首页 > 最新文献

Molecular Oral Microbiology最新文献

英文 中文
Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose. 在存在或不存在蔗糖的情况下原位生长的牙生物膜中碳水化合物成分的荧光凝集素结合分析。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-10-01 DOI: 10.1111/omi.12384
Irene Dige, Pune N Paqué, Yumi Chokyu Del Rey, Marie Braad Lund, Andreas Schramm, Sebastian Schlafer

Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.

碳水化合物成分,如糖缀合物和多糖,是牙齿生物膜基质的组成部分,在生物膜的稳定性和毒力中起着重要作用。变形链球菌生物膜中的外多糖已经被广泛表征,但对于复杂的原位生长的牙齿生物膜中的基质碳水化合物知之甚少。本研究采用荧光凝集素结合分析(FLBA)研究了10个参与者的生物膜(n = 306)中糖缀合物/多糖的丰度和空间分布,这些生物膜分别在(SUC)和(H2O)蔗糖环境下原位生长。用不同碳水化合物特异性的10种荧光标记凝集素(AAL、ABA、ASA、HPA、LEA、MNA-G、MPA、PSA、VGA和WGA)对生物膜进行染色,并通过共聚焦显微镜和数字图像分析进行分析。采用16S rRNA基因测序法测定微生物组成。除ABA外,所有凝集素靶向的基质生物体积都相当大,占生物膜微生物生物体积的19.3%至194.0%,这表明原位生长的牙生物膜中碳水化合物种类繁多。MNA-G、AAL和ASA分别是半乳糖、焦糖和甘露糖特异性的,染色的生物量最大。在SUC生物膜中,AAL和ASA生物量均有所增加,但由于存在较大的生物学变异,差异不显著。SUC生物膜中链球菌丰富,奈瑟菌和嗜血杆菌丰度降低,但凝集素染色的生物量与细菌丰度之间没有显著相关性。总之,FLBA证明了在复杂的原位生长的牙齿生物膜中存在由各种不同碳水化合物成分组成的大量生物膜基质。
{"title":"Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose.","authors":"Irene Dige,&nbsp;Pune N Paqué,&nbsp;Yumi Chokyu Del Rey,&nbsp;Marie Braad Lund,&nbsp;Andreas Schramm,&nbsp;Sebastian Schlafer","doi":"10.1111/omi.12384","DOIUrl":"https://doi.org/10.1111/omi.12384","url":null,"abstract":"<p><p>Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 5","pages":"196-205"},"PeriodicalIF":3.7,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/79/OMI-37-196.PMC9804345.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10464295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cover Image, Volume 37, Issue 5 封面图片,第37卷,第5期
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-09-28 DOI: 10.1111/omi.12392
Cover Image © Irene Dige. Reproduced with permission.
封面图片©Irene Dige。经许可转载。
{"title":"Cover Image, Volume 37, Issue 5","authors":"","doi":"10.1111/omi.12392","DOIUrl":"https://doi.org/10.1111/omi.12392","url":null,"abstract":"Cover Image © Irene Dige. Reproduced with permission.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"60 7-8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 37, Issue 5 封面图片,第37卷,第5期
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-09-28 DOI: 10.1111/omi.12393
Marion Arce, Natalia Endo, Nicolas Dutzan, Loreto Abusleme
The cover image is based on the Original Article A reappraisal of microbiome dysbiosis during experimental periodontitis by Marion Arce et al., https://doi.org/10.1111/omi.12382.
封面图片基于原文章《实验性牙周炎期间微生物群落失调的重新评估》,作者是Marion Arce等人,https://doi.org/10.1111/omi.12382。
{"title":"Cover Image, Volume 37, Issue 5","authors":"Marion Arce, Natalia Endo, Nicolas Dutzan, Loreto Abusleme","doi":"10.1111/omi.12393","DOIUrl":"https://doi.org/10.1111/omi.12393","url":null,"abstract":"The cover image is based on the Original Article <i>A reappraisal of microbiome dysbiosis during experimental periodontitis</i> by Marion Arce et al., https://doi.org/10.1111/omi.12382.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"296 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel mannose-containing sialoprotein adhesin involved in the binding of Candida albicans cells to DMBT1. 一种新型甘露糖唾液蛋白粘附素参与白色念珠菌细胞与DMBT1的结合。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-06-08 DOI: 10.1111/omi.12374
D. Setoguchi, E. Nagata, T. Oho
Candida albicans colonizes the oral cavity and causes oral candidiasis and early childhood caries synergistically with cariogenic Streptococcus mutans. Colonization of oral tissues with C. albicans is an essential step in the initiation of these infectious diseases. DMBT1 (deleted in malignant brain tumors 1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich (SRCR) superfamily and has important functions in innate immunity. In the oral cavity, DMBT1 causes microbial adherence to tooth enamel and oral mucosa surfaces, but the adherence of C. albicans to DMBT1 has not been examined. In this study, we investigated the binding of C. albicans to DMBT1 and isolated the fungal components responsible for the binding. C. albicans specifically bound to DMBT1 and strongly bound to the peptide domain SRCRP2. Binding to SRCRP2 was inhibited by N-acetylneuraminic acid and mannose and by lectins recognizing these sugars. The isolated component had a molecular mass of 25 kDa, contained sialic acid and mannose residues, and inhibited C. albicans binding to SRCRP2. The localization of the 25-kDa protein on the surface of C. albicans cell walls was confirmed by immunostaining and a cell ELISA using an antiserum to the protein, and Western blotting revealed the presence of the 25-kDa protein in the cell wall fraction of C. albicans. These results suggest that the isolated adhesin is localized on the surface of C. albicans cell walls and that sialic acid and mannose residues in the adhesin play a significant role in the binding reaction. This article is protected by copyright. All rights reserved.
