首页 > 最新文献

Molecular Oral Microbiology最新文献

英文 中文
Characterization of thioredoxin-thioredoxin reductase system in Filifactor alocis. Filifactor alocis 中硫氧化还原酶系统的特征。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-01 Epub Date: 2024-10-20 DOI: 10.1111/omi.12486
Arunima Mishra, Yuetan Dou, Hansel M Fletcher

Introduction: Filifactor alocis is a newly appreciated member of the periodontal community with a strong periodontal disease correlation. Little is known about the survival mechanisms by which F. alocis copes with oxidative stress and establishes the infection within the local inflammatory microenvironment of the periodontal pocket. The aim of this study is to investigate if F. alocis putative peroxiredoxin/AhpC protein FA768 may constitute an alkyl hydroperoxide reductase system utilizing putative thioredoxin reductase protein FA608, and putative thioredoxin/glutaredoxin homolog FA1411/FA455.

Methods: FA768, FA608, FA1411 and FA455 proteins from F. alocis were expressed and purified from Escherichia coli. Insulin and 5,5-dithio-bis-2-nitrobenzoic acid (DTNB) reduction assays were performed to determine if purified FA1411 and FA455 proteins could be a substrate for FA608. The peroxidase activity of FA768 was examined by measuring its ability to reduce hydrogen peroxide (H2O2) with FA608 and FA1411/FA455 provided as the reducing systems. Further, the hydroperoxide substrate specificity of FA768 was analyzed by monitoring the NADPH oxidation in the presence of different peroxides, including H2O2, cumyl hydroperoxide (CHP), and tert-butyl hydroperoxide (t-BHP).

Results: In this study, we have demonstrated the existence of a functioning thioredoxin-dependent alkyl hydroperoxide system in F. alocis. This system is comprised of a thioredoxin reductase (FA608), a thioredoxin/glutaredoxin homolog (FA1411/FA455), and a typical 2-cysteine peroxiredoxin/AhpC (FA768). FA608, together with FA1411/FA455, can function as a thioredoxin reductase system to reduce insulin, DTNB, and FA768. FA455 is a glutaredoxin-like protein with thioredoxin functions in F. alocis. Both the FA768/FA608/FA1411 and FA768/FA608/FA455 reductase systems were NADPH-dependent and exhibited specificity for broad hydroperoxide substrates H2O2, CHP, and t-BHP.

Conclusions: This is the first study of a thioredoxin dependent alkyl hydroperoxide system from a periodontal pathogen. This system is proposed to protect F. alocis against oxidative stress due to the likely absence of a catalase or an additional peroxiredoxin homolog.

导言:Filifactor alocis 是牙周病群体中新近受到重视的成员,与牙周病密切相关。人们对 F. alocis 应对氧化应激并在牙周袋局部炎症微环境中建立感染的生存机制知之甚少。本研究旨在探讨 F. alocis 推测的过氧化氢还原酶/AhpC 蛋白 FA768 是否可能利用推测的硫氧还原酶蛋白 FA608 和推测的硫氧还原酶/谷氨酰还原酶同源物 FA1411/FA455,构成一个烷基过氧化氢还原酶系统:方法:从大肠杆菌中表达并纯化了 F. alocis 的 FA768、FA608、FA1411 和 FA455 蛋白。进行了胰岛素和 5,5-二硫双-2-硝基苯甲酸(DTNB)还原试验,以确定纯化的 FA1411 和 FA455 蛋白是否可作为 FA608 的底物。通过测定 FA768 以 FA608 和 FA1411/FA455 为还原体系还原过氧化氢(H2O2)的能力,检验了 FA768 的过氧化物酶活性。此外,通过监测在不同过氧化物(包括 H2O2、积雪草过氧化氢(CHP)和叔丁基过氧化氢(t-BHP))存在下的 NADPH 氧化作用,分析了 FA768 的过氧化氢底物特异性:结果:在这项研究中,我们证明了 F. alocis 中存在一个依赖硫代氧化还蛋白的烷基过氧化氢系统。该系统由一个硫氧还原酶(FA608)、一个硫氧还原酶/谷硫磷同源物(FA1411/FA455)和一个典型的 2-半胱氨酸过氧化还原酶/AhpC(FA768)组成。FA608 与 FA1411/FA455 一起,可作为硫代氧化还原酶系统来还原胰岛素、DTNB 和 FA768。FA455 是一种类似于谷胱甘肽的蛋白质,在 F. alocis 中具有硫代毒素功能。FA768/FA608/FA1411和FA768/FA608/FA455还原酶系统都依赖于NADPH,并对广泛的过氧化氢底物H2O2、CHP和t-BHP表现出特异性:这是首次研究牙周病原体的硫代氧化还原酶依赖性烷基过氧化氢系统。由于可能缺乏过氧化氢酶或额外的过氧化还原酶同源物,该系统可保护 F. alocis 免受氧化应激。
{"title":"Characterization of thioredoxin-thioredoxin reductase system in Filifactor alocis.","authors":"Arunima Mishra, Yuetan Dou, Hansel M Fletcher","doi":"10.1111/omi.12486","DOIUrl":"10.1111/omi.12486","url":null,"abstract":"<p><strong>Introduction: </strong>Filifactor alocis is a newly appreciated member of the periodontal community with a strong periodontal disease correlation. Little is known about the survival mechanisms by which F. alocis copes with oxidative stress and establishes the infection within the local inflammatory microenvironment of the periodontal pocket. The aim of this study is to investigate if F. alocis putative peroxiredoxin/AhpC protein FA768 may constitute an alkyl hydroperoxide reductase system utilizing putative thioredoxin reductase protein FA608, and putative thioredoxin/glutaredoxin homolog FA1411/FA455.</p><p><strong>Methods: </strong>FA768, FA608, FA1411 and FA455 proteins from F. alocis were expressed and purified from Escherichia coli. Insulin and 5,5-dithio-bis-2-nitrobenzoic acid (DTNB) reduction assays were performed to determine if purified FA1411 and FA455 proteins could be a substrate for FA608. The peroxidase activity of FA768 was examined by measuring its ability to reduce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) with FA608 and FA1411/FA455 provided as the reducing systems. Further, the hydroperoxide substrate specificity of FA768 was analyzed by monitoring the NADPH oxidation in the presence of different peroxides, including H<sub>2</sub>O<sub>2</sub>, cumyl hydroperoxide (CHP), and tert-butyl hydroperoxide (t-BHP).</p><p><strong>Results: </strong>In this study, we have demonstrated the existence of a functioning thioredoxin-dependent alkyl hydroperoxide system in F. alocis. This system is comprised of a thioredoxin reductase (FA608), a thioredoxin/glutaredoxin homolog (FA1411/FA455), and a typical 2-cysteine peroxiredoxin/AhpC (FA768). FA608, together with FA1411/FA455, can function as a thioredoxin reductase system to reduce insulin, DTNB, and FA768. FA455 is a glutaredoxin-like protein with thioredoxin functions in F. alocis. Both the FA768/FA608/FA1411 and FA768/FA608/FA455 reductase systems were NADPH-dependent and exhibited specificity for broad hydroperoxide substrates H<sub>2</sub>O<sub>2</sub>, CHP, and t-BHP.</p><p><strong>Conclusions: </strong>This is the first study of a thioredoxin dependent alkyl hydroperoxide system from a periodontal pathogen. This system is proposed to protect F. alocis against oxidative stress due to the likely absence of a catalase or an additional peroxiredoxin homolog.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"50-63"},"PeriodicalIF":2.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review. CRISPR-Cas 系统在牙周病发病机制中的作用以及牙周治疗的潜力:综述。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-01 Epub Date: 2024-09-03 DOI: 10.1111/omi.12483
Aditi Chopra, Geeta Bhuvanagiri, Kshitija Natu, Avneesh Chopra

Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.

成簇的规则间隔短回文重复序列(CRISPRs)是一种能够编辑宿主基因组序列的 DNA 序列。CRISPR 及其特定的 CRISPR 相关(Cas)蛋白复合物已被用于各种应用。这些应用包括激活或抑制特定基因序列,或作为分子剪刀精确剪切和修改宿主 DNA。CRISPR-Cas 系统也天然存在于许多口腔细菌中,它们有助于营养、生物膜形成、种间和种内交流(法定人数感应)、水平基因转移、毒力、炎症调节、合并感染和免疫反应规避。它甚至还能发挥适应性免疫系统的功能,通过靶向和降解微生物的 DNA 来抵御入侵病毒和其他细菌的外来遗传因子。最近,CRISPR-Cas 系统已作为分子编辑工具进行了测试,以操纵与牙周疾病(如牙周炎)相关的特定基因,并作为输送抗菌剂以克服抗菌剂耐药性的新方法。随着CRISPR在治疗炎症性疾病方面的作用迅速增强,它在牙周病方面的应用也越来越受欢迎。因此,本综述旨在讨论口腔微生物中不同类型的CRISPR-Cas及其在牙周病发病机制和牙周病精准治疗中的作用。
{"title":"Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review.","authors":"Aditi Chopra, Geeta Bhuvanagiri, Kshitija Natu, Avneesh Chopra","doi":"10.1111/omi.12483","DOIUrl":"10.1111/omi.12483","url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"1-16"},"PeriodicalIF":2.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salivary microbiome and biomarker characteristics of diabetics with periodontitis. 患有牙周炎的糖尿病患者的唾液微生物组和生物标志物特征。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2025-02-01 Epub Date: 2024-10-01 DOI: 10.1111/omi.12485
Jeffrey L Ebersole, Sreenatha S Kirakodu, Xiahou Zhang, Dolph Dawson, Craig S Miller

Objective: To examine the characteristics of the salivary microbiome in Type 2 diabetes mellitus (T2DM) patients with or without periodontitis.

Background: Periodontitis has been identified as clear sequelae of T2DM. This chronic oral disease also impacts the management of the clinical features of diabetes. The oral microbiome characteristics in T2DM with and without periodontitis, as well as the response of this oral microbiome to nonsurgical therapy have not been well described. Knowledge of key oral biological features could help address the observed poorer clinical presentation of T2DM patients.

Methods: The oral microbiome in saliva of adult cohorts periodontally healthy/non-diabetic (non-periodontitis; NP; n = 31), T2DM without periodontitis (DWoP; n = 32), and T2DM with periodontitis (DWP; n = 29) were characterized by microbial molecular analysis using V3-V4 sequencing and Luminex or ELISA techniques for salivary host analytes.

Results: Phyla distribution showed DWP with significantly lower levels of Firmicutes and Actinobacteria and higher levels of Fusobacteria and Spirochetes compared to the healthier groups. Approximately 10% of the detected microbial species showed significant differences in frequency and level of colonization among the DWP, DWoP, and NP samples. A subset of bacteria were significantly correlated with clinical disease features, as well as a specific repertoire of salivary analytes, in particular matrix metalloproteinase (MMP)8/MMP9, interleukin-1ß, B-cell activating factor, and resistin differed between the groups and were related to specific taxa. Principal component analysis that identified a majority of the DWP subjects microbiome was unique based upon an array of 27 taxa out of up to 255 detected in the saliva samples.

Conclusion: T2DM patients with periodontitis show unique oral microbiome and salivary analyte composition compared to diabetics or non-diabetic persons without periodontitis. Specific members of the oral microbiome relate directly to the clinical disease features and/or salivary biomolecules in T2DM individuals.

