, E. densa, and U. geniculata var. carpinicola. The new species Erysiphe canariensis is described, and the new names E. hosagoudarii and E. pseudoprunastri and the new combination E. ampelopsidis are introduced.