Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.025
J. Veneros, Llandercita Cuchca Ramos, M. Goñas, E. Morales, Erick Auquiñivín-Silva, M. Oliva, L. García
This study evaluated the seasonal variability of water quality in the Tilacancha River, the water source that supplies Chachapoyas, and the rural communities of Levanto and San Isidro del Maino of Perú. Eighteen physical, chemical, and microbiological water parameters were evaluated at five sampling points in two seasons (rainy and dry). To determine water quality, the results obtained for the parameters evaluated were compared with the Maximum Permissible Limits (MPL) established in the Regulation on Water Quality for Human Consumption (DS Nº 031-2010-SA), approved by the Environmental Health Directorate of the Ministry of Health. In addition, a Pearson correlation was performed to estimate the correlation between the variables evaluated. The results showed that microbiological parameters exceeded the MPLs in both periods evaluated, such as the case of total coliforms (44 MPN.100 mL-1), fecal coliforms (25 MPN.100 mL-1), and E. coli (5.45 MPN.100 mL-1), these microbiological parameters reported a positive correlation with turbidity, temperature, total dissolved solids, and flow rate. In addition, aluminum (Al) and manganese (Mn) exceeded the MPL in the rainy (0.26 mg Al.L-1) and dry (1.41 mg.Mn-1.L-1) seasons, respectively. The results indicated that the water of the Tilacancha River is not suitable for human consumption. Therefore, it must be treated in drinking water treatment plants to be used as drinking water.
{"title":"Seasonal Variability of Water Quality for Human Consumption in the Tilacancha Conduction System, Amazonas, Peru","authors":"J. Veneros, Llandercita Cuchca Ramos, M. Goñas, E. Morales, Erick Auquiñivín-Silva, M. Oliva, L. García","doi":"10.46488/nept.2024.v23i02.025","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.025","url":null,"abstract":"This study evaluated the seasonal variability of water quality in the Tilacancha River, the water source that supplies Chachapoyas, and the rural communities of Levanto and San Isidro del Maino of Perú. Eighteen physical, chemical, and microbiological water parameters were evaluated at five sampling points in two seasons (rainy and dry). To determine water quality, the results obtained for the parameters evaluated were compared with the Maximum Permissible Limits (MPL) established in the Regulation on Water Quality for Human Consumption (DS Nº 031-2010-SA), approved by the Environmental Health Directorate of the Ministry of Health. In addition, a Pearson correlation was performed to estimate the correlation between the variables evaluated. The results showed that microbiological parameters exceeded the MPLs in both periods evaluated, such as the case of total coliforms (44 MPN.100 mL-1), fecal coliforms (25 MPN.100 mL-1), and E. coli (5.45 MPN.100 mL-1), these microbiological parameters reported a positive correlation with turbidity, temperature, total dissolved solids, and flow rate. In addition, aluminum (Al) and manganese (Mn) exceeded the MPL in the rainy (0.26 mg Al.L-1) and dry (1.41 mg.Mn-1.L-1) seasons, respectively. The results indicated that the water of the Tilacancha River is not suitable for human consumption. Therefore, it must be treated in drinking water treatment plants to be used as drinking water.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"124 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.051
Michael Otu, Brian F. I. Anyatang, B. Kooffreh, Rose Ohiama Ugbe
This paper will explore policy shifts in Nigeria’s oil and gas, solar, nuclear, and mineral energy sectors. This policy shift by way of a transition, indigenization, and Nigerianization, has given way to deregulation, decentralization, and de-indigenization of many industries, most notably in the oil and gas sector, through the Petroleum Industry Act (PIA) of 2021 and the Local Content Act of 2010 (LCA). The paper recommends, amongst others, the establishment of a new legal regime that grants resource-based and property rights to resource-bearing communities and incorporates principles of international law, energy diplomacies, International Environmental Law, and international best practices.