摘要研究患有或未患有牙周炎的 2 型糖尿病(T2DM)患者唾液微生物组的特征:背景:牙周炎已被确定为 T2DM 的明显后遗症。背景:牙周炎已被确定为 T2DM 的明显后遗症,这种慢性口腔疾病也会影响糖尿病临床特征的管理。对于患有或未患有牙周炎的 T2DM 患者的口腔微生物组特征,以及这种口腔微生物组对非手术疗法的反应还没有很好的描述。了解关键的口腔生物学特征有助于解决观察到的 T2DM 患者较差的临床表现:方法:使用 V3-V4 测序和唾液宿主分析物的 Luminex 或 ELISA 技术对牙周健康/非糖尿病(非牙周炎;NP;n = 31)、无牙周炎的 T2DM(DWoP;n = 32)和牙周炎的 T2DM(DWP;n = 29)成人群体唾液中的口腔微生物组进行微生物分子分析:结果表明:与健康组相比,DWP 的菌属分布显示,固缩菌和放线菌的含量明显较低,而镰刀菌和螺旋体的含量较高。在检测到的微生物物种中,约有 10%在 DWP、DWoP 和 NP 样本中的定植频率和水平存在显著差异。一部分细菌与临床疾病特征以及唾液分析物的特定种类有明显的相关性,特别是基质金属蛋白酶(MMP)8/MMP9、白细胞介素-1ß、B 细胞活化因子和抵抗素在不同组间存在差异,并与特定的类群有关。主成分分析结果表明,在唾液样本中检测到的多达 255 个分类群中,有 27 个分类群在 DWP 受试者微生物组中占多数:结论:与糖尿病患者或无牙周炎的非糖尿病患者相比,患有牙周炎的 T2DM 患者显示出独特的口腔微生物组和唾液分析物组成。口腔微生物组的特定成员与 T2DM 患者的临床疾病特征和/或唾液生物大分子直接相关。
{"title":"Salivary microbiome and biomarker characteristics of diabetics with periodontitis.","authors":"Jeffrey L Ebersole, Sreenatha S Kirakodu, Xiahou Zhang, Dolph Dawson, Craig S Miller","doi":"10.1111/omi.12485","DOIUrl":"10.1111/omi.12485","url":null,"abstract":"<p><strong>Objective: </strong>To examine the characteristics of the salivary microbiome in Type 2 diabetes mellitus (T2DM) patients with or without periodontitis.</p><p><strong>Background: </strong>Periodontitis has been identified as clear sequelae of T2DM. This chronic oral disease also impacts the management of the clinical features of diabetes. The oral microbiome characteristics in T2DM with and without periodontitis, as well as the response of this oral microbiome to nonsurgical therapy have not been well described. Knowledge of key oral biological features could help address the observed poorer clinical presentation of T2DM patients.</p><p><strong>Methods: </strong>The oral microbiome in saliva of adult cohorts periodontally healthy/non-diabetic (non-periodontitis; NP; n = 31), T2DM without periodontitis (DWoP; n = 32), and T2DM with periodontitis (DWP; n = 29) were characterized by microbial molecular analysis using V3-V4 sequencing and Luminex or ELISA techniques for salivary host analytes.</p><p><strong>Results: </strong>Phyla distribution showed DWP with significantly lower levels of Firmicutes and Actinobacteria and higher levels of Fusobacteria and Spirochetes compared to the healthier groups. Approximately 10% of the detected microbial species showed significant differences in frequency and level of colonization among the DWP, DWoP, and NP samples. A subset of bacteria were significantly correlated with clinical disease features, as well as a specific repertoire of salivary analytes, in particular matrix metalloproteinase (MMP)8/MMP9, interleukin-1ß, B-cell activating factor, and resistin differed between the groups and were related to specific taxa. Principal component analysis that identified a majority of the DWP subjects microbiome was unique based upon an array of 27 taxa out of up to 255 detected in the saliva samples.</p><p><strong>Conclusion: </strong>T2DM patients with periodontitis show unique oral microbiome and salivary analyte composition compared to diabetics or non-diabetic persons without periodontitis. Specific members of the oral microbiome relate directly to the clinical disease features and/or salivary biomolecules in T2DM individuals.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"37-49"},"PeriodicalIF":2.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of PG1037 in the repair of 8-oxo-7,8-dihydroguanine caused by oxidative stress in Porphyromonas gingivalis. PG1037 参与修复牙龈卟啉单胞菌氧化应激引起的 8-氧代-7,8-二氢鸟嘌呤。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-08-29 DOI: 10.1111/omi.12482
Yuetan Dou, Arunima Mishra, Hansel M Fletcher

Background: The PG1037 gene is part of the uvrA-PG1037-pcrA operon in Porphyromonas gingivalis. It encodes for a protein of unknown function upregulated under hydrogen peroxide (H2O2)-induced oxidative stress. Bioinformatic analysis shows that PG1037 has a zinc-finger motif, two peroxidase motifs, and one cytidylate kinase domain. The aim of this study is to characterize further the role of the PG1037 recombinant protein in the unique 8-oxoG repair system in P. gingivalis.

Materials and methods: PG1037 recombinant proteins with deletions in the zinc-finger or peroxidase motifs were created. Electrophoretic mobility shift assays were used to evaluate the ability of the recombinant proteins to bind 8-oxoG-containing oligonucleotides. Zinc binding, peroxidase, and Fenton reaction assays were used to assess the functional roles of the rPG1037 protein. A bacterial adenylate cyclase two-bride assay was used to identify the partner protein of PG1037 in the repair of 8-oxoG.

Results: The recombinant PG1037 (rPG1037) protein carrying an N-terminal His-tag demonstrated an ability to recognize and bind 8-oxoG-containing oligonucleotide. In contrast to the wild-type rPG1037 protein, the zinc-finger motif deletion resulted in the loss of zinc and 8-oxoG binding activities. A deletion of the peroxidase motif-1 showed a decrease in peroxidase activity. Using a bacterial adenylate cyclase two-hybrid system, there was no observed protein-protein interaction of PG1037 with UvrA (PG1036), PcrA (PG1038), or mismatch repair system proteins.

Conclusions: Taken together, the results show that PG1037 is an important member of a novel mechanism that recognizes and repairs oxidative stress-induced DNA damage in P. gingivalis.