白色念珠菌定植于口腔,与致龋变形链球菌协同作用,引起口腔念珠菌病和儿童早期龋齿。口腔组织中白色念珠菌的定植是这些传染病发生的重要步骤。DMBT1(在恶性脑肿瘤中缺失1),也被称为唾液凝集素或gp-340,属于富含半胱氨酸(SRCR)的清道夫受体超家族,在先天免疫中具有重要功能。在口腔中,DMBT1导致微生物粘附在牙釉质和口腔黏膜表面,但白色念珠菌对DMBT1的粘附尚未被研究。在这项研究中,我们研究了白色念珠菌与DMBT1的结合,并分离了负责结合的真菌成分。白色念珠菌特异性地与DMBT1结合,并与肽结构域SRCRP2强烈结合。n -乙酰神经氨酸和甘露糖以及识别这些糖的凝集素抑制了与SRCRP2的结合。分离得到的组分分子量为25 kDa,含有唾液酸和甘露糖残基,可抑制白色念珠菌与SRCRP2的结合。免疫染色和细胞ELISA法证实了25-kDa蛋白在白色念珠菌细胞壁表面的定位,免疫印迹法证实了25-kDa蛋白在白色念珠菌细胞壁部分的存在。这些结果表明,分离的黏附素定位于白色念珠菌细胞壁表面,黏附素中的唾液酸和甘露糖残基在结合反应中起重要作用。这篇文章受版权保护。版权所有。
{"title":"A novel mannose-containing sialoprotein adhesin involved in the binding of Candida albicans cells to DMBT1.","authors":"D. Setoguchi, E. Nagata, T. Oho","doi":"10.1111/omi.12374","DOIUrl":"https://doi.org/10.1111/omi.12374","url":null,"abstract":"Candida albicans colonizes the oral cavity and causes oral candidiasis and early childhood caries synergistically with cariogenic Streptococcus mutans. Colonization of oral tissues with C. albicans is an essential step in the initiation of these infectious diseases. DMBT1 (deleted in malignant brain tumors 1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich (SRCR) superfamily and has important functions in innate immunity. In the oral cavity, DMBT1 causes microbial adherence to tooth enamel and oral mucosa surfaces, but the adherence of C. albicans to DMBT1 has not been examined. In this study, we investigated the binding of C. albicans to DMBT1 and isolated the fungal components responsible for the binding. C. albicans specifically bound to DMBT1 and strongly bound to the peptide domain SRCRP2. Binding to SRCRP2 was inhibited by N-acetylneuraminic acid and mannose and by lectins recognizing these sugars. The isolated component had a molecular mass of 25 kDa, contained sialic acid and mannose residues, and inhibited C. albicans binding to SRCRP2. The localization of the 25-kDa protein on the surface of C. albicans cell walls was confirmed by immunostaining and a cell ELISA using an antiserum to the protein, and Western blotting revealed the presence of the 25-kDa protein in the cell wall fraction of C. albicans. These results suggest that the isolated adhesin is localized on the surface of C. albicans cell walls and that sialic acid and mannose residues in the adhesin play a significant role in the binding reaction. This article is protected by copyright. All rights reserved.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43086684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review. 口腔中抗生素耐药基因的流行和传播抗菌素耐药性的可移动遗传因子:系统综述。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-06-08 DOI: 10.1111/omi.12375
Laura Brooks, Unnati Narvekar, A. McDonald, P. Mullany
OBJECTIVETo assess the prevalence of antibiotic resistance genes in the oral cavity and identify mobile genetic elements (MGEs) important in disseminating them. Additionally, to assess if age, geographic location, oral site, bacterial strains and oral disease influence the prevalence of these genes.METHODSThree electronic databases (Medline, Embase and the Cochrane Library) were used to search the literature. Journals and the grey literature were also hand-searched. English language studies from January 2000 to November 2020 were selected. Primary screening was performed on the titles and abstracts of 1509 articles generated. One hundred and forty-seven full texts were obtained to conduct the second screening with strict inclusion and exclusion criteria.RESULTSForty-four final articles agreed with the inclusion criteria. Half of the studies were classed as low quality. tet(M) was the most prevalent gene overall and the conjugative transposon Tn916 the most common mobile genetic element associated with antibiotic resistance genes in the oral cavity. In babies delivered vaginally tet(M) was more prevalent, whilst tet(Q) was more prevalent in those delivered by C- section. Generally, countries with higher consumption of antibiotics had higher