{"title":"An Appraisal of the Legal Frameworks and Policy Shift in the Nigerian Energy Sector","authors":"Michael Otu, Brian F. I. Anyatang, B. Kooffreh, Rose Ohiama Ugbe","doi":"10.46488/nept.2024.v23i02.051","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.051","url":null,"abstract":"This paper will explore policy shifts in Nigeria’s oil and gas, solar, nuclear, and mineral energy sectors. This policy shift by way of a transition, indigenization, and Nigerianization, has given way to deregulation, decentralization, and de-indigenization of many industries, most notably in the oil and gas sector, through the Petroleum Industry Act (PIA) of 2021 and the Local Content Act of 2010 (LCA). The paper recommends, amongst others, the establishment of a new legal regime that grants resource-based and property rights to resource-bearing communities and incorporates principles of international law, energy diplomacies, International Environmental Law, and international best practices.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"23 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.029
A. Prodjosantoso, Y. Febriadi, A. R. P. Utami, M. P. Utomo
The stabilization of toxic metals in the stable matrices is quite well-known. Research on copper and cadmium stabilization in the CaO-CuO-SiO2 and CaO-CdO-SiO2 composites was conducted to study the characteristics of CaO-CuO-SiO2 and CaO-CdO-SiO2 composites as well as the Cu and Cd metals stabilization in the hydrated composites. The composites of CaO-CuO-SiO2 and CaO-CdO-SiO2 were synthesized by the solid-state reaction method. A stoichiometric amount of CaO, SiO2, Cu(NO3)2, and CdO were calcined at 1050°C for 4 hours. The synthesized compounds were further hydrated in a soaking time of 30, 60, and 90 days. The hydration produced calcium silicate hydrate that can stabilize metals. The Cu and Cd stability in CaO-CuO-SiO2 and CaO-CdO-SiO2, respectively, were tested using the Toxicity Leaching Procedure (TCLP) method. The hydrated and hydrated composite characterizations were performed using X-ray diffraction (XRD), Fourier Transform Infra-Red Spectrophotometer (FTIR), and Scanning Energy Mocroscopy-Energy Dispersive X-ray analyzer (SEM-EDX) and the Atomic Absorption Spectroscopy (AAS) methods. The composites mainly consist of Ca3SiO5, Ca2SiO4, Ca(OH)2, SiO2, and metal oxide of CuO, Cu2O, and CdO. The composites were able to stabilize ~100% of the heavy metals of Cu and Cd.
{"title":"The Stabilization of Copper and Cadmium in The Hydrated CaO-CuO-SiO2 and CaO-CdO-SiO2 Composites","authors":"A. Prodjosantoso, Y. Febriadi, A. R. P. Utami, M. P. Utomo","doi":"10.46488/nept.2024.v23i02.029","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.029","url":null,"abstract":"The stabilization of toxic metals in the stable matrices is quite well-known. Research on copper and cadmium stabilization in the CaO-CuO-SiO2 and CaO-CdO-SiO2 composites was conducted to study the characteristics of CaO-CuO-SiO2 and CaO-CdO-SiO2 composites as well as the Cu and Cd metals stabilization in the hydrated composites. The composites of CaO-CuO-SiO2 and CaO-CdO-SiO2 were synthesized by the solid-state reaction method. A stoichiometric amount of CaO, SiO2, Cu(NO3)2, and CdO were calcined at 1050°C for 4 hours. The synthesized compounds were further hydrated in a soaking time of 30, 60, and 90 days. The hydration produced calcium silicate hydrate that can stabilize metals. The Cu and Cd stability in CaO-CuO-SiO2 and CaO-CdO-SiO2, respectively, were tested using the Toxicity Leaching Procedure (TCLP) method. The hydrated and hydrated composite characterizations were performed using X-ray diffraction (XRD), Fourier Transform Infra-Red Spectrophotometer (FTIR), and Scanning Energy Mocroscopy-Energy Dispersive X-ray analyzer (SEM-EDX) and the Atomic Absorption Spectroscopy (AAS) methods. The composites mainly consist of Ca3SiO5, Ca2SiO4, Ca(OH)2, SiO2, and metal oxide of CuO, Cu2O, and CdO. The composites were able to stabilize ~100% of the heavy metals of Cu and Cd.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"10 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.006
Siriorn Boonyawanich, P. Prommeenate, S. Oaew, Wantanasak Suksong, N. Pisutpaisal, S. Haosagul
