Pub Date : 2023-10-01Epub Date: 2023-10-07DOI: 10.1111/omi.12434
Alba Regueira-Iglesias, Carlos Balsa-Castro, Triana Blanco-Pintos, Inmaculada Tomás
The multi-batch reanalysis approach of jointly reevaluating gene/genome sequences from different works has gained particular relevance in the literature in recent years. The large amount of 16S ribosomal ribonucleic acid (rRNA) gene sequence data stored in public repositories and information in taxonomic databases of the same gene far exceeds that related to complete genomes. This review is intended to guide researchers new to studying microbiota, particularly the oral microbiota, using 16S rRNA gene sequencing and those who want to expand and update their knowledge to optimise their decision-making and improve their research results. First, we describe the advantages and disadvantages of using the 16S rRNA gene as a phylogenetic marker and the latest findings on the impact of primer pair selection on diversity and taxonomic assignment outcomes in oral microbiome studies. Strategies for primer selection based on these results are introduced. Second, we identified the key factors to consider in selecting the sequencing technology and platform. The process and particularities of the main steps for processing 16S rRNA gene-derived data are described in detail to enable researchers to choose the most appropriate bioinformatics pipeline and analysis methods based on the available evidence. We then produce an overview of the different types of advanced analyses, both the most widely used in the literature and the most recent approaches. Several indices, metrics and software for studying microbial communities are included, highlighting their advantages and disadvantages. Considering the principles of clinical metagenomics, we conclude that future research should focus on rigorous analytical approaches, such as developing predictive models to identify microbiome-based biomarkers to classify health and disease states. Finally, we address the batch effect concept and the microbiome-specific methods for accounting for or correcting them.
{"title":"Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis.","authors":"Alba Regueira-Iglesias, Carlos Balsa-Castro, Triana Blanco-Pintos, Inmaculada Tomás","doi":"10.1111/omi.12434","DOIUrl":"10.1111/omi.12434","url":null,"abstract":"<p><p>The multi-batch reanalysis approach of jointly reevaluating gene/genome sequences from different works has gained particular relevance in the literature in recent years. The large amount of 16S ribosomal ribonucleic acid (rRNA) gene sequence data stored in public repositories and information in taxonomic databases of the same gene far exceeds that related to complete genomes. This review is intended to guide researchers new to studying microbiota, particularly the oral microbiota, using 16S rRNA gene sequencing and those who want to expand and update their knowledge to optimise their decision-making and improve their research results. First, we describe the advantages and disadvantages of using the 16S rRNA gene as a phylogenetic marker and the latest findings on the impact of primer pair selection on diversity and taxonomic assignment outcomes in oral microbiome studies. Strategies for primer selection based on these results are introduced. Second, we identified the key factors to consider in selecting the sequencing technology and platform. The process and particularities of the main steps for processing 16S rRNA gene-derived data are described in detail to enable researchers to choose the most appropriate bioinformatics pipeline and analysis methods based on the available evidence. We then produce an overview of the different types of advanced analyses, both the most widely used in the literature and the most recent approaches. Several indices, metrics and software for studying microbial communities are included, highlighting their advantages and disadvantages. Considering the principles of clinical metagenomics, we conclude that future research should focus on rigorous analytical approaches, such as developing predictive models to identify microbiome-based biomarkers to classify health and disease states. Finally, we address the batch effect concept and the microbiome-specific methods for accounting for or correcting them.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"347-399"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41134858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-28DOI: 10.1111/omi.12435
Laura Bustos-Lobato, Maria J Rus, Carlos Saúco, Aurea Simon-Soro
Sjogren's syndrome (SS) is an autoimmune disease that affects primarily the salivary glands, making perturbations in the oral ecosystem and potential factors of salivary flow that influence the onset and development of the disease. The oral cavity contains diverse microorganisms that inhabit various niches such as the oral microbial "biomap." It does not seem specific enough to establish a characteristic microbiome, given the diversity of clinical manifestations, variable rates of salivary secretion, and influential risk factors in patients with SS. This review discusses the biogeography of the oral microbiome in patients with SS such as saliva, tongue, tooth, mucosa, and gum. The microorganisms that were more abundant in the different oral niches were Gram-positive species, suggesting a higher survival of cell wall bacteria in this arid oral environment. Reduced salivary flow appears not to be linked to the cause of dysbiosis alone but influences host-associated risk factors. However, much work remains to be done to establish the role of the microbiome in the etiopathogenesis of autoimmune diseases such as SS. Future studies of the microbiome in autoimmunity will shed light on the role of specific microorganisms that have never been linked before with SS.
