Irene Dige, Pune N Paqué, Yumi Chokyu Del Rey, Marie Braad Lund, Andreas Schramm, Sebastian Schlafer
Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.
{"title":"Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose.","authors":"Irene Dige, Pune N Paqué, Yumi Chokyu Del Rey, Marie Braad Lund, Andreas Schramm, Sebastian Schlafer","doi":"10.1111/omi.12384","DOIUrl":"https://doi.org/10.1111/omi.12384","url":null,"abstract":"<p><p>Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 5","pages":"196-205"},"PeriodicalIF":3.7,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/79/OMI-37-196.PMC9804345.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10464295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marion Arce, Natalia Endo, Nicolas Dutzan, Loreto Abusleme
The cover image is based on the Original Article A reappraisal of microbiome dysbiosis during experimental periodontitis by Marion Arce et al., https://doi.org/10.1111/omi.12382.
{"title":"Cover Image, Volume 37, Issue 5","authors":"Marion Arce, Natalia Endo, Nicolas Dutzan, Loreto Abusleme","doi":"10.1111/omi.12393","DOIUrl":"https://doi.org/10.1111/omi.12393","url":null,"abstract":"The cover image is based on the Original Article <i>A reappraisal of microbiome dysbiosis during experimental periodontitis</i> by Marion Arce et al., https://doi.org/10.1111/omi.12382.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"296 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candida albicans colonizes the oral cavity and causes oral candidiasis and early childhood caries synergistically with cariogenic Streptococcus mutans. Colonization of oral tissues with C. albicans is an essential step in the initiation of these infectious diseases. DMBT1 (deleted in malignant brain tumors 1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich (SRCR) superfamily and has important functions in innate immunity. In the oral cavity, DMBT1 causes microbial adherence to tooth enamel and oral mucosa surfaces, but the adherence of C. albicans to DMBT1 has not been examined. In this study, we investigated the binding of C. albicans to DMBT1 and isolated the fungal components responsible for the binding. C. albicans specifically bound to DMBT1 and strongly bound to the peptide domain SRCRP2. Binding to SRCRP2 was inhibited by N-acetylneuraminic acid and mannose and by lectins recognizing these sugars. The isolated component had a molecular mass of 25 kDa, contained sialic acid and mannose residues, and inhibited C. albicans binding to SRCRP2. The localization of the 25-kDa protein on the surface of C. albicans cell walls was confirmed by immunostaining and a cell ELISA using an antiserum to the protein, and Western blotting revealed the presence of the 25-kDa protein in the cell wall fraction of C. albicans. These results suggest that the isolated adhesin is localized on the surface of C. albicans cell walls and that sialic acid and mannose residues in the adhesin play a significant role in the binding reaction. This article is protected by copyright. All rights reserved.
{"title":"A novel mannose-containing sialoprotein adhesin involved in the binding of Candida albicans cells to DMBT1.","authors":"D. Setoguchi, E. Nagata, T. Oho","doi":"10.1111/omi.12374","DOIUrl":"https://doi.org/10.1111/omi.12374","url":null,"abstract":"Candida albicans colonizes the oral cavity and causes oral candidiasis and early childhood caries synergistically with cariogenic Streptococcus mutans. Colonization of oral tissues with C. albicans is an essential step in the initiation of these infectious diseases. DMBT1 (deleted in malignant brain tumors 1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich (SRCR) superfamily and has important functions in innate immunity. In the oral cavity, DMBT1 causes microbial adherence to tooth enamel and oral mucosa surfaces, but the adherence of C. albicans to DMBT1 has not been examined. In this study, we investigated the binding of C. albicans to DMBT1 and isolated the fungal components responsible for the binding. C. albicans specifically bound to DMBT1 and strongly bound to the peptide domain SRCRP2. Binding to SRCRP2 was inhibited by N-acetylneuraminic acid and mannose and by lectins recognizing these sugars. The isolated component had a molecular mass of 25 kDa, contained sialic acid and mannose residues, and inhibited C. albicans binding to SRCRP2. The localization of the 25-kDa protein on the surface of C. albicans cell walls was confirmed by immunostaining and a cell ELISA using an antiserum to the protein, and Western blotting revealed the presence of the 25-kDa protein in the cell wall fraction of C. albicans. These results suggest that the isolated adhesin is localized on the surface of C. albicans cell walls and that sialic acid and mannose residues in the adhesin play a significant role in the binding reaction. This article is protected by copyright. All rights reserved.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43086684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Brooks, Unnati Narvekar, A. McDonald, P. Mullany