背景:PG1037 基因是牙龈卟啉单胞菌中 uvrA-PG1037-pcrA 操作子的一部分。它编码一种在过氧化氢(H2O2)诱导的氧化应激下上调的未知功能蛋白质。生物信息学分析表明,PG1037 具有一个锌指基团、两个过氧化物酶基团和一个细胞苷酸激酶结构域。本研究的目的是进一步确定 PG1037 重组蛋白在牙龈脓肿独特的 8-oxoG 修复系统中的作用:材料: 制作了锌指或过氧化物酶基序缺失的 PG1037 重组蛋白。电泳迁移试验用于评估重组蛋白结合含 8-oxoG 寡核苷酸的能力。锌结合、过氧化物酶和芬顿反应试验用于评估 rPG1037 蛋白的功能作用。利用细菌腺苷酸环化酶双臂试验确定了 PG1037 在修复 8-oxoG 过程中的伙伴蛋白:结果:带有 N 端 His 标记的重组 PG1037(rPG1037)蛋白具有识别和结合含 8-oxoG 寡核苷酸的能力。与野生型 rPG1037 蛋白相反,锌指基序缺失导致锌和 8-oxoG 结合活性丧失。过氧化物酶基序-1的缺失导致过氧化物酶活性降低。利用细菌腺苷酸环化酶双杂交系统,没有观察到 PG1037 与 UvrA (PG1036)、PcrA (PG1038) 或错配修复系统蛋白之间的蛋白质相互作用:综上所述,研究结果表明,PG1037 是牙龈脓疱菌识别和修复氧化应激诱导的 DNA 损伤的新型机制的重要成员。
{"title":"Involvement of PG1037 in the repair of 8-oxo-7,8-dihydroguanine caused by oxidative stress in Porphyromonas gingivalis.","authors":"Yuetan Dou, Arunima Mishra, Hansel M Fletcher","doi":"10.1111/omi.12482","DOIUrl":"10.1111/omi.12482","url":null,"abstract":"<p><strong>Background: </strong>The PG1037 gene is part of the uvrA-PG1037-pcrA operon in Porphyromonas gingivalis. It encodes for a protein of unknown function upregulated under hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced oxidative stress. Bioinformatic analysis shows that PG1037 has a zinc-finger motif, two peroxidase motifs, and one cytidylate kinase domain. The aim of this study is to characterize further the role of the PG1037 recombinant protein in the unique 8-oxoG repair system in P. gingivalis.</p><p><strong>Materials and methods: </strong>PG1037 recombinant proteins with deletions in the zinc-finger or peroxidase motifs were created. Electrophoretic mobility shift assays were used to evaluate the ability of the recombinant proteins to bind 8-oxoG-containing oligonucleotides. Zinc binding, peroxidase, and Fenton reaction assays were used to assess the functional roles of the rPG1037 protein. A bacterial adenylate cyclase two-bride assay was used to identify the partner protein of PG1037 in the repair of 8-oxoG.</p><p><strong>Results: </strong>The recombinant PG1037 (rPG1037) protein carrying an N-terminal His-tag demonstrated an ability to recognize and bind 8-oxoG-containing oligonucleotide. In contrast to the wild-type rPG1037 protein, the zinc-finger motif deletion resulted in the loss of zinc and 8-oxoG binding activities. A deletion of the peroxidase motif-1 showed a decrease in peroxidase activity. Using a bacterial adenylate cyclase two-hybrid system, there was no observed protein-protein interaction of PG1037 with UvrA (PG1036), PcrA (PG1038), or mismatch repair system proteins.</p><p><strong>Conclusions: </strong>Taken together, the results show that PG1037 is an important member of a novel mechanism that recognizes and repairs oxidative stress-induced DNA damage in P. gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"507-520"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of Fusobacterium nucleatum in cancer and its implications for clinical applications. 核酸镰刀菌在癌症中的作用及其对临床应用的影响。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-07-11 DOI: 10.1111/omi.12475
Wanyi Luo, Juxi Han, Xian Peng, Xuedong Zhou, Tao Gong, Xin Zheng

Fusobacterium nucleatum, a gram-negative anaerobic bacterium abundantly found in the human oral cavity, is widely recognized as a key pathobiont responsible for the initiation and progression of periodontal diseases due to its remarkable aggregative capabilities. Numerous clinical studies have linked F. nucleatum with unfavorable prognostic outcomes in various malignancies. In further research, scholars have partially elucidated the mechanisms underlying F. nucleatum's impact on various types of cancer, thus gaining a certain comprehension of the role played by F. nucleatum in cancer. In this comprehensive review, we present an in-depth synthesis of the interplay between F. nucleatum and different cancers, focusing on aspects such as tumor initiation, metastasis, chemoresistance, and modulation of the tumor immune microenvironment and immunotherapy. The implications for cancer diagnosis and treatment are also summarized. The objective of this review is to enhance our comprehension of the intricate relationship between F. nucleatum and oncogenic pathogenesis, while emphasizing potential therapeutic strategies.

核团镰刀菌是一种革兰氏阴性厌氧菌,大量存在于人类口腔中,因其显著的聚集能力而被广泛认为是导致牙周疾病发生和发展的关键病原菌。大量临床研究表明,核酸酵母菌与各种恶性肿瘤的不良预后有关。在进一步的研究中,学者们部分阐明了 F. nucleatum 对各种癌症的影响机制,从而对 F. nucleatum 在癌症中扮演的角色有了一定的了解。在这篇综合综述中,我们深入综述了 F. nucleatum 与不同癌症之间的相互作用,重点关注肿瘤的诱发、转移、化疗耐药性以及肿瘤免疫微环境的调节和免疫治疗等方面。此外,还总结了其对癌症诊断和治疗的影响。本综述旨在加深我们对 F. nucleatum 与致癌致病之间错综复杂关系的理解,同时强调潜在的治疗策略。
{"title":"The role of Fusobacterium nucleatum in cancer and its implications for clinical applications.","authors":"Wanyi Luo, Juxi Han, Xian Peng, Xuedong Zhou, Tao Gong, Xin Zheng","doi":"10.1111/omi.12475","DOIUrl":"10.1111/omi.12475","url":null,"abstract":"<p><p>Fusobacterium nucleatum, a gram-negative anaerobic bacterium abundantly found in the human oral cavity, is widely recognized as a key pathobiont responsible for the initiation and progression of periodontal diseases due to its remarkable aggregative capabilities. Numerous clinical studies have linked F. nucleatum with unfavorable prognostic outcomes in various malignancies. In further research, scholars have partially elucidated the mechanisms underlying F. nucleatum's impact on various types of cancer, thus gaining a certain comprehension of the role played by F. nucleatum in cancer. In this comprehensive review, we present an in-depth synthesis of the interplay between F. nucleatum and different cancers, focusing on aspects such as tumor initiation, metastasis, chemoresistance, and modulation of the tumor immune microenvironment and immunotherapy. The implications for cancer diagnosis and treatment are also summarized. The objective of this review is to enhance our comprehension of the intricate relationship between F. nucleatum and oncogenic pathogenesis, while emphasizing potential therapeutic strategies.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"417-432"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of toxins from different periodontitis-associated bacteria on human platelet function. 不同牙周炎相关细菌的毒素对人体血小板功能的影响
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-07-26 DOI: 10.1111/omi.12480
Anna Kobsar, Sophie Wiebecke, Katja Weber, Angela Koessler, Sabine Kuhn, Markus Boeck, Julia Zeller-Hahn, Juergen Koessler

Background: Periodontitis is caused by a dysbiosis of oral bacteria resulting in alveolar bone destruction and teeth loss. The role of platelets in pathogenesis of periodontitis is a subject of research. The release of toxins from periodontitis-associated bacteria may influence platelet function and contribute to the modulation of hemostatic or inflammatory responses. Therefore, we explored platelet function upon exposure to defined toxins: leukotoxin A from Aggregatibacter actinomycetemcomitans (LtxA), a synthetic version of the C14-Tri-LAN-Gly peptide from Fusobacterium nucleatum (C14), and lipopolysaccharides from Porphyromonas gingivalis (LPS).

Methods: Light transmission aggregometry was performed after the addition of toxins to platelet-rich plasma in different doses. Flow cytometry was used to identify inhibitory effects of toxins by measuring phosphorylation of the vaso-dilator-stimulated phosphoprotein or to identify activating effects by the detection of CD62P expression. The release of chemokines derived from washed platelets was determined by immunoassays.