{"title":"Oral microbial biomap in the drought environment: Sjogren's syndrome.","authors":"Laura Bustos-Lobato, Maria J Rus, Carlos Saúco, Aurea Simon-Soro","doi":"10.1111/omi.12435","DOIUrl":"10.1111/omi.12435","url":null,"abstract":"<p><p>Sjogren's syndrome (SS) is an autoimmune disease that affects primarily the salivary glands, making perturbations in the oral ecosystem and potential factors of salivary flow that influence the onset and development of the disease. The oral cavity contains diverse microorganisms that inhabit various niches such as the oral microbial \"biomap.\" It does not seem specific enough to establish a characteristic microbiome, given the diversity of clinical manifestations, variable rates of salivary secretion, and influential risk factors in patients with SS. This review discusses the biogeography of the oral microbiome in patients with SS such as saliva, tongue, tooth, mucosa, and gum. The microorganisms that were more abundant in the different oral niches were Gram-positive species, suggesting a higher survival of cell wall bacteria in this arid oral environment. Reduced salivary flow appears not to be linked to the cause of dysbiosis alone but influences host-associated risk factors. However, much work remains to be done to establish the role of the microbiome in the etiopathogenesis of autoimmune diseases such as SS. Future studies of the microbiome in autoimmunity will shed light on the role of specific microorganisms that have never been linked before with SS.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"400-407"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-18DOI: 10.1111/omi.12430
Sabin Acharya, Ahreum Lee, Hyunjin Kim, Hyeong-Jin Kim, Youngnim Choi
Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 "E" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4+ T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.
{"title":"Requirements for anti-aquaporin 5 autoantibody production in a mouse model.","authors":"Sabin Acharya, Ahreum Lee, Hyunjin Kim, Hyeong-Jin Kim, Youngnim Choi","doi":"10.1111/omi.12430","DOIUrl":"10.1111/omi.12430","url":null,"abstract":"<p><p>Several oral bacteria, including Prevotella melaninogenica (Pm), have aquaporin (AQP) proteins homologous to human AQP5, a major water channel protein targeted in Sjogren's syndrome. This study aimed to understand the antigenic characteristics that induce autoantibodies against an AQP5 \"E\" epitope (AQP5E) in a mouse model using C57BL/6 mice. Immunization with a PmE-L peptide derived from Pm AQP, which contains amino acid mismatches both at the B- and T-cell epitopes, efficiently induced anti-AQP5E autoantibodies accompanied by increased germinal center (GC) B and follicular helper T cells in the draining lymph nodes. However, PmE, a peptide lacking a T-cell epitope, and AQP5E-L, an AQP5-derived self-peptide, hardly induced either anti-AQP5E autoantibodies or GC responses. Surprisingly, OTII-AQP5E, a peptide that replaced the self T-cell epitope of AQP5E-L with an ovalbumin-derived foreign T-cell epitope, was not any better than AQP5E-L in the induction of anti-AQP5E autoantibodies and GC response, despite the substantial expansion of CD4<sup>+</sup> T cells and production of anti-OTII-AQP5E antibodies. The complex of biotinylated PmE-L peptide and highly immunogenic streptavidin (SA) induced a strong extrafollicular B-cell response skewed toward the expansion of SA-specific B cells. However, the expansion of AQP5E-specific GC B cells was limited, resulting in the inefficient induction of anti-AQP5E autoantibodies. Collectively, our results have demonstrated that anti-AQP5E autoantibody production is only allowed when foreign B- and T-cell epitopes drive a strong GC response of AQP5E-specific B cells for affinity maturation. This study helps explain why cross-reactive anti-AQP5 autoantibodies are not produced during the immune response to Pm in most healthy people.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"442-453"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10289319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-26DOI: 10.1111/omi.12433
Hendrik Leonhard Meyer, Mohamed M H Abdelbary, Eva Miriam Buhl, Christoph Kuppe, Georg Conrads