A high concentration of hydrogen sulfide (H2S) released from pig farming is one of the major environmental problems affecting surrounding communities. In modern pig farms, the bioscrubber is used to eliminate H2S, which is found to be driven mainly by the sulfur-oxidizing bacteria (SOB) community. Therefore, in this study, molecular biology techniques such as next-generation sequencing (NGS) and DNA microarray are proposed to study the linkage between enzyme activity and the abundance of the SOB community. The starting sludge (SFP1) and recirculating sludge (SFP2) samples were collected from the bioscrubber reactor in the pig farm. The abundance of microbial populations between the two sampling sites was considered together with the gene expression results of both soxABXYZ and fccAB. Based on the NGS analysis, the members of phylum Proteobacteria such as Halothiobacillus, Acidithiobacillus, Thiothrix, Novosphingobium, Sulfuricurvum, Sulfurovum, Sulfurimonas, Acinetobacter, Thiobacillus, Magnetospirillum, Arcobacter, and Paracoccus were predominantly found in SFP2. The presence of Cyanobacteria in SFP pig farms is associated with increased biogas yields. The microarray results showed that the expression of soxAXBYZ and fccAB genes involved in the oxidation of sulfide to sulfate was increased in Halothiobacillus, Paracoccus, Acidithiobacillus, Magnetospirillum, Sphingobium, Thiobacillus, Sulfuricurvum, Sulfuricurvum, Arcobacter, and Thiothrix. Both NGS and DNA microarray data supported the functional roles of SOB in odor elimination and the oxidation of H2S through the function of soxABXYZ and fccAB. The results also identified the key microbes for H2S odor treatment, which can be utilized to monitor the stability of biological treatment systems and the toxicity of sulfide minerals by oxidation.
{"title":"Detection of Sulfur Oxidizing Bacteria to Oxidize Hydrogen Sulfide in Biogas from Pig Farm by NGS and DNA Microarray Technique","authors":"Siriorn Boonyawanich, P. Prommeenate, S. Oaew, Wantanasak Suksong, N. Pisutpaisal, S. Haosagul","doi":"10.46488/nept.2024.v23i02.006","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.006","url":null,"abstract":"A high concentration of hydrogen sulfide (H2S) released from pig farming is one of the major environmental problems affecting surrounding communities. In modern pig farms, the bioscrubber is used to eliminate H2S, which is found to be driven mainly by the sulfur-oxidizing bacteria (SOB) community. Therefore, in this study, molecular biology techniques such as next-generation sequencing (NGS) and DNA microarray are proposed to study the linkage between enzyme activity and the abundance of the SOB community. The starting sludge (SFP1) and recirculating sludge (SFP2) samples were collected from the bioscrubber reactor in the pig farm. The abundance of microbial populations between the two sampling sites was considered together with the gene expression results of both soxABXYZ and fccAB. Based on the NGS analysis, the members of phylum Proteobacteria such as Halothiobacillus, Acidithiobacillus, Thiothrix, Novosphingobium, Sulfuricurvum, Sulfurovum, Sulfurimonas, Acinetobacter, Thiobacillus, Magnetospirillum, Arcobacter, and Paracoccus were predominantly found in SFP2. The presence of Cyanobacteria in SFP pig farms is associated with increased biogas yields. The microarray results showed that the expression of soxAXBYZ and fccAB genes involved in the oxidation of sulfide to sulfate was increased in Halothiobacillus, Paracoccus, Acidithiobacillus, Magnetospirillum, Sphingobium, Thiobacillus, Sulfuricurvum, Sulfuricurvum, Arcobacter, and Thiothrix. Both NGS and DNA microarray data supported the functional roles of SOB in odor elimination and the oxidation of H2S through the function of soxABXYZ and fccAB. The results also identified the key microbes for H2S odor treatment, which can be utilized to monitor the stability of biological treatment systems and the toxicity of sulfide minerals by oxidation.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"54 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.055
R. Novio, S. Mariya, Widya Prarikeslan, Sophia Aulia Ramon
Padang as the capital of the province, is a strategic area and also the center of the economy. Annual population growth affects changes in land use from vegetated land to built-up areas. An increase in barren land will trigger an increase in temperature. SUHI is a temperature phenomenon that occurs on the surface resulting from the increase in temperature. SUHI can be observed through surface temperature data or Land Surface Temperature. This study aims to identify changes in land surface temperature that are affected by changes in land use in the form of building density conditions. In analyzing this using Landsat 7 ETM+ imagery in 2001, 2006, 2011, 2016, and 2020. The building density measurement method LST transformations to measure surface temperature and helps the Surface Urban Heat Island phenomenon. The results of the analysis showed that there was an increase in the building density of the city of Padang over a period of 20 years. This phenomenon affects the surface temperature, indicating that the surface temperature has increased by around 0.47°C. The highest temperature from 2001-2020 occurred in 2016, with the highest temperature of 36°C.