Results: Collagen-induced threshold aggregation values were diminished upon incubation with LtxA and C14, accompanied with an increase of vaso-dilator-stimulated phosphoprotein (VASP) phosphorylation, indicating platelet inhibition. In contrast, LPS did not affect aggregation but slightly enhanced CD62P expression under co-stimulation with low-dose thrombin pointing to slight platelet activation. The three toxins did not relevantly influence the secretion of chemokines.

Conclusions: Although weak, the investigated toxins differently influenced human platelet function. LtxA and C14 mediated inhibitory effects, whereas LPS contributed to a slight activation of platelets. Further analysis of specific cellular responses mediated by bacterial toxins may render novel targets and suggestions for the treatment of periodontitis.

背景:牙周炎是由口腔细菌菌群失调引起的,导致牙槽骨破坏和牙齿脱落。血小板在牙周炎发病机制中的作用是一个研究课题。牙周炎相关细菌释放的毒素可能会影响血小板功能,并有助于调节止血或炎症反应。因此,我们研究了血小板暴露于特定毒素时的功能:放线杆菌的白细胞毒素 A(LtxA)、核分枝杆菌的 C14-Tri-LAN-Gly 肽合成物(C14)和牙龈卟啉单胞菌的脂多糖(LPS):方法:在不同剂量的富血小板血浆中加入毒素后,进行透光聚集测定。流式细胞术通过测量血管舒张剂刺激的磷蛋白的磷酸化来确定毒素的抑制作用,或通过检测 CD62P 的表达来确定毒素的激活作用。通过免疫测定法测定洗涤血小板释放的趋化因子:结果:与 LtxA 和 C14 培养后,胶原诱导的阈值聚集值降低,同时血管舒张剂刺激的磷蛋白(VASP)磷酸化增加,表明血小板受到抑制。相反,LPS 不影响血小板聚集,但在低剂量凝血酶的共同刺激下,CD62P 的表达略有增强,表明血小板有轻微活化。三种毒素对趋化因子的分泌没有相关影响:结论:所研究的毒素对人体血小板功能的影响虽然微弱,但却各不相同。LtxA 和 C14 起到了抑制作用,而 LPS 对血小板有轻微的激活作用。进一步分析细菌毒素介导的特定细胞反应可能会为牙周炎的治疗提供新的靶点和建议。
{"title":"Effect of toxins from different periodontitis-associated bacteria on human platelet function.","authors":"Anna Kobsar, Sophie Wiebecke, Katja Weber, Angela Koessler, Sabine Kuhn, Markus Boeck, Julia Zeller-Hahn, Juergen Koessler","doi":"10.1111/omi.12480","DOIUrl":"10.1111/omi.12480","url":null,"abstract":"<p><strong>Background: </strong>Periodontitis is caused by a dysbiosis of oral bacteria resulting in alveolar bone destruction and teeth loss. The role of platelets in pathogenesis of periodontitis is a subject of research. The release of toxins from periodontitis-associated bacteria may influence platelet function and contribute to the modulation of hemostatic or inflammatory responses. Therefore, we explored platelet function upon exposure to defined toxins: leukotoxin A from Aggregatibacter actinomycetemcomitans (LtxA), a synthetic version of the C14-Tri-LAN-Gly peptide from Fusobacterium nucleatum (C14), and lipopolysaccharides from Porphyromonas gingivalis (LPS).</p><p><strong>Methods: </strong>Light transmission aggregometry was performed after the addition of toxins to platelet-rich plasma in different doses. Flow cytometry was used to identify inhibitory effects of toxins by measuring phosphorylation of the vaso-dilator-stimulated phosphoprotein or to identify activating effects by the detection of CD62P expression. The release of chemokines derived from washed platelets was determined by immunoassays.</p><p><strong>Results: </strong>Collagen-induced threshold aggregation values were diminished upon incubation with LtxA and C14, accompanied with an increase of vaso-dilator-stimulated phosphoprotein (VASP) phosphorylation, indicating platelet inhibition. In contrast, LPS did not affect aggregation but slightly enhanced CD62P expression under co-stimulation with low-dose thrombin pointing to slight platelet activation. The three toxins did not relevantly influence the secretion of chemokines.</p><p><strong>Conclusions: </strong>Although weak, the investigated toxins differently influenced human platelet function. LtxA and C14 mediated inhibitory effects, whereas LPS contributed to a slight activation of platelets. Further analysis of specific cellular responses mediated by bacterial toxins may render novel targets and suggestions for the treatment of periodontitis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"468-476"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NOD2 contributes to Parvimonas micra-induced bone resorption in diabetic rats with experimental periodontitis. NOD2 在糖尿病大鼠实验性牙周炎中对 Parvimonas micra 诱导的骨吸收做出了贡献。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-05-17 DOI: 10.1111/omi.12467
Ying-Yi Chen, Li Tan, Xiao-Lin Su, Ning-Xin Chen, Qiong Liu, Yun-Zhi Feng, Yue Guo

Background: Type 2 diabetes mellitus (T2DM) may affect the oral microbial community, exacerbating periodontal inflammation; however, its pathogenic mechanisms remain unclear. As nucleotide-binding oligomerization domain 2 (NOD2) plays a crucial role in the activation during periodontitis (PD), it is hypothesized that changes in the oral microbial community due to diabetes enhance periodontal inflammation through the activation of NOD2.

Methods: We collected subgingival plaque from 180 subjects who were categorized into two groups based on the presence or absence of T2DM. The composition of oral microbiota was detected by 16S rRNA high-throughput sequencing. In animal models of PD with or without T2DM, we assessed alveolar bone resorption by micro-computerized tomography and used immunohistochemistry to detect NOD2 expression in alveolar bone. Primary osteoblasts were cultured in osteogenic induction medium with high or normal glucose and treated with inactivated bacteria. After 24 h of inactivated bacteria intervention, the osteogenic differentiation ability was detected by alkaline phosphatase (ALP) staining, and the expressions of NOD2 and interleukin-12 (IL-6) were detected by western blot.

Results: The relative abundance of Parvimonas and Filifactor in the T2DM group was increased compared to the group without T2DM. In animal models, alveolar bone mass was decreased in PD, particularly in T2DM with PD (DMPD) group, compared to controls. Immunohistochemistry revealed NOD2 in osteoblasts from the alveolar bone in both the PD group and DMPD group, especially in the DMPD group. In vitro, intervention with inactivated Parvimonas significantly reduced ALP secretion of primary osteoblasts in high glucose medium, accompanied by increased expression of NOD2 and IL-6.

Conclusions: The results suggest that T2DM leading to PD may be associated with the activation of NOD2 by Parvimonas.