Porphyromonas gingivalis is a key pathobiont in periodontitis. Its long fimbriae consist of a single anchor (FimB), a varying number of stalk (FimA), and three accessory (tip-related) proteins (FimC, FimD, and FimE). Based on 133 strains/genomes available, it was our aim to investigate the diversity within FimA and FimB and explain the variety of long fimbriae (super-)structures. Combining the new forward primer fimAnewF with the established fimAunivR, we were able to amplify and sequence fimA including its leader region covering all genotypes and serotypes for phylogenetic analysis. We designed two primer pairs sensing the presence of an internal stop codon in fimB with an impact on fimbrial length. Finally, we examined fimbrial secondary structures by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The phylogeny of fimA/FimA revealed two new subtypes (IIa and IIb) with specific changes in functional domains and thus adding to the current classification scheme (I, Ib, and II-V). Regarding evolution, we confirm that Porphyromonas gulae fimA-type A is closely related to human P. gingivalis strains of cluster Ib and might be its ancestor genotype. A fimB internal stop codon is rare and was found in ATCC 33277 only. Comparing P. gingivalis TEM/SEM pictures of type I ATCC 33277 with type V OMI622 revealed a broad spectrum of fimbrial structures including bundling, cell-cell knotting, and brick-wall formation. In conclusion, FimA forms more distinct subtypes than previously known. The bundling of long fimbriae, a mechanism known from EPEC/EHEC and Salmonella, is proposed and supported by TEM/SEM pictures for the first time here. The role and variations of terminal accessory FimC-E in superstructure formation and/or (co-) adhesion should be investigated more closely next.
{"title":"Exploring the genetic and functional diversity of Porphyromonas gingivalis long fimbriae.","authors":"Hendrik Leonhard Meyer, Mohamed M H Abdelbary, Eva Miriam Buhl, Christoph Kuppe, Georg Conrads","doi":"10.1111/omi.12433","DOIUrl":"10.1111/omi.12433","url":null,"abstract":"<p><p>Porphyromonas gingivalis is a key pathobiont in periodontitis. Its long fimbriae consist of a single anchor (FimB), a varying number of stalk (FimA), and three accessory (tip-related) proteins (FimC, FimD, and FimE). Based on 133 strains/genomes available, it was our aim to investigate the diversity within FimA and FimB and explain the variety of long fimbriae (super-)structures. Combining the new forward primer fimAnewF with the established fimAunivR, we were able to amplify and sequence fimA including its leader region covering all genotypes and serotypes for phylogenetic analysis. We designed two primer pairs sensing the presence of an internal stop codon in fimB with an impact on fimbrial length. Finally, we examined fimbrial secondary structures by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The phylogeny of fimA/FimA revealed two new subtypes (IIa and IIb) with specific changes in functional domains and thus adding to the current classification scheme (I, Ib, and II-V). Regarding evolution, we confirm that Porphyromonas gulae fimA-type A is closely related to human P. gingivalis strains of cluster Ib and might be its ancestor genotype. A fimB internal stop codon is rare and was found in ATCC 33277 only. Comparing P. gingivalis TEM/SEM pictures of type I ATCC 33277 with type V OMI622 revealed a broad spectrum of fimbrial structures including bundling, cell-cell knotting, and brick-wall formation. In conclusion, FimA forms more distinct subtypes than previously known. The bundling of long fimbriae, a mechanism known from EPEC/EHEC and Salmonella, is proposed and supported by TEM/SEM pictures for the first time here. The role and variations of terminal accessory FimC-E in superstructure formation and/or (co-) adhesion should be investigated more closely next.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"408-423"},"PeriodicalIF":3.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41127435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Yang, Liu Wang, Liu Liu, Jian Zou, Dingming Huang, Yuqing Li
Streptococci are a genus of gram-positive coccus of spherical bacteria, including many commensal bacteria and opportunistic pathogens that threaten the public health system. Small noncoding RNAs (sRNAs) are a class of noncoding RNAs regulating gene expression via various regulatory mechanisms, which have been illustrated to play vital roles in regulations of virulence factor expressions. Recent advances in sequencing technology and bioinformatic analysis facilitated discovery of a myriad of sRNAs from pathogenic bacteria, revealing a variety of unique features that contribute to gene expressions and virulence regulations. Although various research studies have reported the regulatory functions of sRNAs in the virulence of bacterial species of the genus Streptococci, the common features of sRNAs in the pathogenesis of Streptococci remain unclear. This blocks the development of novel antistreptococcal antibiotics and antibacterial strategies. Here, we summarize the fundamental roles of Streptococcal sRNAs in pathogenic regulations, which advance mechanistic understanding of streptococcal infection associated diseases. Moreover, we discuss the prospects of sRNA acting as drug targets to combat bacterial antibiotic resistance.