numbers of antibiotic resistance genes. Agricultural as well as medical use of antibiotics in a country should always be considered. Between healthy, periodontitis and peri-implantitis subjects, there was no difference in the prevalence of tet(M) however erm(B), tet(M) and tet(O) was higher in carious active children than the non-carious group. Subjects with poor oral hygiene have more pathogenic bacteria that carry resistance genes compared to those with good oral hygiene. E. faecalis isolates demonstrated significant tetracycline resistance (tet(M) up to 60% prevalence in samples) and erythromycin resistance (erm(B) up to 61.9% prevalence in samples), periodontal pathogens showed significant beta-lactam resistance with blaZ and cfxA present in up to 90-97% of samples and the normal oral flora had a high level of erythromycin resistance with mef(A/E) present in 65% of S. salivarius isolates. The most common resistance gene was tet(M) in root canals, cfxA in subgingival plaque erm(B) in supragingival plaque and tet(W) in 100% of whole saliva samples.CONCLUSIONSThe review highlights that although many studies in this area have been performed, 50% were classed as low quality. We advise the following recommendations to allow firm conclusions to be drawn from future work: the use of large sample sizes, investigate a broad range of antibiotic resistance genes, improved methodologies and reporting to improve the quality of genetic testing in microbiology and randomisation of subject selection. This article is protected by copyright. All rights reserved.
目的评估口腔中抗生素耐药性基因的流行情况,并确定在传播中起重要作用的移动遗传元件。此外,评估年龄、地理位置、口腔部位、细菌菌株和口腔疾病是否影响这些基因的流行。方法采用三个电子数据库(Medline、Embase和Cochrane Library)检索文献。期刊和灰色文献也被手工搜索。选择2000年1月至2020年11月的英语学习。对生成的1509篇文章的标题和摘要进行了初步筛选。获得147篇全文进行第二次筛选,并有严格的入选和排除标准。结果最后四篇文章符合入选标准。一半的研究被归类为低质量研究。tet(M)是最普遍的基因,偶联转座子Tn916是口腔中与抗生素抗性基因相关的最常见的移动遗传元件。在阴道分娩的婴儿中,tet(M)更为普遍,而tet(Q)在剖腹产的婴儿中更为普遍。一般来说,抗生素消费量较高的国家具有较高数量的抗生素耐药性基因。在一个国家,抗生素在农业和医疗上的使用都应该考虑在内。在健康、牙周炎和种植体周围炎受试者之间,tet(M)的患病率没有差异,但患龋活动的儿童的erm(B)、tet(M)和tet(O)高于非患龋组。与口腔卫生良好的受试者相比,口腔卫生较差的受试对象携带耐药性基因的致病菌更多。粪大肠杆菌分离株表现出显著的四环素耐药性(样品中tet(M)高达60%的患病率)和红霉素耐药性(样本中erm(B)高达61.9%的患病率,牙周病原体表现出显著的β-内酰胺耐药性,高达90-97%的样本中存在blaZ和cfxA,正常口腔菌群具有高水平的红霉素耐药性,65%的唾液酸链球菌分离株中存在mef(a/E)。最常见的耐药基因是根管中的tet(M),龈下牙菌斑中的cfxA,龈上牙菌斑中的erm(B)和100%全唾液样本中的tet(W)。结论:该综述强调,尽管在这一领域进行了许多研究,但50%的研究被归类为低质量。我们建议以下建议,以便从未来的工作中得出坚定的结论:使用大样本量,调查广泛的抗生素耐药性基因,改进方法和报告,以提高微生物学中基因检测的质量,并随机选择受试者。这篇文章受版权保护。保留所有权利。
{"title":"Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review.","authors":"Laura Brooks, Unnati Narvekar, A. McDonald, P. Mullany","doi":"10.1111/omi.12375","DOIUrl":"https://doi.org/10.1111/omi.12375","url":null,"abstract":"OBJECTIVE\u0000To assess the prevalence of antibiotic resistance genes in the oral cavity and identify mobile genetic elements (MGEs) important in disseminating them. Additionally, to assess if age, geographic location, oral site, bacterial strains and oral disease influence the prevalence of these genes.\u0000\u0000\u0000METHODS\u0000Three electronic databases (Medline, Embase and the Cochrane Library) were used to search the literature. Journals and the grey literature were also hand-searched. English language studies from January 2000 to November 2020 were selected. Primary screening was performed on the titles and abstracts of 1509 articles generated. One hundred and forty-seven full texts were obtained to conduct the second screening with strict inclusion and exclusion criteria.