OBJECTIVE To assess the prevalence of antibiotic resistance genes in the oral cavity and identify mobile genetic elements (MGEs) important in disseminating them. Additionally, to assess if age, geographic location, oral site, bacterial strains and oral disease influence the prevalence of these genes. METHODS Three electronic databases (Medline, Embase and the Cochrane Library) were used to search the literature. Journals and the grey literature were also hand-searched. English language studies from January 2000 to November 2020 were selected. Primary screening was performed on the titles and abstracts of 1509 articles generated. One hundred and forty-seven full texts were obtained to conduct the second screening with strict inclusion and exclusion criteria. RESULTS Forty-four final articles agreed with the inclusion criteria. Half of the studies were classed as low quality. tet(M) was the most prevalent gene overall and the conjugative transposon Tn916 the most common mobile genetic element associated with antibiotic resistance genes in the oral cavity. In babies delivered vaginally tet(M) was more prevalent, whilst tet(Q) was more prevalent in those delivered by C- section. Generally, countries with higher consumption of antibiotics had higher numbers of antibiotic resistance genes. Agricultural as well as medical use of antibiotics in a country should always be considered. Between healthy, periodontitis and peri-implantitis subjects, there was no difference in the prevalence of tet(M) however erm(B), tet(M) and tet(O) was higher in carious active children than the non-carious group. Subjects with poor oral hygiene have more pathogenic bacteria that carry resistance genes compared to those with good oral hygiene. E. faecalis isolates demonstrated significant tetracycline resistance (tet(M) up to 60% prevalence in samples) and erythromycin resistance (erm(B) up to 61.9% prevalence in samples), periodontal pathogens showed significant beta-lactam resistance with blaZ and cfxA present in up to 90-97% of samples and the normal oral flora had a high level of erythromycin resistance with mef(A/E) present in 65% of S. salivarius isolates. The most common resistance gene was tet(M) in root canals, cfxA in subgingival plaque erm(B) in supragingival plaque and tet(W) in 100% of whole saliva samples. CONCLUSIONS The review highlights that although many studies in this area have been performed, 50% were classed as low quality. We advise the following recommendations to allow firm conclusions to be drawn from future work: the use of large sample sizes, investigate a broad range of antibiotic resistance genes, improved methodologies and reporting to improve the quality of genetic testing in microbiology and randomisation of subject selection. This article is protected by copyright. All rights reserved.
{"title":"Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review.","authors":"Laura Brooks, Unnati Narvekar, A. McDonald, P. Mullany","doi":"10.1111/omi.12375","DOIUrl":"https://doi.org/10.1111/omi.12375","url":null,"abstract":"OBJECTIVE\u0000To assess the prevalence of antibiotic resistance genes in the oral cavity and identify mobile genetic elements (MGEs) important in disseminating them. Additionally, to assess if age, geographic location, oral site, bacterial strains and oral disease influence the prevalence of these genes.\u0000\u0000\u0000METHODS\u0000Three electronic databases (Medline, Embase and the Cochrane Library) were used to search the literature. Journals and the grey literature were also hand-searched. English language studies from January 2000 to November 2020 were selected. Primary screening was performed on the titles and abstracts of 1509 articles generated. One hundred and forty-seven full texts were obtained to conduct the second screening with strict inclusion and exclusion criteria.\u0000\u0000\u0000RESULTS\u0000Forty-four final articles agreed with the inclusion criteria. Half of the studies were classed as low quality. tet(M) was the most prevalent gene overall and the conjugative transposon Tn916 the most common mobile genetic element associated with antibiotic resistance genes in the oral cavity. In babies delivered vaginally tet(M) was more prevalent, whilst tet(Q) was more prevalent in those delivered by C- section. Generally, countries with higher consumption of antibiotics had higher numbers of antibiotic resistance genes. Agricultural as well as medical use of antibiotics in a country should always be considered. Between healthy, periodontitis and peri-implantitis subjects, there was no difference in the prevalence of tet(M) however erm(B), tet(M) and tet(O) was higher in carious active children than the non-carious group. Subjects with poor oral hygiene have more pathogenic bacteria that carry resistance genes compared to those with good oral hygiene. E. faecalis isolates demonstrated significant tetracycline resistance (tet(M) up to 60% prevalence in samples) and erythromycin resistance (erm(B) up to 61.9% prevalence in samples), periodontal pathogens showed significant beta-lactam resistance with blaZ and cfxA present in up to 90-97% of samples and the normal oral flora had a high level of erythromycin resistance with mef(A/E) present in 65% of S. salivarius isolates. The most common resistance gene was tet(M) in root canals, cfxA in subgingival plaque erm(B) in supragingival plaque and tet(W) in 100% of whole saliva samples.\u0000\u0000\u0000CONCLUSIONS\u0000The review highlights that although many studies in this area have been performed, 50% were classed as low quality. We advise the following recommendations to allow firm conclusions to be drawn from future work: the use of large sample sizes, investigate a broad range of antibiotic resistance genes, improved methodologies and reporting to improve the quality of genetic testing in microbiology and randomisation of subject selection. This article is protected by copyright. All rights reserved.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49098254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ammar Almarghlani, Rajendra P Settem, Andrew J Croft, Sarah Metcalfe, Matthew Giangreco, Jason G Kay
Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.