{"title":"Small noncoding RNA in Streptococci: From regulatory functions to drug development.","authors":"Yang Yang, Liu Wang, Liu Liu, Jian Zou, Dingming Huang, Yuqing Li","doi":"10.1111/omi.12411","DOIUrl":"https://doi.org/10.1111/omi.12411","url":null,"abstract":"<p><p>Streptococci are a genus of gram-positive coccus of spherical bacteria, including many commensal bacteria and opportunistic pathogens that threaten the public health system. Small noncoding RNAs (sRNAs) are a class of noncoding RNAs regulating gene expression via various regulatory mechanisms, which have been illustrated to play vital roles in regulations of virulence factor expressions. Recent advances in sequencing technology and bioinformatic analysis facilitated discovery of a myriad of sRNAs from pathogenic bacteria, revealing a variety of unique features that contribute to gene expressions and virulence regulations. Although various research studies have reported the regulatory functions of sRNAs in the virulence of bacterial species of the genus Streptococci, the common features of sRNAs in the pathogenesis of Streptococci remain unclear. This blocks the development of novel antistreptococcal antibiotics and antibacterial strategies. Here, we summarize the fundamental roles of Streptococcal sRNAs in pathogenic regulations, which advance mechanistic understanding of streptococcal infection associated diseases. Moreover, we discuss the prospects of sRNA acting as drug targets to combat bacterial antibiotic resistance.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 4","pages":"251-258"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10165236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksandra Wielento, Grzegorz P Bereta, Katarzyna Szczęśniak, Anna Jacuła, Marina Terekhova, Maxim N Artyomov, Yoshiaki Hasegawa, Aleksander M Grabiec, Jan Potempa
Porphyromonas gingivalis is an oral pathogen that promotes dysbiosis by quenching the bactericidal activity of the host immune system while maintaining chronic inflammation, leading to periodontitis. This involves the secretion of virulence factors such as P. gingivalis peptidyl arginine deiminase (PPAD), which converts the C-terminal Arg residues of bacterial and host-derived proteins and peptides into citrulline. We have previously shown that PPAD activity and major fimbriae (containing FimA) are necessary for P. gingivalis to activate Toll-like receptor 2 (TLR2). TLR2 is an important component of the innate immune system and plays a predominant role in the recognition of P. gingivalis by host cells. Here, we extend those findings to show that P. gingivalis strains deficient for PPAD and fimbriae induced almost identical transcriptional profiles in infected primary human gingival fibroblasts (PHGFs), but these differed substantially from the transcriptome elicited by the wild-type ATCC 33277 strain. Apparently, PPAD-modified fimbriae trigger the host cell response to P. gingivalis, as confirmed by showing that the proinflammatory host cell response mediated by TLR2 is dependent on PPAD activity and the presence of fimbriae, with type I fimbriae as the most potent TLR2 activators. We also found that PPAD-modified accessory fimbrial subunits (FimC, FimD, and FimE) alone or in combination are TLR2 ligands in a reporter cell line. Although FimA polymerization to form the fimbrial shaft was not required for TLR2 activation, the secretion and proteolytic maturation of FimA were necessary for signaling by accessory Fim proteins. This was supported by showing that the proinflammatory activation of PHGFs is dependent on PPAD and accessory fimbrial subunits. We conclude that accessory fimbrial subunits are modified by PPAD and stimulate the response to P. gingivalis infection in a TLR2-dependent manner.