\u0000\u0000\u0000RESULTS\u0000Forty-four final articles agreed with the inclusion criteria. Half of the studies were classed as low quality. tet(M) was the most prevalent gene overall and the conjugative transposon Tn916 the most common mobile genetic element associated with antibiotic resistance genes in the oral cavity. In babies delivered vaginally tet(M) was more prevalent, whilst tet(Q) was more prevalent in those delivered by C- section. Generally, countries with higher consumption of antibiotics had higher numbers of antibiotic resistance genes. Agricultural as well as medical use of antibiotics in a country should always be considered. Between healthy, periodontitis and peri-implantitis subjects, there was no difference in the prevalence of tet(M) however erm(B), tet(M) and tet(O) was higher in carious active children than the non-carious group. Subjects with poor oral hygiene have more pathogenic bacteria that carry resistance genes compared to those with good oral hygiene. E. faecalis isolates demonstrated significant tetracycline resistance (tet(M) up to 60% prevalence in samples) and erythromycin resistance (erm(B) up to 61.9% prevalence in samples), periodontal pathogens showed significant beta-lactam resistance with blaZ and cfxA present in up to 90-97% of samples and the normal oral flora had a high level of erythromycin resistance with mef(A/E) present in 65% of S. salivarius isolates. The most common resistance gene was tet(M) in root canals, cfxA in subgingival plaque erm(B) in supragingival plaque and tet(W) in 100% of whole saliva samples.\u0000\u0000\u0000CONCLUSIONS\u0000The review highlights that although many studies in this area have been performed, 50% were classed as low quality. We advise the following recommendations to allow firm conclusions to be drawn from future work: the use of large sample sizes, investigate a broad range of antibiotic resistance genes, improved methodologies and reporting to improve the quality of genetic testing in microbiology and randomisation of subject selection. This article is protected by copyright. All rights reserved.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49098254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Interleukin-34 permits Porphyromonas gingivalis survival and NF-κB p65 inhibition in macrophages. 白细胞介素-34允许牙龈卟啉单胞菌存活和巨噬细胞中NF-κB p65抑制。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-06-01 DOI: 10.1111/omi.12366
Ammar Almarghlani, Rajendra P Settem, Andrew J Croft, Sarah Metcalfe, Matthew Giangreco, Jason G Kay

Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.

白细胞介素-34 (IL-34)是一种支持巨噬细胞生存和分化的细胞因子。IL-34是表皮免疫发展的重要细胞因子,在口腔环境免疫中发挥作用。IL-34与炎性牙周病有关,涉及先天吞噬细胞,包括巨噬细胞。IL-34是否能改变巨噬细胞与口腔微生物有效相互作用的能力目前尚不清楚。研究人员利用从人血液单核细胞中提取的巨噬细胞,通过经典细胞因子集落刺激因子(CSF)1或IL-34,比较了巨噬细胞吞噬、杀伤和通过产生细胞因子对牙周关键病原体牙龈卟啉单胞菌的反应能力。来源于这两种细胞因子的巨噬细胞能够同样地吞噬细菌,而来源于il -34的巨噬细胞杀灭内化牙龈假单胞菌的能力要弱得多。在已知与牙龈假单胞菌相互作用的巨噬细胞表面受体中,树突状细胞特异性细胞间粘附分子捕获非整合素在IL-34-和csf1来源的巨噬细胞之间的差异最大。我们还发现,在与牙龈假单胞菌相互作用后,il -34衍生的巨噬细胞产生的中性粒细胞趋化因子IL-8明显少于CSF1存在时衍生的巨噬细胞。在机制上,我们发现IL-8的水平与牙龈假单胞菌的存活和主要转录因子NF-κB p65的去磷酸化有关。总之,我们发现在IL-34(口腔牙龈中的主要细胞因子)存在下分化的巨噬细胞杀死关键病原体牙龈卟啉单胞菌的能力降低,并且可能对特定细菌介导的细胞因子修饰敏感。
{"title":"Interleukin-34 permits Porphyromonas gingivalis survival and NF-κB p65 inhibition in macrophages.","authors":"Ammar Almarghlani,&nbsp;Rajendra P Settem,&nbsp;Andrew J Croft,&nbsp;Sarah Metcalfe,&nbsp;Matthew Giangreco,&nbsp;Jason G Kay","doi":"10.1111/omi.12366","DOIUrl":"https://doi.org/10.1111/omi.12366","url":null,"abstract":"<p><p>Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34, is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34-derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin was found to have the largest variation between IL-34- and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34-derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that the levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 3","pages":"109-121"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617590/pdf/nihms-1842805.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9556872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Molecular basis for avirulence of spontaneous variants of Porphyromonas gingivalis: Genomic analysis of strains W50, BE1 and BR1 牙龈卟啉单胞菌自发变异无毒性的分子基础:菌株W50、BE1和BR1的基因组分析
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-05-27 DOI: 10.1111/omi.12373