{"title":"Study of Temporal Dynamics of Urban Heat Island Surface in Padang West Sumatra, Indonesia","authors":"R. Novio, S. Mariya, Widya Prarikeslan, Sophia Aulia Ramon","doi":"10.46488/nept.2024.v23i02.055","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.055","url":null,"abstract":"Padang as the capital of the province, is a strategic area and also the center of the economy. Annual population growth affects changes in land use from vegetated land to built-up areas. An increase in barren land will trigger an increase in temperature. SUHI is a temperature phenomenon that occurs on the surface resulting from the increase in temperature. SUHI can be observed through surface temperature data or Land Surface Temperature. This study aims to identify changes in land surface temperature that are affected by changes in land use in the form of building density conditions. In analyzing this using Landsat 7 ETM+ imagery in 2001, 2006, 2011, 2016, and 2020. The building density measurement method LST transformations to measure surface temperature and helps the Surface Urban Heat Island phenomenon. The results of the analysis showed that there was an increase in the building density of the city of Padang over a period of 20 years. This phenomenon affects the surface temperature, indicating that the surface temperature has increased by around 0.47°C. The highest temperature from 2001-2020 occurred in 2016, with the highest temperature of 36°C.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"49 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.050
P. Devi, Prasann Kumar
The agricultural sector is seriously impacted by climate change, leading to potential risks to food security. In terms of global food production, maize ranks third. As a result, crop production and food security depend critically on assessing the effects of climate change and developing measures to adapt maize. Regarding adaptability, changing planting dates and using different agrochemicals are more effective than other management. Crop models are part of a global decision support system to help farmers maximize yields despite unpredictable weather patterns. To mitigate yield loss and protect the ecosystem, it is essential to use efficient maize-sowing practices in the field. This experiment was carried out to identify the most favorable sowing dates that maximize yield while ensuring the crop’s productivity and the integrity of the surrounding ecosystem remain intact. The main aim of this experiment was to mitigate the different climatic conditions by exogenous application of salicylic acid (SA) and sodium nitroprusside (SNP) on pigments and sugar content in maize under different sowing dates. A field experiment was carried out in the School of Agriculture, Lovely Professional University, Punjab, India, during the spring season of 2022. The experiment dealt with various maize crops, PMH-10, sourced from the Punjab Agricultural University (PAU), Punjab. The experiment was conducted in an open-air environment. The experimental setup was laid out in a split-plot design. The results stated that foliar application of salicylic acid and sodium nitroprusside successfully influenced high-temperature tolerance and low temperature at the reproductive phase and initial vegetative stages with other growing climatic conditions of maize in early and late sowings when controlled by increasing the chlorophyll index, carotenoids content, and sugar content of maize.