{"title":"Accessory fimbrial subunits and PPAD are necessary for TLR2 activation by Porphyromonas gingivalis.","authors":"Aleksandra Wielento, Grzegorz P Bereta, Katarzyna Szczęśniak, Anna Jacuła, Marina Terekhova, Maxim N Artyomov, Yoshiaki Hasegawa, Aleksander M Grabiec, Jan Potempa","doi":"10.1111/omi.12427","DOIUrl":"https://doi.org/10.1111/omi.12427","url":null,"abstract":"<p><p>Porphyromonas gingivalis is an oral pathogen that promotes dysbiosis by quenching the bactericidal activity of the host immune system while maintaining chronic inflammation, leading to periodontitis. This involves the secretion of virulence factors such as P. gingivalis peptidyl arginine deiminase (PPAD), which converts the C-terminal Arg residues of bacterial and host-derived proteins and peptides into citrulline. We have previously shown that PPAD activity and major fimbriae (containing FimA) are necessary for P. gingivalis to activate Toll-like receptor 2 (TLR2). TLR2 is an important component of the innate immune system and plays a predominant role in the recognition of P. gingivalis by host cells. Here, we extend those findings to show that P. gingivalis strains deficient for PPAD and fimbriae induced almost identical transcriptional profiles in infected primary human gingival fibroblasts (PHGFs), but these differed substantially from the transcriptome elicited by the wild-type ATCC 33277 strain. Apparently, PPAD-modified fimbriae trigger the host cell response to P. gingivalis, as confirmed by showing that the proinflammatory host cell response mediated by TLR2 is dependent on PPAD activity and the presence of fimbriae, with type I fimbriae as the most potent TLR2 activators. We also found that PPAD-modified accessory fimbrial subunits (FimC, FimD, and FimE) alone or in combination are TLR2 ligands in a reporter cell line. Although FimA polymerization to form the fimbrial shaft was not required for TLR2 activation, the secretion and proteolytic maturation of FimA were necessary for signaling by accessory Fim proteins. This was supported by showing that the proinflammatory activation of PHGFs is dependent on PPAD and accessory fimbrial subunits. We conclude that accessory fimbrial subunits are modified by PPAD and stimulate the response to P. gingivalis infection in a TLR2-dependent manner.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 4","pages":"334-346"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9798558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Gram-negative anaerobe, Porphyromonas gingivalis, is known to be a pathogen associated with chronic periodontitis. P. gingivalis possesses virulence factors such as fimbriae and gingipain proteinases. Fimbrial proteins are secreted to the cell surface as lipoproteins. In contrast, gingipain proteinases are secreted into the bacterial cell surface via the type IX secretion system (T9SS). The transport mechanisms of lipoproteins and T9SS cargo proteins are entirely different and remain unknown. Therefore, using the Tet-on system developed for the genus Bacteroides, we newly created a conditional gene expression system in P. gingivalis. We succeeded in establishing conditional expression of nanoluciferase and its derivatives for lipoprotein export, of FimA for a representative of lipoprotein export, and of T9SS cargo proteins such as Hbp35 and PorA for representatives of type 9 protein export. Using this system, we showed that the lipoprotein export signal, which has recently been found in other species in the phylum Bacteroidota, is also functional in FimA, and that a proton motive force inhibitor can affect type 9 protein export. Collectively, our conditional protein expression method is useful for screening inhibitors of virulence factors, and may be used to investigate the role of proteins essential to bacterial survival in vivo.
{"title":"A conditional gene expression system in Porphyromonas gingivalis for study of the secretion mechanisms of lipoproteins and T9SS cargo proteins.","authors":"Yuko Sasaki, Mikio Shoji, Takayuki Sueyoshi, Satoshi Shibata, Takehiro Matsuo, Hideharu Yukitake, Matthias Wolf, Mariko Naito","doi":"10.1111/omi.12426","DOIUrl":"https://doi.org/10.1111/omi.12426","url":null,"abstract":"<p><p>The Gram-negative anaerobe, Porphyromonas gingivalis, is known to be a pathogen associated with chronic periodontitis. P. gingivalis possesses virulence factors such as fimbriae and gingipain proteinases. Fimbrial proteins are secreted to the cell surface as lipoproteins. In contrast, gingipain proteinases are secreted into the bacterial cell surface via the type IX secretion system (T9SS). The transport mechanisms of lipoproteins and T9SS cargo proteins are entirely different and remain unknown. Therefore, using the Tet-on system developed for the genus Bacteroides, we newly created a conditional gene expression system in P. gingivalis. We succeeded in establishing conditional expression of nanoluciferase and its derivatives for lipoprotein export, of FimA for a representative of lipoprotein export, and of T9SS cargo proteins such as Hbp35 and PorA for representatives of type 9 protein export. Using this system, we showed that the lipoprotein export signal, which has recently been found in other species in the phylum Bacteroidota, is also functional in FimA, and that a proton motive force inhibitor can affect type 9 protein export. Collectively, our conditional protein expression method is useful for screening inhibitors of virulence factors, and may be used to investigate the role of proteins essential to bacterial survival in vivo.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 4","pages":"321-333"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9801960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Deng, Peng-Cheng Huo, Mei-Ting Feng, Rui-Ling Wang, Rui Jing, Li-Jun Luo
Introduction: MicroRNAs (miRNAs), a type of non-coding RNA, have been demonstrated to be essential posttranscriptional modulators in oral diseases and inflammatory responses. However, the specific role of miR-27a-5p in periodontitis requires further investigation. In this study, we used both cellular and animal models to determine how miR-27a-5p affects the pathogenesis of periodontitis and its associated biological functions.