J. Aduse-Opoku, S. Joseph, D. Devine, P. Marsh, M. Curtis
Abstract The periodontal pathogen Porphyromonas gingivalis is genetically heterogeneous. However, the spontaneous generation of phenotypically different sub‐strains has also been reported. McKee et al. (1988) cultured P. gingivalis W50 in a chemostat during investigations into the growth and properties of this bacterium. Cell viability on blood agar plates revealed two types of non‐pigmenting variants, W50 beige (BE1), and W50 brown (BR1), in samples grown in a high‐hemin medium after day 7, and the population of these variants increased to approximately 25% of the total counts by day 21. W50, BE1 and BR1 had phenotypic alterations in pigmentation, reduced protease activity and haemagglutination and susceptibility to complement killing. Furthermore, the variants exhibited significant attenuation in a mouse model of virulence. Other investigators showed that in BE1, the predominant extracellular Arg‐gingipain was RgpB, and no reaction with an A‐lipopolysaccharide‐specific MAb 1B5 (Collinson et al., 1998; Slaney et al., 2006). In order to determine the genetic basis for these phenotypic properties, we performed hybrid DNA sequence long reads using Oxford Nanopore and the short paired‐end DNA sequence reads of Illumina HiSeq platforms to generate closed circular genomes of the parent and variants. Comparative analysis indicated loss of intact kgp in the 20 kb region of the hagA‐kgp locus in the two variants BE1 and BR1. Deletions in hagA led to smaller open reading frames in the variants, and BR1 had incurred a major chromosomal DNA inversion. Additional minor changes to the genomes of both variants were also observed. Given the importance of Kgp and HagA to protease activity and haemagglutination, respectively, in this bacterium, genomic changes at this locus may account for most of the phenotypic alterations of the variants. The homologous and repetitive nature of hagA and kgp and the features at the inverted junctions are indicative of specific and stable homologous recombination events, which may underlie the genetic heterogeneity of this species.
摘要牙周病原体牙龈卟啉单胞菌具有遗传异质性。然而,表型不同亚株的自发产生也有报道。McKee等人(1988)在对牙龈卟啉单胞菌W50的生长和特性进行研究期间,在恒化器中培养了该菌。血琼脂平板上的细胞活力显示,在第7天后生长在高血红素培养基中的样本中,有两种类型的非色素变体,W50米色(BE1)和W50棕色(BR1),到第21天,这些变体的数量增加到总计数的约25%。W50、BE1和BR1在色素沉着、蛋白酶活性和血凝降低以及对补体杀伤的易感性方面具有表型改变。此外,这些变体在小鼠毒力模型中表现出显著的衰减。其他研究人员表明,在BE1中,主要的细胞外精氨酸是RgpB,与A-脂多糖特异性MAb 1B5没有反应(Collinson等人,1998;Slaney等人,2006年)。为了确定这些表型特性的遗传基础,我们使用Oxford Nanopore和Illumina HiSeq平台的短配对末端DNA序列读取进行了杂交DNA序列长读取,以生成亲本和变体的闭环基因组。比较分析表明,在两种变体BE1和BR1中,hagA-kgp基因座的20kb区域中完整的kgp缺失。hagA的缺失导致变体中较小的开放阅读框,BR1发生了主要的染色体DNA反转。还观察到两种变体的基因组发生了额外的微小变化。考虑到Kgp和HagA分别对该细菌的蛋白酶活性和血凝作用的重要性,该基因座的基因组变化可能是变体表型变化的主要原因。hagA和kgp的同源性和重复性以及反向连接处的特征表明了特异性和稳定的同源重组事件,这可能是该物种遗传异质性的基础。
{"title":"Molecular basis for avirulence of spontaneous variants of Porphyromonas gingivalis: Genomic analysis of strains W50, BE1 and BR1","authors":"J. Aduse-Opoku, S. Joseph, D. Devine, P. Marsh, M. Curtis","doi":"10.1111/omi.12373","DOIUrl":"https://doi.org/10.1111/omi.12373","url":null,"abstract":"Abstract The periodontal pathogen Porphyromonas gingivalis is genetically heterogeneous. However, the spontaneous generation of phenotypically different sub‐strains has also been reported. McKee et al. (1988) cultured P. gingivalis W50 in a chemostat during investigations into the growth and properties of this bacterium. Cell viability on blood agar plates revealed two types of non‐pigmenting variants, W50 beige (BE1), and W50 brown (BR1), in samples grown in a high‐hemin medium after day 7, and the population of these variants increased to approximately 25% of the total counts by day 21. W50, BE1 and BR1 had phenotypic alterations in pigmentation, reduced protease activity and haemagglutination and susceptibility to complement killing. Furthermore, the variants exhibited