{"title":"Interleukin-34 permits Porphyromonas gingivalis survival and NF-κB p65 inhibition in macrophages.","authors":"Ammar Almarghlani, Rajendra P Settem, Andrew J Croft, Sarah Metcalfe, Matthew Giangreco, Jason G Kay","doi":"10.1111/omi.12366","DOIUrl":"https://doi.org/10.1111/omi.12366","url":null,"abstract":"<p><p>Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 3","pages":"109-121"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617590/pdf/nihms-1842805.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9556872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Aduse-Opoku, S. Joseph, D. Devine, P. Marsh, M. Curtis
Abstract The periodontal pathogen Porphyromonas gingivalis is genetically heterogeneous. However, the spontaneous generation of phenotypically different sub‐strains has also been reported. McKee et al. (1988) cultured P. gingivalis W50 in a chemostat during investigations into the growth and properties of this bacterium. Cell viability on blood agar plates revealed two types of non‐pigmenting variants, W50 beige (BE1), and W50 brown (BR1), in samples grown in a high‐hemin medium after day 7, and the population of these variants increased to approximately 25% of the total counts by day 21. W50, BE1 and BR1 had phenotypic alterations in pigmentation, reduced protease activity and haemagglutination and susceptibility to complement killing. Furthermore, the variants exhibited significant attenuation in a mouse model of virulence. Other investigators showed that in BE1, the predominant extracellular Arg‐gingipain was RgpB, and no reaction with an A‐lipopolysaccharide‐specific MAb 1B5 (Collinson et al., 1998; Slaney et al., 2006). In order to determine the genetic basis for these phenotypic properties, we performed hybrid DNA sequence long reads using Oxford Nanopore and the short paired‐end DNA sequence reads of Illumina HiSeq platforms to generate closed circular genomes of the parent and variants. Comparative analysis indicated loss of intact kgp in the 20 kb region of the hagA‐kgp locus in the two variants BE1 and BR1. Deletions in hagA led to smaller open reading frames in the variants, and BR1 had incurred a major chromosomal DNA inversion. Additional minor changes to the genomes of both variants were also observed. Given the importance of Kgp and HagA to protease activity and haemagglutination, respectively, in this bacterium, genomic changes at this locus may account for most of the phenotypic alterations of the variants. The homologous and repetitive nature of hagA and kgp and the features at the inverted junctions are indicative of specific and stable homologous recombination events, which may underlie the genetic heterogeneity of this species.