背景:2 型糖尿病(T2DM)可能会影响口腔微生物群落,加剧牙周炎症;然而,其致病机制仍不清楚。由于核苷酸结合寡聚化结构域 2(NOD2)在牙周炎(PD)的活化过程中起着至关重要的作用,因此假设糖尿病导致的口腔微生物群落变化会通过激活 NOD2 而加剧牙周炎症:我们收集了 180 名受试者的龈下牙菌斑,根据是否患有 T2DM 将他们分为两组。通过 16S rRNA 高通量测序检测口腔微生物群的组成。在有或没有 T2DM 的 PD 动物模型中,我们通过微型计算机断层扫描评估了牙槽骨吸收情况,并使用免疫组化检测了牙槽骨中 NOD2 的表达。原代成骨细胞在含高或正常葡萄糖的成骨诱导培养基中培养,并用灭活细菌处理。灭活细菌干预 24 小时后,碱性磷酸酶(ALP)染色检测成骨分化能力,Western 印迹检测 NOD2 和白细胞介素-12(IL-6)的表达:结果:与无 T2DM 组相比,T2DM 组中 Parvimonas 和 Filifactor 的相对丰度增加。在动物模型中,与对照组相比,PD 组,尤其是 T2DM 伴 PD(DMPD)组的牙槽骨量减少。免疫组化显示,PD 组和 DMPD 组,尤其是 DMPD 组,牙槽骨的成骨细胞中均含有 NOD2。在体外,用灭活的帕维莫纳干预可显著降低原发性成骨细胞在高糖培养基中的 ALP 分泌,同时增加 NOD2 和 IL-6 的表达:结果表明,T2DM导致PD可能与帕氏菌激活NOD2有关。
{"title":"NOD2 contributes to Parvimonas micra-induced bone resorption in diabetic rats with experimental periodontitis.","authors":"Ying-Yi Chen, Li Tan, Xiao-Lin Su, Ning-Xin Chen, Qiong Liu, Yun-Zhi Feng, Yue Guo","doi":"10.1111/omi.12467","DOIUrl":"10.1111/omi.12467","url":null,"abstract":"<p><strong>Background: </strong>Type 2 diabetes mellitus (T2DM) may affect the oral microbial community, exacerbating periodontal inflammation; however, its pathogenic mechanisms remain unclear. As nucleotide-binding oligomerization domain 2 (NOD2) plays a crucial role in the activation during periodontitis (PD), it is hypothesized that changes in the oral microbial community due to diabetes enhance periodontal inflammation through the activation of NOD2.</p><p><strong>Methods: </strong>We collected subgingival plaque from 180 subjects who were categorized into two groups based on the presence or absence of T2DM. The composition of oral microbiota was detected by 16S rRNA high-throughput sequencing. In animal models of PD with or without T2DM, we assessed alveolar bone resorption by micro-computerized tomography and used immunohistochemistry to detect NOD2 expression in alveolar bone. Primary osteoblasts were cultured in osteogenic induction medium with high or normal glucose and treated with inactivated bacteria. After 24 h of inactivated bacteria intervention, the osteogenic differentiation ability was detected by alkaline phosphatase (ALP) staining, and the expressions of NOD2 and interleukin-12 (IL-6) were detected by western blot.</p><p><strong>Results: </strong>The relative abundance of Parvimonas and Filifactor in the T2DM group was increased compared to the group without T2DM. In animal models, alveolar bone mass was decreased in PD, particularly in T2DM with PD (DMPD) group, compared to controls. Immunohistochemistry revealed NOD2 in osteoblasts from the alveolar bone in both the PD group and DMPD group, especially in the DMPD group. In vitro, intervention with inactivated Parvimonas significantly reduced ALP secretion of primary osteoblasts in high glucose medium, accompanied by increased expression of NOD2 and IL-6.</p><p><strong>Conclusions: </strong>The results suggest that T2DM leading to PD may be associated with the activation of NOD2 by Parvimonas.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"446-460"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput characterization of the influence of Streptococcus sanguinis genes on the interaction between Streptococcus sanguinis and Porphyromonas gingivalis. 高通量鉴定血清链球菌基因对血清链球菌和牙龈卟啉单胞菌之间相互作用的影响。
IF 2.9 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-07-25 DOI: 10.1111/omi.12478
Bin Zhu, Vysakh Anandan, Liang Bao, Ping Xu

Porphyromonas gingivalis is a keystone pathogen in periodontitis, and Streptococcus sanguinis is an abundant oral commensal bacterium associated with periodontal health. However, the interaction between P. gingivalis and S. sanguinis remains obscure. Here, we established a strategy for high-throughput measurement of the cell number of P. gingivalis in the coculture with S. sanguinis by detecting the concentration of hydrogen sulfate. The interaction between P. gingivalis and over 2000 S. sanguinis single-gene mutants was characterized using this strategy, and several interaction-associated genes in S. sanguinis were determined by detecting more P. gingivalis cells in the coculture with matched S. sanguinis mutants. Three S. sanguinis interaction-associated genes were predicted to be responsible for cysteine metabolism, and the supplementation of exogenous L-cysteine promoted the cell number of P. gingivalis in the coculture with S. sanguinis. Thus, exogenous L-cysteine and the compromised cysteine metabolism in S. sanguinis enhanced the growth of P. gingivalis in the existence of S. sanguinis. Additionally, the interaction between P. gingivalis and other Streptococcus spp. was examined, and S. pneumoniae was the only streptococci that had no inhibition on the cell number of P. gingivalis. In total, this study established a new strategy for high-throughput screening of the interaction between Streptococcus and P. gingivalis and discovered a set of genes in S. sanguinis that impacted the interaction. The influence of exogenous L-cysteine on the interaction between P. gingivalis and S. sanguinis in the oral cavity needs further investigation.