significant attenuation in a mouse model of virulence. Other investigators showed that in BE1, the predominant extracellular Arg‐gingipain was RgpB, and no reaction with an A‐lipopolysaccharide‐specific MAb 1B5 (Collinson et al., 1998; Slaney et al., 2006). In order to determine the genetic basis for these phenotypic properties, we performed hybrid DNA sequence long reads using Oxford Nanopore and the short paired‐end DNA sequence reads of Illumina HiSeq platforms to generate closed circular genomes of the parent and variants. Comparative analysis indicated loss of intact kgp in the 20 kb region of the hagA‐kgp locus in the two variants BE1 and BR1. Deletions in hagA led to smaller open reading frames in the variants, and BR1 had incurred a major chromosomal DNA inversion. Additional minor changes to the genomes of both variants were also observed. Given the importance of Kgp and HagA to protease activity and haemagglutination, respectively, in this bacterium, genomic changes at this locus may account for most of the phenotypic alterations of the variants. The homologous and repetitive nature of hagA and kgp and the features at the inverted junctions are indicative of specific and stable homologous recombination events, which may underlie the genetic heterogeneity of this species.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 1","pages":"122 - 132"},"PeriodicalIF":3.7,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48042545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Porphyromonas gingivalis indirectly elicits intestinal inflammation by altering the gut microbiota and disrupting epithelial barrier function through IL9-producing CD4+ T cells. 牙龈卟啉单胞菌通过产生il - 9的CD4+ T细胞改变肠道菌群和破坏上皮屏障功能,间接引发肠道炎症。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-04-01 DOI: 10.1111/omi.12359
Jiho Sohn, Lu Li, Lixia Zhang, Rajendra P Settem, Kiyonobu Honma, Ashu Sharma, Karen L Falkner, Jan M Novak, Yijun Sun, Keith L Kirkwood

Recent epidemiological studies have shown that inflammatory bowel disease is associated with periodontal disease. The oral-gut microbiota axis is a potential mechanism intersecting the two diseases. Porphyromonas gingivalis is currently considered a keystone oral pathogen involved in periodontal disease pathogenesis and disease progression. Recent studies have shown that oral ingestion of P. gingivalis leads to intestinal inflammation. However, the molecular underpinnings of P. gingivalis-mediated gut inflammation have remained elusive. In this study, we show that the oral administration of P. gingivalis indeed leads to ileal inflammation and alteration in gut microbiota with significant reduction in bacterial alpha diversity despite the absence of P. gingivalis in the lower gastrointestinal tract. Utilizing an antibiotic-conditioned mouse model, cecal microbiota transfer experiments were performed to demonstrate that P. gingivalis-induced dysbiotic gut microbiota is sufficient to reproduce gut pathology. Furthermore, we observed a significant expansion in small intestinal lamina propria IL9+ CD4+ T cells, which was negatively correlated with both bacterial and fungal alpha diversity, signifying that P. gingivalis-mediated intestinal inflammation may be due to the subsequent loss of gut microbial diversity. Finally, we detected changes in gene expression related to gut epithelial barrier function, showing the potential downstream effect of intestinal IL9+ CD4+ T-cell induction. This study for the first time showed the mechanism behind P. gingivalis-mediated intestinal inflammation where P. gingivalis indirectly induces intestinal IL9+ CD4+ T cells and inflammation by altering the gut microbiota. Understanding the mechanism of P. gingivalis-mediated intestinal inflammation may lead to the development of novel therapeutic approaches to alleviate the morbidity from inflammatory bowel disease patients with periodontal disease.