Methods: Quantitative real-time polymerase chain reaction and western blotting were used to analyze the expression of cytokines, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and miR-27a-5p transcription. Investigation of alveolar bone resorption and inflammation of the periodontium in ligature-induced periodontitis in mice was performed using micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining. The binding of miR-27a-5p and PTEN was predicted using the TargetScan database and experimentally confirmed using dual luciferase reporter gene assays.
Results: The inflamed gingiva showed lower levels of miR-27a-5p. Macrophages from miR-27a-5p-/- mice produced much higher quantities of pro-inflammatory cytokines owing to the stimulation of Porphyromonas gingivalis lipopolysaccharide, and miR-27a-5p-/- mice with ligature-induced periodontitis also exhibited more severe alveolar bone resorption and damage to the periodontium. Target validation assays identified PTEN as a direct target of bona. Blocking PTEN expression partially reduced inflammation, both in vitro and in vivo.
Conclusions: miR-27a-5p alleviated the inflammatory response in periodontitis by targeting PTEN.
{"title":"miR-27a-5p alleviates periodontal inflammation by targeting phosphatase and tensin homolog deleted on chromosome ten.","authors":"Li Deng, Peng-Cheng Huo, Mei-Ting Feng, Rui-Ling Wang, Rui Jing, Li-Jun Luo","doi":"10.1111/omi.12416","DOIUrl":"https://doi.org/10.1111/omi.12416","url":null,"abstract":"<p><strong>Introduction: </strong>MicroRNAs (miRNAs), a type of non-coding RNA, have been demonstrated to be essential posttranscriptional modulators in oral diseases and inflammatory responses. However, the specific role of miR-27a-5p in periodontitis requires further investigation. In this study, we used both cellular and animal models to determine how miR-27a-5p affects the pathogenesis of periodontitis and its associated biological functions.</p><p><strong>Methods: </strong>Quantitative real-time polymerase chain reaction and western blotting were used to analyze the expression of cytokines, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and miR-27a-5p transcription. Investigation of alveolar bone resorption and inflammation of the periodontium in ligature-induced periodontitis in mice was performed using micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, and tartrate-resistant acid phosphatase (TRAP) staining. The binding of miR-27a-5p and PTEN was predicted using the TargetScan database and experimentally confirmed using dual luciferase reporter gene assays.</p><p><strong>Results: </strong>The inflamed gingiva showed lower levels of miR-27a-5p. Macrophages from miR-27a-5p<sup>-/-</sup> mice produced much higher quantities of pro-inflammatory cytokines owing to the stimulation of Porphyromonas gingivalis lipopolysaccharide, and miR-27a-5p<sup>-/-</sup> mice with ligature-induced periodontitis also exhibited more severe alveolar bone resorption and damage to the periodontium. Target validation assays identified PTEN as a direct target of bona. Blocking PTEN expression partially reduced inflammation, both in vitro and in vivo.</p><p><strong>Conclusions: </strong>miR-27a-5p alleviated the inflammatory response in periodontitis by targeting PTEN.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 4","pages":"309-320"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10152302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rifat Rahman, Mushfiq H Shaikh, Divya Gopinath, Adi Idris, Newell W Johnson
Squamous cell carcinoma of the oral cavity (OSCC) is the most common head-and-neck malignancy. Importantly, we are experiencing an alarming rise in the incidence of oropharyngeal squamous cell carcinoma (OPSCC) globally. Oncogenic viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), are known to be co-associated with OSCC and OPSCC cases. However, the reported incidence of HPV and EBV co-infection in OSCCs and OPSCCs globally is unknown. To address this, we performed a formal meta-analysis and systematic review on published studies that report the detection of both EBV and HPV in OSCCs and OPSCCs. Our analysis revealed 18 relevant studies out of a total of 1820 cases (1181 from the oral cavity and 639 from the oropharynx). Overall, HPV and EBV co-infection was found in 11.9% of OSCC and OPSCC cases combined (95% CI: 8%-14.1%). Based on anatomical subsite, dual positivity estimates were 10.5% (95% CI: 6.7%-15.1%) for OSCC and 14.2% (95% CI: 9.1%-21.3%) for OPSCC. The highest dual positivity rates described were in European countries: for OSCC 34.7% (95% CI: 25.9%-44.6%) in Sweden and for OPSCC, 23.4% (95% CI: 16.9%-31.5%) in Poland. Given these substantive prevalence rates, the value of detecting dual infection in the diagnosis and prognosis of these cancers deserves careful longitudinal studies, as do implications for cancer prevention and therapy. We further proposed molecular mechanisms that could explain how HPV and EBV could co-contribute to the aetiology of OSCCs and OPSCCs.