牙龈卟啉单胞菌是牙周炎的主要病原体,而血清链球菌是一种与牙周健康相关的大量口腔共生细菌。然而,牙龈弧菌和 S. sanguinis 之间的相互作用仍然模糊不清。在此,我们建立了一种策略,通过检测硫酸氢盐的浓度来高通量测量牙龈脓毒性杆菌与血肠球菌共培养过程中的细胞数量。通过检测与之相匹配的 S. sanguinis 突变体共培养中更多的牙龈脓胞,我们确定了 S. sanguinis 中几个与相互作用相关的基因。三个 S. sanguinis 相互作用相关基因被预测为负责半胱氨酸代谢,补充外源 L-半胱氨酸可促进与 S. sanguinis 共培养的牙龈脓胞的细胞数量。因此,外源性 L-半胱氨酸和 S. sanguinis 中受损的半胱氨酸代谢促进了牙龈脓疱菌在 S. sanguinis 存在的情况下的生长。此外,研究还考察了牙龈脓毒性葡萄球菌与其他链球菌之间的相互作用,发现肺炎链球菌是唯一对牙龈脓毒性葡萄球菌细胞数量没有抑制作用的链球菌。总之,这项研究为高通量筛选链球菌与牙龈脓胞之间的相互作用建立了一种新策略,并发现了一组影响这种相互作用的肺炎链球菌基因。外源性 L-半胱氨酸对口腔中牙龈炎链球菌和脑膜炎链球菌相互作用的影响有待进一步研究。
{"title":"High-throughput characterization of the influence of Streptococcus sanguinis genes on the interaction between Streptococcus sanguinis and Porphyromonas gingivalis.","authors":"Bin Zhu, Vysakh Anandan, Liang Bao, Ping Xu","doi":"10.1111/omi.12478","DOIUrl":"10.1111/omi.12478","url":null,"abstract":"<p><p>Porphyromonas gingivalis is a keystone pathogen in periodontitis, and Streptococcus sanguinis is an abundant oral commensal bacterium associated with periodontal health. However, the interaction between P. gingivalis and S. sanguinis remains obscure. Here, we established a strategy for high-throughput measurement of the cell number of P. gingivalis in the coculture with S. sanguinis by detecting the concentration of hydrogen sulfate. The interaction between P. gingivalis and over 2000 S. sanguinis single-gene mutants was characterized using this strategy, and several interaction-associated genes in S. sanguinis were determined by detecting more P. gingivalis cells in the coculture with matched S. sanguinis mutants. Three S. sanguinis interaction-associated genes were predicted to be responsible for cysteine metabolism, and the supplementation of exogenous L-cysteine promoted the cell number of P. gingivalis in the coculture with S. sanguinis. Thus, exogenous L-cysteine and the compromised cysteine metabolism in S. sanguinis enhanced the growth of P. gingivalis in the existence of S. sanguinis. Additionally, the interaction between P. gingivalis and other Streptococcus spp. was examined, and S. pneumoniae was the only streptococci that had no inhibition on the cell number of P. gingivalis. In total, this study established a new strategy for high-throughput screening of the interaction between Streptococcus and P. gingivalis and discovered a set of genes in S. sanguinis that impacted the interaction. The influence of exogenous L-cysteine on the interaction between P. gingivalis and S. sanguinis in the oral cavity needs further investigation.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"461-467"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodontal treatment causes a longitudinal increase in nitrite-producing bacteria. 牙周治疗会导致产生亚硝酸盐的细菌纵向增加。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-08-22 DOI: 10.1111/omi.12479
Annabel Simpson, William Johnston, Miguel Carda-Diéguez, Alex Mira, Chris Easton, Fiona L Henriquez, Shauna Culshaw, Bob T Rosier, Mia Burleigh

Background: The oral microbiome-dependent nitrate (NO3 -)-nitrite (NO2 -)-nitric oxide (NO) pathway may help regulate blood pressure. NO2 --producing bacteria in subgingival plaque are reduced in relative abundance in patients with untreated periodontitis compared with periodontally healthy patients. In periodontitis patients, the NO2 --producing bacteria increase several months after periodontal treatment. The early effects of periodontal treatment on NO2 --producing bacteria and the NO3 --NO2 --NO pathway remain unknown. The aim of this study was to determine how periodontal treatment affects the oral NO2 --producing microbiome and salivary NO3 - and NO2 - levels over time.

Methods: The subgingival microbiota of 38 periodontitis patients was analysed before (baseline [BL]) and 1, 7 and 90 days after periodontal treatment. Changes in NO2 --producing bacteria and periodontitis-associated bacteria were determined by 16s rRNA Illumina sequencing. Saliva samples were collected at all-time points to determine NO3 - and NO2 - levels using gas-phase chemiluminescence.

Results: A significant increase was observed in the relative abundance of NO2 --producing species between BL and all subsequent timepoints (all p < 0.001). Periodontitis-associated species decreased at all timepoints, relative to BL (all p < 0.02). NO2 --producing species negatively correlated with periodontitis-associated species at all timepoints, with this relationship strongest 90 days post-treatment (ρ = -0.792, p < 0.001). Despite these findings, no significant changes were found in salivary NO3 - and NO2 - over time (all p > 0.05).

Conclusions: Periodontal treatment induced an immediate increase in the relative abundance of health-associated NO2 --producing bacteria. This increase persisted throughout periodontal healing. Future studies should test the effect of periodontal treatment combined with NO3 - intake on periodontal and cardiovascular health.