{"title":"Molecular basis for avirulence of spontaneous variants of Porphyromonas gingivalis: Genomic analysis of strains W50, BE1 and BR1","authors":"J. Aduse-Opoku, S. Joseph, D. Devine, P. Marsh, M. Curtis","doi":"10.1111/omi.12373","DOIUrl":"https://doi.org/10.1111/omi.12373","url":null,"abstract":"Abstract The periodontal pathogen Porphyromonas gingivalis is genetically heterogeneous. However, the spontaneous generation of phenotypically different sub‐strains has also been reported. McKee et al. (1988) cultured P. gingivalis W50 in a chemostat during investigations into the growth and properties of this bacterium. Cell viability on blood agar plates revealed two types of non‐pigmenting variants, W50 beige (BE1), and W50 brown (BR1), in samples grown in a high‐hemin medium after day 7, and the population of these variants increased to approximately 25% of the total counts by day 21. W50, BE1 and BR1 had phenotypic alterations in pigmentation, reduced protease activity and haemagglutination and susceptibility to complement killing. Furthermore, the variants exhibited significant attenuation in a mouse model of virulence. Other investigators showed that in BE1, the predominant extracellular Arg‐gingipain was RgpB, and no reaction with an A‐lipopolysaccharide‐specific MAb 1B5 (Collinson et al., 1998; Slaney et al., 2006). In order to determine the genetic basis for these phenotypic properties, we performed hybrid DNA sequence long reads using Oxford Nanopore and the short paired‐end DNA sequence reads of Illumina HiSeq platforms to generate closed circular genomes of the parent and variants. Comparative analysis indicated loss of intact kgp in the 20 kb region of the hagA‐kgp locus in the two variants BE1 and BR1. Deletions in hagA led to smaller open reading frames in the variants, and BR1 had incurred a major chromosomal DNA inversion. Additional minor changes to the genomes of both variants were also observed. Given the importance of Kgp and HagA to protease activity and haemagglutination, respectively, in this bacterium, genomic changes at this locus may account for most of the phenotypic alterations of the variants. The homologous and repetitive nature of hagA and kgp and the features at the inverted junctions are indicative of specific and stable homologous recombination events, which may underlie the genetic heterogeneity of this species.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 1","pages":"122 - 132"},"PeriodicalIF":3.7,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48042545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiho Sohn, Lu Li, Lixia Zhang, Rajendra P Settem, Kiyonobu Honma, Ashu Sharma, Karen L Falkner, Jan M Novak, Yijun Sun, Keith L Kirkwood
Recent epidemiological studies have shown that inflammatory bowel disease is associated with periodontal disease. The oral-gut microbiota axis is a potential mechanism intersecting the two diseases. Porphyromonas gingivalis is currently considered a keystone oral pathogen involved in periodontal disease pathogenesis and disease progression. Recent studies have shown that oral ingestion of P. gingivalis leads to intestinal inflammation. However, the molecular underpinnings of P. gingivalis-mediated gut inflammation have remained elusive. In this study, we show that the oral administration of P. gingivalis indeed leads to ileal inflammation and alteration in gut microbiota with significant reduction in bacterial alpha diversity despite the absence of P. gingivalis in the lower gastrointestinal tract. Utilizing an antibiotic-conditioned mouse model, cecal microbiota transfer experiments were performed to demonstrate that P. gingivalis-induced dysbiotic gut microbiota is sufficient to reproduce gut pathology. Furthermore, we observed a significant expansion in small intestinal lamina propria IL9+ CD4+ T cells, which was negatively correlated with both bacterial and fungal alpha diversity, signifying that P. gingivalis-mediated intestinal inflammation may be due to the subsequent loss of gut microbial diversity. Finally, we detected changes in gene expression related to gut epithelial barrier function, showing the potential downstream effect of intestinal IL9+ CD4+ T-cell induction. This study for the first time showed the mechanism behind P. gingivalis-mediated intestinal inflammation where P. gingivalis indirectly induces intestinal IL9+ CD4+ T cells and inflammation by altering the gut microbiota. Understanding the mechanism of P. gingivalis-mediated intestinal inflammation may lead to the development of novel therapeutic approaches to alleviate the morbidity from inflammatory bowel disease patients with periodontal disease.
{"title":"Porphyromonas gingivalis indirectly elicits intestinal inflammation by altering the gut microbiota and disrupting epithelial barrier function through IL9-producing CD4<sup>+</sup> T cells.","authors":"Jiho Sohn, Lu Li, Lixia Zhang, Rajendra P Settem, Kiyonobu Honma, Ashu Sharma, Karen L Falkner, Jan M Novak, Yijun Sun, Keith L Kirkwood","doi":"10.1111/omi.12359","DOIUrl":"https://doi.org/10.1111/omi.12359","url":null,"abstract":"<p><p>Recent epidemiological studies have shown that inflammatory bowel disease is associated with periodontal disease. The oral-gut microbiota axis is a potential mechanism intersecting the two diseases. Porphyromonas gingivalis is currently considered a keystone oral pathogen involved in periodontal disease pathogenesis and disease progression. Recent studies have shown that oral ingestion of P. gingivalis leads to intestinal inflammation. However, the molecular underpinnings of P. gingivalis-mediated gut inflammation have remained elusive. In this study, we show that the oral administration of