{"title":"Human papillomavirus and Epstein-Barr virus co-infection in oral and oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis.","authors":"Rifat Rahman, Mushfiq H Shaikh, Divya Gopinath, Adi Idris, Newell W Johnson","doi":"10.1111/omi.12412","DOIUrl":"https://doi.org/10.1111/omi.12412","url":null,"abstract":"<p><p>Squamous cell carcinoma of the oral cavity (OSCC) is the most common head-and-neck malignancy. Importantly, we are experiencing an alarming rise in the incidence of oropharyngeal squamous cell carcinoma (OPSCC) globally. Oncogenic viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), are known to be co-associated with OSCC and OPSCC cases. However, the reported incidence of HPV and EBV co-infection in OSCCs and OPSCCs globally is unknown. To address this, we performed a formal meta-analysis and systematic review on published studies that report the detection of both EBV and HPV in OSCCs and OPSCCs. Our analysis revealed 18 relevant studies out of a total of 1820 cases (1181 from the oral cavity and 639 from the oropharynx). Overall, HPV and EBV co-infection was found in 11.9% of OSCC and OPSCC cases combined (95% CI: 8%-14.1%). Based on anatomical subsite, dual positivity estimates were 10.5% (95% CI: 6.7%-15.1%) for OSCC and 14.2% (95% CI: 9.1%-21.3%) for OPSCC. The highest dual positivity rates described were in European countries: for OSCC 34.7% (95% CI: 25.9%-44.6%) in Sweden and for OPSCC, 23.4% (95% CI: 16.9%-31.5%) in Poland. Given these substantive prevalence rates, the value of detecting dual infection in the diagnosis and prognosis of these cancers deserves careful longitudinal studies, as do implications for cancer prevention and therapy. We further proposed molecular mechanisms that could explain how HPV and EBV could co-contribute to the aetiology of OSCCs and OPSCCs.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 4","pages":"259-274"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9787107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-05-03DOI: 10.1111/omi.12414
Marie-Claire Boutrin, Arunima Mishra, Charles Wang, Yuetan Dou, Hansel M Fletcher
Porphyromonas gingivalis, the causative agent of adult periodontitis, must gain resistance to frequent oxidative and nitric oxide (NO) stress attacks from immune cells in the periodontal pocket to survive. Previously, we found that, in the wild-type and under NO stress, the expression of PG1237 (CdhR), the gene encoding for a putative LuxR transcriptional regulator previously called community development and hemin regulator (CdhR), was upregulated 7.7-fold, and its adjacent gene PG1236 11.9-fold. Isogenic mutants P. gingivalis FLL457 (ΔCdhR::ermF), FLL458 (ΔPG1236::ermF), and FLL459 (ΔPG1236-CdhR::ermF) were made by allelic exchange mutagenesis to determine the involvement of these genes in P. gingivalis W83 NO stress resistance. The mutants were black pigmented and β hemolytic and their gingipain activities varied with strains. FLL457 and FLL459 mutants were more sensitive to NO compared to the wild type, and complementation restored NO sensitivity to that of the wild type. DNA microarray analysis of FLL457 showed that approximately 2% of the genes were upregulated and over 1% of the genes downregulated under NO stress conditions compared to the wild type. Transcriptome analysis of FLL458 and FLL459 under NO stress showed differences in their modulation patterns. Some similarities were also noticed between all mutants. The PG1236-CdhR gene cluster revealed increased expression under NO stress and may be part of the same transcriptional unit. Recombinant CdhR showed binding activity to the predicted promoter regions of PG1459 and PG0495. Taken together, the data indicate that CdhR may play a role in NO stress resistance and be involved in a regulatory network in P. gingivalis.