背景:口腔微生物依赖的硝酸盐(NO3-)-亚硝酸盐(NO2-)-一氧化氮(NO)途径可能有助于调节血压。与牙周健康的患者相比,未经治疗的牙周炎患者龈下菌斑中产生一氧化氮的细菌相对数量减少。牙周炎患者在牙周治疗数月后,产生 NO2 的细菌数量会增加。牙周治疗对产生 NO2 的细菌和 NO3 -NO2 -NO 途径的早期影响尚不清楚。本研究旨在确定牙周治疗如何随着时间的推移影响口腔NO2产生微生物群以及唾液中的NO3和NO2水平:方法:分析了38名牙周炎患者在牙周治疗前(基线[BL])以及牙周治疗后1天、7天和90天的龈下微生物群。通过 16s rRNA Illumina 测序确定产生二氧化氮的细菌和牙周炎相关细菌的变化。在所有时间点采集唾液样本,使用气相化学发光法测定NO3和NO2水平:结果:在BL和随后的所有时间点之间,观察到产生NO2的物种的相对丰度明显增加(所有P 2-产生物种在所有时间点与牙周炎相关物种呈负相关,这种关系在治疗后90天最强(ρ = -0.792,P 3-和NO2-随时间变化(所有P > 0.05):结论:牙周治疗会立即增加与健康相关的二氧化氮产生菌的相对丰度。这种增加在牙周愈合过程中持续存在。未来的研究应测试牙周治疗与三氧化二氮摄入相结合对牙周和心血管健康的影响。
{"title":"Periodontal treatment causes a longitudinal increase in nitrite-producing bacteria.","authors":"Annabel Simpson, William Johnston, Miguel Carda-Diéguez, Alex Mira, Chris Easton, Fiona L Henriquez, Shauna Culshaw, Bob T Rosier, Mia Burleigh","doi":"10.1111/omi.12479","DOIUrl":"10.1111/omi.12479","url":null,"abstract":"<p><strong>Background: </strong>The oral microbiome-dependent nitrate (NO<sub>3</sub> <sup>-</sup>)-nitrite (NO<sub>2</sub> <sup>-</sup>)-nitric oxide (NO) pathway may help regulate blood pressure. NO<sub>2</sub> <sup>-</sup>-producing bacteria in subgingival plaque are reduced in relative abundance in patients with untreated periodontitis compared with periodontally healthy patients. In periodontitis patients, the NO<sub>2</sub> <sup>-</sup>-producing bacteria increase several months after periodontal treatment. The early effects of periodontal treatment on NO<sub>2</sub> <sup>-</sup>-producing bacteria and the NO<sub>3</sub> <sup>-</sup>-NO<sub>2</sub> <sup>-</sup>-NO pathway remain unknown. The aim of this study was to determine how periodontal treatment affects the oral NO<sub>2</sub> <sup>-</sup>-producing microbiome and salivary NO<sub>3</sub> <sup>-</sup> and NO<sub>2</sub> <sup>-</sup> levels over time.</p><p><strong>Methods: </strong>The subgingival microbiota of 38 periodontitis patients was analysed before (baseline [BL]) and 1, 7 and 90 days after periodontal treatment. Changes in NO<sub>2</sub> <sup>-</sup>-producing bacteria and periodontitis-associated bacteria were determined by 16s rRNA Illumina sequencing. Saliva samples were collected at all-time points to determine NO<sub>3</sub> <sup>-</sup> and NO<sub>2</sub> <sup>-</sup> levels using gas-phase chemiluminescence.</p><p><strong>Results: </strong>A significant increase was observed in the relative abundance of NO<sub>2</sub> <sup>-</sup>-producing species between BL and all subsequent timepoints (all p < 0.001). Periodontitis-associated species decreased at all timepoints, relative to BL (all p < 0.02). NO<sub>2</sub> <sup>-</sup>-producing species negatively correlated with periodontitis-associated species at all timepoints, with this relationship strongest 90 days post-treatment (ρ = -0.792, p < 0.001). Despite these findings, no significant changes were found in salivary NO<sub>3</sub> <sup>-</sup> and NO<sub>2</sub> <sup>-</sup> over time (all p > 0.05).</p><p><strong>Conclusions: </strong>Periodontal treatment induced an immediate increase in the relative abundance of health-associated NO<sub>2</sub> <sup>-</sup>-producing bacteria. This increase persisted throughout periodontal healing. Future studies should test the effect of periodontal treatment combined with NO<sub>3</sub> <sup>-</sup> intake on periodontal and cardiovascular health.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"491-506"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of fluid shear stress on oral biofilm formation and composition and the transcriptional response of Streptococcus gordonii. 流体剪切应力对口腔生物膜的形成和组成以及戈登链球菌转录反应的影响。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-12-01 Epub Date: 2024-08-19 DOI: 10.1111/omi.12481
Brittany L Nairn, Bruno P Lima, Ruoqiong Chen, Judy Q Yang, Guanju Wei, Ashwani K Chumber, Mark C Herzberg

Biofilms are subjected to many environmental pressures that can influence community structure and physiology. In the oral cavity, and many other environments, biofilms are exposed to forces generated by fluid flow; however, our understanding of how oral biofilms respond to these forces remains limited. In this study, we developed a linear rocker model of fluid flow to study the impact of shear forces on Streptococcus gordonii and dental plaque-derived multispecies biofilms. We observed that as shear forces increased, S. gordonii biofilm biomass decreased. Reduced biomass was largely independent of overall bacterial growth. Transcriptome analysis of S. gordonii biofilms exposed to moderate levels of shear stress uncovered numerous genes with differential expression under shear. We also evaluated an ex vivo plaque biofilm exposed to fluid shear forces. Like S. gordonii, the plaque biofilm displayed decreased biomass as shear forces increased. Examination of plaque community composition revealed decreased diversity and compositional changes in the plaque biofilm exposed to shear. These studies help to elucidate the impact of fluid shear on oral bacteria and may be extended to other bacterial biofilm systems.

生物膜会受到许多环境压力,这些压力会影响生物群落的结构和生理学。在口腔和许多其他环境中,生物膜都会受到流体流动产生的作用力;然而,我们对口腔生物膜如何应对这些作用力的了解仍然有限。在这项研究中,我们建立了一个流体流动的线性摇杆模型,以研究剪切力对戈登链球菌和牙菌斑衍生的多菌种生物膜的影响。我们观察到,随着剪切力的增加,戈登链球菌生物膜的生物量减少。生物量的减少在很大程度上与细菌的整体生长无关。对暴露在中等剪切力下的戈登氏菌生物膜进行转录组分析,发现了许多在剪切力下有不同表达的基因。我们还评估了暴露在流体剪切力下的体外斑块生物膜。与戈登氏菌一样,随着剪切力的增加,斑块生物膜的生物量也在减少。对菌斑群落组成的研究显示,暴露在剪切力下的菌斑生物膜的多样性和组成发生了变化。这些研究有助于阐明液体剪切力对口腔细菌的影响,并可推广到其他细菌生物膜系统。
{"title":"Effects of fluid shear stress on oral biofilm formation and composition and the transcriptional response of Streptococcus gordonii.","authors":"Brittany L Nairn, Bruno P Lima, Ruoqiong Chen, Judy Q Yang, Guanju Wei, Ashwani K Chumber, Mark C Herzberg","doi":"10.1111/omi.12481","DOIUrl":"10.1111/omi.12481","url":null,"abstract":"<p><p>Biofilms are subjected to many environmental pressures that can influence community structure and physiology. In the oral cavity, and many other environments, biofilms are exposed to forces generated by fluid flow; however, our understanding of how oral biofilms respond to these forces remains limited. In this study, we developed a linear rocker model of fluid flow to study the impact of shear forces on Streptococcus gordonii and dental plaque-derived multispecies biofilms. We observed that as shear forces increased, S. gordonii biofilm biomass decreased. Reduced biomass was largely independent of overall bacterial growth. Transcriptome analysis of S. gordonii biofilms exposed to moderate levels of shear stress uncovered numerous genes with differential expression under shear. We also evaluated an ex vivo plaque biofilm exposed to fluid shear forces. Like S. gordonii, the plaque biofilm displayed decreased biomass as shear forces increased. Examination of plaque community composition revealed decreased diversity and compositional changes in the plaque biofilm exposed to shear. These studies help to elucidate the impact of fluid shear on oral bacteria and may be extended to other bacterial biofilm systems.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"477-490"},"PeriodicalIF":2.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Oral Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1