{"title":"Alleviation of Different Climatic Conditions by Foliar Application of Salicylic Acid and Sodium Nitroprusside and Their Interactive Effects on Pigments and Sugar Content of Maize Under Different Sowing Dates","authors":"P. Devi, Prasann Kumar","doi":"10.46488/nept.2024.v23i02.050","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.050","url":null,"abstract":"The agricultural sector is seriously impacted by climate change, leading to potential risks to food security. In terms of global food production, maize ranks third. As a result, crop production and food security depend critically on assessing the effects of climate change and developing measures to adapt maize. Regarding adaptability, changing planting dates and using different agrochemicals are more effective than other management. Crop models are part of a global decision support system to help farmers maximize yields despite unpredictable weather patterns. To mitigate yield loss and protect the ecosystem, it is essential to use efficient maize-sowing practices in the field. This experiment was carried out to identify the most favorable sowing dates that maximize yield while ensuring the crop’s productivity and the integrity of the surrounding ecosystem remain intact. The main aim of this experiment was to mitigate the different climatic conditions by exogenous application of salicylic acid (SA) and sodium nitroprusside (SNP) on pigments and sugar content in maize under different sowing dates. A field experiment was carried out in the School of Agriculture, Lovely Professional University, Punjab, India, during the spring season of 2022. The experiment dealt with various maize crops, PMH-10, sourced from the Punjab Agricultural University (PAU), Punjab. The experiment was conducted in an open-air environment. The experimental setup was laid out in a split-plot design. The results stated that foliar application of salicylic acid and sodium nitroprusside successfully influenced high-temperature tolerance and low temperature at the reproductive phase and initial vegetative stages with other growing climatic conditions of maize in early and late sowings when controlled by increasing the chlorophyll index, carotenoids content, and sugar content of maize.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"57 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biofuels are the cheapest source of energy, and the continuous decline of traditional sources of energy with the increasing population leads to looking for alternatives to reduce the consumption of traditional sources of energy. Bioethanol production from lignocellulosic wastes and cellulosic wastes is not a new approach for fuel production but a cheap and accessible way for the production of fuel. Bacillus is one of the major species that can act as a source of diversified enzymes. In this study, it was emphasized on screening and isolation of a novel, characterization, and best catalytic action on both celluloses and proteins in the presence of different carbon and nitrogen sources. It was observed the effective catalytic breakdown of cellulose with the crude enzyme to glucose allowed fur for fermentation with Saccharomyces, ultimately leading to the generation of alcohol. The study aims to isolate the microbes that can produce cellulases and enzymes and could be used for biodegradation to produce ethanol in the reaction. The maximum enzyme activity was achieved at 3.112 UI with optimized pH and temperature, and the maximum conversion of sugars into alcohol was about 70% in the newspaper, cartons, colored paper, and disposable paper cups. An essential observation was the decolorization of the origami craft paper within 24 hours. The study was involved in enhancing the maximum Enzyme activity of cellulases from different cellulosic raw materials. Hence, it was achieved by JCB strain, optimization of pH, temperature, and acids for the biodegradation. The presence of peaks at 3200 and 2900 was a confirmation of ethanol bonds in the biodegradation reaction mixtures.
{"title":"Biodegradation of Cellulosic Wastes and Deinking of Colored Paper with Isolated Novel Cellulolytic Bacteria","authors":"Jyoti Sarwan, Jagadeesh Chandra Bose, Shivam Kumar, Shruti Singh Bhargav, Sharad Kumar Dixit, Muskan Sharma, Komal Mittal, Gurmeet Kumar, Nazim Uddin","doi":"10.46488/nept.2024.v23i02.013","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.013","url":null,"abstract":"Biofuels are the cheapest source of energy, and the continuous decline of traditional sources of energy with the increasing population leads to looking for alternatives to reduce the consumption of traditional sources of energy. Bioethanol production from lignocellulosic wastes and cellulosic wastes is not a new approach for fuel production but a cheap and accessible way for the production