最近的流行病学研究表明,炎症性肠病与牙周病有关。口腔-肠道菌群轴是两种疾病交叉的潜在机制。目前认为牙龈卟啉单胞菌是参与牙周病发病和疾病进展的重要口腔病原体。最近的研究表明,口服牙龈假单胞菌会导致肠道炎症。然而,牙龈假单胞菌介导的肠道炎症的分子基础仍然难以捉摸。在这项研究中,我们发现口服牙龈卟啉单胞菌确实会导致回肠炎症和肠道微生物群的改变,尽管下胃肠道中没有牙龈卟啉单胞菌,但细菌α多样性显著降低。利用抗生素条件小鼠模型,进行盲肠菌群转移实验,以证明牙龈假单胞菌诱导的益生菌群足以复制肠道病理。此外,我们观察到小肠固有层il - 9+ CD4+ T细胞显著扩增,这与细菌和真菌α多样性呈负相关,这表明牙龈假单胞菌介导的肠道炎症可能是由于随后肠道微生物多样性的丧失。最后,我们检测到肠道上皮屏障功能相关基因表达的变化,显示肠道il - 9+ CD4+ t细胞诱导的潜在下游效应。本研究首次揭示了牙龈假单胞菌介导肠道炎症的机制,牙龈假单胞菌通过改变肠道菌群间接诱导肠道il - 9+ CD4+ T细胞和炎症。了解牙龈卟啉单胞菌介导的肠道炎症的机制可能会导致新的治疗方法的发展,以减轻炎症性肠病合并牙周病患者的发病率。
{"title":"Porphyromonas gingivalis indirectly elicits intestinal inflammation by altering the gut microbiota and disrupting epithelial barrier function through IL9-producing CD4<sup>+</sup> T cells.","authors":"Jiho Sohn,&nbsp;Lu Li,&nbsp;Lixia Zhang,&nbsp;Rajendra P Settem,&nbsp;Kiyonobu Honma,&nbsp;Ashu Sharma,&nbsp;Karen L Falkner,&nbsp;Jan M Novak,&nbsp;Yijun Sun,&nbsp;Keith L Kirkwood","doi":"10.1111/omi.12359","DOIUrl":"https://doi.org/10.1111/omi.12359","url":null,"abstract":"<p><p>Recent epidemiological studies have shown that inflammatory bowel disease is associated with periodontal disease. The oral-gut microbiota axis is a potential mechanism intersecting the two diseases. Porphyromonas gingivalis is currently considered a keystone oral pathogen involved in periodontal disease pathogenesis and disease progression. Recent studies have shown that oral ingestion of P. gingivalis leads to intestinal inflammation. However, the molecular underpinnings of P. gingivalis-mediated gut inflammation have remained elusive. In this study, we show that the oral administration of P. gingivalis indeed leads to ileal inflammation and alteration in gut microbiota with significant reduction in bacterial alpha diversity despite the absence of P. gingivalis in the lower gastrointestinal tract. Utilizing an antibiotic-conditioned mouse model, cecal microbiota transfer experiments were performed to demonstrate that P. gingivalis-induced dysbiotic gut microbiota is sufficient to reproduce gut pathology. Furthermore, we observed a significant expansion in small intestinal lamina propria IL9<sup>+</sup> CD4<sup>+</sup> T cells, which was negatively correlated with both bacterial and fungal alpha diversity, signifying that P. gingivalis-mediated intestinal inflammation may be due to the subsequent loss of gut microbial diversity. Finally, we detected changes in gene expression related to gut epithelial barrier function, showing the potential downstream effect of intestinal IL9<sup>+</sup> CD4<sup>+</sup> T-cell induction. This study for the first time showed the mechanism behind P. gingivalis-mediated intestinal inflammation where P. gingivalis indirectly induces intestinal IL9<sup>+</sup> CD4<sup>+</sup> T cells and inflammation by altering the gut microbiota. Understanding the mechanism of P. gingivalis-mediated intestinal inflammation may lead to the development of novel therapeutic approaches to alleviate the morbidity from inflammatory bowel disease patients with periodontal disease.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"37 2","pages":"42-52"},"PeriodicalIF":3.7,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353576/pdf/nihms-1825906.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9218952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Issue Information 问题信息
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-03-08 DOI: 10.1111/omi.12339
{"title":"Issue Information","authors":"","doi":"10.1111/omi.12339","DOIUrl":"https://doi.org/10.1111/omi.12339","url":null,"abstract":"","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44816328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streptococcus mutans cell division protein FtsZ has higher GTPase and polymerization activities in acidic environment. 变形链球菌细胞分裂蛋白FtsZ在酸性环境中具有较高的GTPase和聚合活性。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2022-02-26 DOI: 10.1111/omi.12364
Yuxi Chen, Yongliang Li, Chongyang Yuan, Shujun Liu, F. Xin, Xuliang Deng, Xiaoyan Wang
The acid tolerance of Streptococcus mutans plays an important role in its cariogenic process. S. mutans initiates a powerful transcriptional and physiological adaptation mechanism, eventually shielding the cellular machinery from acid damage and contributing to bacterial survival under acidic stress conditions. Although S. mutans contains complex regulatory systems, existing studies have shown that S. mutans, unlike Escherichia coli, cannot maintain a neutral intracellular environment. As the pH of the extracellular environment decreases, the intracellular pH decreases in parallel. There is insufficient knowledge regarding the acid resistance of the intracellular proteins of S. mutans, particularly when it comes to the key cytoskeletal division protein FtsZ. In this study, the data showed that S. mutans had similar cell division progress in acidic and neutral environments. The splitting position was in the middle of cells, and the cytoplasm were divided evenly in the acidic environment. Additionally, the treadmilling velocity of S. mutans FtsZ in the middle of cells was not affected by the acidic environment. S. mutans FtsZ had higher GTPase activity in pH 6.0 buffer than in the neutral environment. Furthermore, the polymerization of S. mutans FtsZ in the acidic environment was more robust than that in the neutral environment. After two particular amino acids of S. mutans FtsZ amino acids were mutated (E88K, L269K), the polymerization of S. mutans FtsZ in the acidic environment was significantly reduced. Overall, S. mutans FtsZ exhibited higher functional activity in pH 6.0 buffer in vitro. The acid resistance of S. mutans FtsZ is affected by its particular amino acids. This article is protected by copyright. All rights reserved.