P. gingivalis indeed leads to ileal inflammation and alteration in gut microbiota with significant reduction in bacterial alpha diversity despite the absence of P. gingivalis in the lower gastrointestinal tract. Utilizing an antibiotic-conditioned mouse model, cecal microbiota transfer experiments were performed to demonstrate that P. gingivalis-induced dysbiotic gut microbiota is sufficient to reproduce gut pathology. Furthermore, we observed a significant expansion in small intestinal lamina propria IL9<sup>+</sup> CD4<sup>+</sup> T cells, which was negatively correlated with both bacterial and fungal alpha diversity, signifying that P. gingivalis-mediated intestinal inflammation may be due to the subsequent loss of gut microbial diversity. Finally, we detected changes in gene expression related to gut epithelial barrier function, showing the potential downstream effect of intestinal IL9<sup>+</sup> CD4<sup>+</sup> T-cell induction. This study for the first time showed the mechanism behind P. gingivalis-mediated intestinal inflammation where P. gingivalis indirectly induces intestinal IL9<sup>+</sup> CD4<sup>+</sup> T cells and inflammation by altering the gut microbiota. Understanding the mechanism of P. gingivalis-mediated intestinal inflammation may lead to the development of novel therapeutic approaches to alleviate the morbidity from inflammatory bowel disease patients with periodontal disease.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 2","pages":"42-52"},"PeriodicalIF":3.7,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353576/pdf/nihms-1825906.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9218952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxi Chen, Yongliang Li, Chongyang Yuan, Shujun Liu, F. Xin, Xuliang Deng, Xiaoyan Wang
The acid tolerance of Streptococcus mutans plays an important role in its cariogenic process. S. mutans initiates a powerful transcriptional and physiological adaptation mechanism, eventually shielding the cellular machinery from acid damage and contributing to bacterial survival under acidic stress conditions. Although S. mutans contains complex regulatory systems, existing studies have shown that S. mutans, unlike Escherichia coli, cannot maintain a neutral intracellular environment. As the pH of the extracellular environment decreases, the intracellular pH decreases in parallel. There is insufficient knowledge regarding the acid resistance of the intracellular proteins of S. mutans, particularly when it comes to the key cytoskeletal division protein FtsZ. In this study, the data showed that S. mutans had similar cell division progress in acidic and neutral environments. The splitting position was in the middle of cells, and the cytoplasm were divided evenly in the acidic environment. Additionally, the treadmilling velocity of S. mutans FtsZ in the middle of cells was not affected by the acidic environment. S. mutans FtsZ had higher GTPase activity in pH 6.0 buffer than in the neutral environment. Furthermore, the polymerization of S. mutans FtsZ in the acidic environment was more robust than that in the neutral environment. After two particular amino acids of S. mutans FtsZ amino acids were mutated (E88K, L269K), the polymerization of S. mutans FtsZ in the acidic environment was significantly reduced. Overall, S. mutans FtsZ exhibited higher functional activity in pH 6.0 buffer in vitro. The acid resistance of S. mutans FtsZ is affected by its particular amino acids. This article is protected by copyright. All rights reserved.
{"title":"Streptococcus mutans cell division protein FtsZ has higher GTPase and polymerization activities in acidic environment.","authors":"Yuxi Chen, Yongliang Li, Chongyang Yuan, Shujun Liu, F. Xin, Xuliang Deng, Xiaoyan Wang","doi":"10.1111/omi.12364","DOIUrl":"https://doi.org/10.1111/omi.12364","url":null,"abstract":"The acid tolerance of Streptococcus mutans plays an important role in its cariogenic process. S. mutans initiates a powerful transcriptional and physiological adaptation mechanism, eventually shielding the cellular machinery from acid damage and contributing to bacterial survival under acidic stress conditions. Although S. mutans contains complex regulatory systems, existing studies have shown that S. mutans, unlike Escherichia coli, cannot maintain a neutral intracellular environment. As the pH of the extracellular environment decreases, the intracellular pH decreases in parallel. There is insufficient knowledge regarding the acid resistance of the intracellular proteins of S. mutans, particularly when it comes to the key cytoskeletal division protein FtsZ. In this study, the data showed that S. mutans had similar cell division progress in acidic and neutral environments. The splitting position was in the middle of cells, and the cytoplasm were divided evenly in the acidic environment. Additionally, the treadmilling velocity of S. mutans FtsZ in the middle of cells was not affected by the acidic environment. S. mutans FtsZ had higher GTPase activity in pH 6.0 buffer than in the neutral environment. Furthermore, the polymerization of S. mutans FtsZ in the acidic environment was more robust than that in the neutral environment. After two particular amino acids of S. mutans FtsZ amino acids were mutated (E88K, L269K), the polymerization of S. mutans FtsZ in the acidic environment was significantly reduced. Overall, S. mutans FtsZ exhibited higher functional activity in pH 6.0 buffer in vitro. The acid resistance of S. mutans FtsZ is affected by its particular amino acids. This article is protected by copyright. All rights reserved.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43830508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}