of fuel. Bacillus is one of the major species that can act as a source of diversified enzymes. In this study, it was emphasized on screening and isolation of a novel, characterization, and best catalytic action on both celluloses and proteins in the presence of different carbon and nitrogen sources. It was observed the effective catalytic breakdown of cellulose with the crude enzyme to glucose allowed fur for fermentation with Saccharomyces, ultimately leading to the generation of alcohol. The study aims to isolate the microbes that can produce cellulases and enzymes and could be used for biodegradation to produce ethanol in the reaction. The maximum enzyme activity was achieved at 3.112 UI with optimized pH and temperature, and the maximum conversion of sugars into alcohol was about 70% in the newspaper, cartons, colored paper, and disposable paper cups. An essential observation was the decolorization of the origami craft paper within 24 hours. The study was involved in enhancing the maximum Enzyme activity of cellulases from different cellulosic raw materials. Hence, it was achieved by JCB strain, optimization of pH, temperature, and acids for the biodegradation. The presence of peaks at 3200 and 2900 was a confirmation of ethanol bonds in the biodegradation reaction mixtures.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"57 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.047
Anita, Mahiya Kulsoom, A. Yadav, Monu Kumar, K. Raw, Satgur Prasad, Narendra Kumar
Digested sludge wasted by tanneries is rich in nutrients and trace elements however, the presence of toxic metals restricts their use in agriculture. The present study explores the possible application of tannery sludge amendment for the cultivation of an energy crop, Hibiscus cannabinus. The toxicity of various sludge amendments (25, 50, 75, and 100%, w/w) was examined during early seedling growth, followed by metal accumulation potential by performing pot experiments. Chemical characterization revealed the presence of Cr (709.6), Cu (366.43), Ni (74.6), Cd (132.71), Pb (454.8) μg.g-1 in tannery sludge beside N (2.1%), P 3.8 & K 316.96 (kg.hec-1.) respectively. Germination of H. cannabinus exposed to sludge extracts ranged between 80 to 95%; Relative seed germination, 81.33 to 84.43%. Relative root growth, 0.9 to 1.16 cm; and germination index, 95 to 110%. It was found that sludge extracts have not caused adverse effects on seed germination and early seedling growth. Heavy metal accumulation was observed as follows: Ni (3.37, 2.38, 1.46 & 0.90 mg.kg-1) > Pb (10.59, 10.15, 5.26, & 2.84 mg.kg-1) > Cu (2.34, 2.24, 0.97 & 0.24 mg.kg-1) > Cd (2.31, 1.19, 1.33 & 1.12 mg.kg-1) > Cr (1458, 1136.12, 601.73 & 211.6 mg.kg-1) in 100, 75, 50, & 25% sludge amended soil, respectively. The bio-concentration pattern of metals was found to be in the order of root > leaf > stem. The findings of the present study give direction for the eco-friendly and cost-effective management of tannery sludge. Further, H. cannabinus can be used for the restoration of metal-contaminated agricultural land, however, results need to be corroborated with field trials.
{"title":"Accumulation and Translocation of Heavy Metals in Hibiscus cannabinus Grown in Tannery Sludge Amended Soil","authors":"Anita, Mahiya Kulsoom, A. Yadav, Monu Kumar, K. Raw, Satgur Prasad, Narendra Kumar","doi":"10.46488/nept.2024.v23i02.047","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.047","url":null,"abstract":"Digested sludge wasted by tanneries is rich in nutrients and trace elements however, the presence of toxic metals restricts their use in agriculture. The present study explores the possible application of tannery sludge amendment for the cultivation of an energy crop, Hibiscus cannabinus. The toxicity of various sludge amendments (25, 50, 75, and 100%, w/w) was examined during early seedling growth, followed by metal accumulation potential by performing pot experiments. Chemical characterization revealed the presence of Cr (709.6), Cu (366.43), Ni (74.6), Cd (132.71), Pb (454.8) μg.g-1 in tannery sludge beside N (2.1%), P 3.8 & K 316.96 (kg.hec-1.) respectively. Germination of H. cannabinus exposed to sludge extracts ranged between 80 to 95%; Relative seed germination, 81.33 to 84.43%. Relative root growth, 0.9 to 1.16 cm; and germination index, 95 to 110%. It was found that sludge extracts have not caused adverse effects on seed germination and early seedling growth. Heavy metal accumulation was observed as follows: Ni (3.37, 2.38, 1.46 & 0.90 mg.kg-1) > Pb (10.59, 10.15, 5.26, & 2.84 mg.kg-1) > Cu (2.34, 2.24, 0.97 & 0.24 mg.kg-1) > Cd (2.31, 1.19, 1.33 & 1.12 mg.kg-1) > Cr (1458, 1136.12, 601.73 & 211.6 mg.kg-1) in 100, 75, 50, & 25% sludge amended soil, respectively. The bio-concentration pattern of metals was found to be in the order of root > leaf > stem. The findings of the present study give direction for the eco-friendly and cost-effective management of tannery sludge. Further, H. cannabinus can be used for the restoration of metal-contaminated agricultural land, however, results need to be corroborated with field trials.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"50 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.023