牙龈卟啉单胞菌(Porphyromonas gingivalis)是成人牙周炎的致病菌,它必须抵抗牙周袋中免疫细胞频繁的氧化和一氧化氮(NO)应激攻击才能存活。此前,我们发现,在野生型和一氧化氮压力下,PG1237(CdhR)的表达上调了 7.7 倍,其邻近基因 PG1236 的表达上调了 11.9 倍。通过等位基因交换诱变制备了等源突变体 P. gingivalis FLL457(ΔCdhR::ermF)、FLL458(ΔPG1236::ermF)和 FLL459(ΔPG1236-CdhR::ermF),以确定这些基因在 P. gingivalis W83 NO 应激抗性中的参与情况。突变体有黑色素沉着和β溶血,其gingipain活性随菌株而异。与野生型相比,FLL457和FLL459突变体对NO更敏感,通过互补可使其对NO的敏感性恢复到野生型的水平。对 FLL457 的 DNA 微阵列分析表明,与野生型相比,在 NO 胁迫条件下,约有 2% 的基因上调,超过 1% 的基因下调。在 NO 胁迫条件下对 FLL458 和 FLL459 的转录组分析表明,它们的调控模式存在差异。所有突变体之间也有一些相似之处。PG1236-CdhR 基因簇在氮氧化物胁迫下表达增加,可能是同一转录单元的一部分。重组 CdhR 显示出与 PG1459 和 PG0495 预测启动子区域的结合活性。综上所述,这些数据表明 CdhR 可能在抗 NO 应激中发挥作用,并参与了牙龈脓疱病的调控网络。
{"title":"The involvement of CdhR in Porphyromonas gingivalis during nitric oxide stress.","authors":"Marie-Claire Boutrin, Arunima Mishra, Charles Wang, Yuetan Dou, Hansel M Fletcher","doi":"10.1111/omi.12414","DOIUrl":"10.1111/omi.12414","url":null,"abstract":"<p><p>Porphyromonas gingivalis, the causative agent of adult periodontitis, must gain resistance to frequent oxidative and nitric oxide (NO) stress attacks from immune cells in the periodontal pocket to survive. Previously, we found that, in the wild-type and under NO stress, the expression of PG1237 (CdhR), the gene encoding for a putative LuxR transcriptional regulator previously called community development and hemin regulator (CdhR), was upregulated 7.7-fold, and its adjacent gene PG1236 11.9-fold. Isogenic mutants P. gingivalis FLL457 (ΔCdhR::ermF), FLL458 (ΔPG1236::ermF), and FLL459 (ΔPG1236-CdhR::ermF) were made by allelic exchange mutagenesis to determine the involvement of these genes in P. gingivalis W83 NO stress resistance. The mutants were black pigmented and β hemolytic and their gingipain activities varied with strains. FLL457 and FLL459 mutants were more sensitive to NO compared to the wild type, and complementation restored NO sensitivity to that of the wild type. DNA microarray analysis of FLL457 showed that approximately 2% of the genes were upregulated and over 1% of the genes downregulated under NO stress conditions compared to the wild type. Transcriptome analysis of FLL458 and FLL459 under NO stress showed differences in their modulation patterns. Some similarities were also noticed between all mutants. The PG1236-CdhR gene cluster revealed increased expression under NO stress and may be part of the same transcriptional unit. Recombinant CdhR showed binding activity to the predicted promoter regions of PG1459 and PG0495. Taken together, the data indicate that CdhR may play a role in NO stress resistance and be involved in a regulatory network in P. gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 4","pages":"289-308"},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9792413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}