变形链球菌的耐酸性在其致龋过程中起着重要作用。变形链球菌启动了一种强大的转录和生理适应机制,最终保护细胞机制免受酸损伤,并有助于细菌在酸性胁迫条件下生存。尽管变异链球菌含有复杂的调控系统,但现有研究表明,变异链球菌与大肠杆菌不同,不能维持中性的细胞内环境。当细胞外环境的pH值降低时,细胞内pH值平行降低。关于变形链球菌细胞内蛋白的耐酸性,尤其是当涉及到关键的细胞骨架分裂蛋白FtsZ时,还没有足够的知识。在这项研究中,数据表明变形链球菌在酸性和中性环境中具有相似的细胞分裂过程。分裂位置在细胞中间,细胞质在酸性环境中分裂均匀。此外,变异链球菌FtsZ在细胞中间的踩踏速度不受酸性环境的影响。变形链球菌FtsZ在pH6.0的缓冲液中具有比在中性环境中更高的GTPase活性。此外,变形链球菌FtsZ在酸性环境中的聚合比在中性环境中的更稳定。变异链球菌FtsZ的两个特定氨基酸(E88K、L269K)发生突变后,变异链球菌FstsZ在酸性环境中的聚合作用显著降低。总的来说,变异链球菌FtsZ在pH 6.0的缓冲液中表现出更高的体外功能活性。变形链球菌FtsZ的耐酸性受其特定氨基酸的影响。这篇文章受版权保护。保留所有权利。
{"title":"Streptococcus mutans cell division protein FtsZ has higher GTPase and polymerization activities in acidic environment.","authors":"Yuxi Chen, Yongliang Li, Chongyang Yuan, Shujun Liu, F. Xin, Xuliang Deng, Xiaoyan Wang","doi":"10.1111/omi.12364","DOIUrl":"https://doi.org/10.1111/omi.12364","url":null,"abstract":"The acid tolerance of Streptococcus mutans plays an important role in its cariogenic process. S. mutans initiates a powerful transcriptional and physiological adaptation mechanism, eventually shielding the cellular machinery from acid damage and contributing to bacterial survival under acidic stress conditions. Although S. mutans contains complex regulatory systems, existing studies have shown that S. mutans, unlike Escherichia coli, cannot maintain a neutral intracellular environment. As the pH of the extracellular environment decreases, the intracellular pH decreases in parallel. There is insufficient knowledge regarding the acid resistance of the intracellular proteins of S. mutans, particularly when it comes to the key cytoskeletal division protein FtsZ. In this study, the data showed that S. mutans had similar cell division progress in acidic and neutral environments. The splitting position was in the middle of cells, and the cytoplasm were divided evenly in the acidic environment. Additionally, the treadmilling velocity of S. mutans FtsZ in the middle of cells was not affected by the acidic environment. S. mutans FtsZ had higher GTPase activity in pH 6.0 buffer than in the neutral environment. Furthermore, the polymerization of S. mutans FtsZ in the acidic environment was more robust than that in the neutral environment. After two particular amino acids of S. mutans FtsZ amino acids were mutated (E88K, L269K), the polymerization of S. mutans FtsZ in the acidic environment was significantly reduced. Overall, S. mutans FtsZ exhibited higher functional activity in pH 6.0 buffer in vitro. The acid resistance of S. mutans FtsZ is affected by its particular amino acids. This article is protected by copyright. All rights reserved.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43830508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Molecular Oral Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1