A. K. Shukla, I. Ahmad, S. K. Jain, M. K. Verma
Global warming is one of the primary causes contributing to melting glaciers and shrinking of glaciers moth. Because of the glacier retreat, more lakes increase the risk of flooding in people’s homes and lives. Several studies on the surging glaciers have been conducted by researchers using various techniques, as well as with the aid of multiple models like the Normalized Differential Water Index (NDWI). The Number of glacial lakes is increasing in the Himalayan region due to climate change (rise of the temperature). Some glacial lakes are potentially dangerous so monitoring is very necessary. It is necessary to evaluate such vulnerable lakes. Therefore, current work is carried out to identify such glacial lakes present in the Teesta River Basin (Eastern Himalaya). Spatiotemporal Landsat data for the last four decades at intervals of ten years from 1990 to 2020 has been considered which was cloud-free and spatial resolution of 30 meters. The dataset mentioned above was used for lake identification and delineation. The findings indicate the presence of lakes with respective areas of 275 (18.90 km2), 337 (24.92 km2), 295 (22.96 km2), and 419 (31.44 km2). It has also been observed that the growth rate is increasing with approximate water spread from 1990 to 2000 (+129%), 2000 to 2010 (+106%), and 2010 to 2020 (+136%). The present study aimed to identify such glacial lakes based on their water spreading area, which is an essential step followed in the study of GLOF (Glacial Lake Outburst Flood) as it will be helpful in the identification of hazardous lakes. In that study, we found that eleven glacial lakes are in the potentially dangerous category situated in the upper Teesta Basin due to the presence of glaciers, which gives a clear reason for the time-to-time assessment of such lakes. By the conducted study it has been observed that the number of glacial lakes has increased, due to which water spread has also increased in the area. It can also be demonstrated that GIS (Geographical Information System), along with remote sensing, is one of the best tools for assessing and monitoring such change detection and differentiation of hazardous glacial lakes in the cryosphere, along with the supporting data.
{"title":"Assessment of Continuous Growth of Glacial Lakes in the Teesta River Basin Using Semi-Automated Geospatial Approach","authors":"A. K. Shukla, I. Ahmad, S. K. Jain, M. K. Verma","doi":"10.46488/nept.2024.v23i02.023","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.023","url":null,"abstract":"Global warming is one of the primary causes contributing to melting glaciers and shrinking of glaciers moth. Because of the glacier retreat, more lakes increase the risk of flooding in people’s homes and lives. Several studies on the surging glaciers have been conducted by researchers using various techniques, as well as with the aid of multiple models like the Normalized Differential Water Index (NDWI). The Number of glacial lakes is increasing in the Himalayan region due to climate change (rise of the temperature). Some glacial lakes are potentially dangerous so monitoring is very necessary. It is necessary to evaluate such vulnerable lakes. Therefore, current work is carried out to identify such glacial lakes present in the Teesta River Basin (Eastern Himalaya). Spatiotemporal Landsat data for the last four decades at intervals of ten years from 1990 to 2020 has been considered which was cloud-free and spatial resolution of 30 meters. The dataset mentioned above was used for lake identification and delineation. The findings indicate the presence of lakes with respective areas of 275 (18.90 km2), 337 (24.92 km2), 295 (22.96 km2), and 419 (31.44 km2). It has also been observed that the growth rate is increasing with approximate water spread from 1990 to 2000 (+129%), 2000 to 2010 (+106%), and 2010 to 2020 (+136%). The present study aimed to identify such glacial lakes based on their water spreading area, which is an essential step followed in the study of GLOF (Glacial Lake Outburst Flood) as it will be helpful in the identification of hazardous lakes. In that study, we found that eleven glacial lakes are in the potentially dangerous category situated in the upper Teesta Basin due to the presence of glaciers, which gives a clear reason for the time-to-time assessment of such lakes. By the conducted study it has been observed that the number of glacial lakes has increased, due to which water spread has also increased in the area. It can also be demonstrated that GIS (Geographical Information System), along with remote sensing, is one of the best tools for assessing and monitoring such change detection and differentiation of hazardous glacial lakes in the cryosphere, along with the supporting data.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"134 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.46488/nept.2024.v23i02.001
V. Salahalden, M. A. Shareef, Q. A. M. A. Nuaimy
This study investigates the physical characteristics of red clay using the IDW approach and linear regression modeling in an area of 268.12 km2, focusing on Kirkuk, Bor, and Jambor structures. Through the analysis of 52 soil samples and the integration of laboratory data with IDW and regression results, several significant findings have emerged. The IDW method combined with linear regression proves to be a cost-effective and efficient approach for obtaining soil property data and generating accurate digital maps of red clay’s physical features. The Silt concentration exhibits a wide range, while the gravel content remains relatively low, indicating the predominance of silt in the soil composition. Analysis of Atterberg limits reveals the soil’s behavior and consistency in response to moisture, with the plasticity index generally falling within the low to medium range due to the considerable silt content in most soil samples. The linear regression model highlights positive correlations between the liquid limit, plastic limit, and plasticity index. Moderately positive relationships exist between the liquid limit and clay content, as well as a weak positive association between the liquid limit and specific gravity. Dry density, on the other hand, shows no significant correlation with other physical variables, suggesting its independence from the measured parameters. The plastic limit demonstrates a stronger relationship with the clay content compared to the liquid limit. Additionally, weak positive correlations are found between the liquid limit, plastic limit, and specific gravity and water content, indicating the influence of moisture on these parameters. Furthermore, gravel exhibits a moderate positive correlation with sand and silt concentrations, while a strong positive correlation is observed between sand and silt contents, underscoring their close association with the soil composition.
{"title":"Assessment of Deposited Red Clay Soil in Kirkuk City Using Remote Sensing Data and GIS Techniques","authors":"V. Salahalden, M. A. Shareef, Q. A. M. A. Nuaimy","doi":"10.46488/nept.2024.v23i02.001","DOIUrl":"https://doi.org/10.46488/nept.2024.v23i02.001","url":null,"abstract":"This study investigates the physical characteristics of red clay using the IDW approach and linear regression modeling in an area of 268.12 km2, focusing on Kirkuk, Bor, and Jambor structures. Through the analysis of 52 soil samples and the integration of laboratory data with IDW and regression results, several significant findings have emerged. The IDW method combined with linear regression proves to be a cost-effective and efficient approach for obtaining soil property data and generating accurate digital maps of red clay’s physical features. The Silt concentration exhibits a wide range, while the gravel content remains relatively low, indicating the predominance of silt in the soil composition. Analysis of Atterberg limits reveals the soil’s behavior and consistency in response to moisture, with the plasticity index generally falling within the low to medium range due to the considerable silt content in most soil samples. The linear regression model highlights positive correlations between the liquid limit, plastic limit, and plasticity index. Moderately positive relationships exist between the liquid limit and clay content, as well as a weak positive association between the liquid limit and specific gravity. Dry density, on the other hand, shows no significant correlation with other physical variables, suggesting its independence from the measured parameters. The plastic limit demonstrates a stronger relationship with the clay content compared to the liquid limit. Additionally, weak positive correlations are found between the liquid limit, plastic limit, and specific gravity and water content, indicating the influence of moisture on these parameters. Furthermore, gravel exhibits a moderate positive correlation with sand and silt concentrations, while a strong positive correlation is observed between sand and silt contents, underscoring their close association with the soil composition.","PeriodicalId":18783,"journal":{"name":"Nature Environment and Pollution Technology","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}