首页 > 最新文献

Molecular Oral Microbiology最新文献

英文 中文
Effects of IL-34 and anti-IL-34 neutralizing mAb on alveolar bone loss in a ligature-induced model of periodontitis. IL-34和抗IL-34中和mAb对结扎诱导的牙周炎模型中牙槽骨丢失的影响。
IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-06-01 Epub Date: 2023-10-30 DOI: 10.1111/omi.12437
Carolina Duarte, Chiaki Yamada, Bidii Ngala, Christopher Garcia, Juliet Akkaoui, Maxim Birsa, Anny Ho, Amilia Nusbaum, Hawra AlQallaf, Vanchit John, Alexandru Movila

Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1  receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.

巨噬细胞集落刺激因子(M-CSF)和白细胞介素34(IL-34)是在单核细胞/巨噬细胞谱系细胞表面表达的集落刺激因素-1受体(CSF-1r)的配体。M-CSF/核因子κ-β配体受体激活剂(RANKL)之间的协调信号传导在生理和病理性骨重塑以及口腔细菌定植引起的牙槽骨丢失中的重要性已得到充分证实。然而,我们对牙周骨丢失中IL-34/RANKL信号传导的了解仍然有限。最近发表的队列研究表明,从牙周炎患者收集的龈沟液中,IL-34的表达模式显著升高。因此,本研究旨在评估IL-34在体外和实验性结扎介导的雄性小鼠牙周炎模型中对破骨细胞生成的影响。我们的初步体外研究表明,与M-CSF引发的破骨细胞前体(OCPs)相比,RANKL诱导的IL-34引发的破细胞前体的破骨生成增加。使用结扎介导的牙周炎的实验模型,我们进一步证明了IL-34在牙周病变中的表达升高。相反,在这些牙周病变中,M-CSF水平显著降低。此外,局部注射小鼠重组IL-34蛋白可显著提高组织蛋白酶K活性,增加酒石酸抗性酸性磷酸酶(TRAP)阳性破骨细胞的数量,并促进牙周炎病变中牙槽骨的丢失。相反,抗IL-34中和单克隆抗体显著降低了牙周炎病变中牙槽骨丢失的水平和TRAP阳性破骨细胞的数量。在牙周病变中未观察到局部注射抗M-CSF中和抗体的有益效果。本研究阐明了IL-34在促进牙周病变牙槽骨丢失中的作用,并提出了基于抗IL-34单克隆抗体(mAb)的治疗方案抑制牙周炎病变牙槽骨损失的潜力。
{"title":"Effects of IL-34 and anti-IL-34 neutralizing mAb on alveolar bone loss in a ligature-induced model of periodontitis.","authors":"Carolina Duarte, Chiaki Yamada, Bidii Ngala, Christopher Garcia, Juliet Akkaoui, Maxim Birsa, Anny Ho, Amilia Nusbaum, Hawra AlQallaf, Vanchit John, Alexandru Movila","doi":"10.1111/omi.12437","DOIUrl":"10.1111/omi.12437","url":null,"abstract":"<p><p>Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1  receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"93-102"},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolism of serine/glycine lipids by human gingival cells in culture. 培养中人牙龈细胞对丝氨酸/甘氨酸脂质的代谢。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-06-01 Epub Date: 2023-10-18 DOI: 10.1111/omi.12439
Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols

Porphyromonas gingivalis produces five classes of serine/glycine lipids that are recovered in lipid extracts from periodontitis-afflicted teeth and diseased gingival tissues, particularly at sites of periodontitis. Because these lipids are recovered in diseased gingival tissues, the purpose of the present study was to evaluate the capacity of cultured human gingival fibroblasts (HGF), keratinocytes, and macrophages to hydrolyze these lipids. We hypothesize that one or more of these cell types will hydrolyze the serine/glycine lipids. The primary aim was to treat these cell types for increasing time in culture with individual highly enriched serine/glycine lipid preparations. At specified times, cells and culture media samples were harvested and extracted for hydrolysis products. The serine/glycine lipids and hydrolysis products were quantified using liquid chromatography-mass spectrometry (LC-MS) and free fatty acids were quantified using gas chromatograph-mass spectrometer. LC-MS analysis used two different mass spectrometric methods. This study revealed that treatment of HGF or macrophage (THP1) cells with lipid (L) 654 resulted in breakdown to L342 and subsequent release into culture medium. However, L654 was converted only to L567 in gingival keratinocytes. By contrast, L1256 was converted to L654 by fibroblasts and macrophages but no further hydrolysis or release into medium was observed. Gingival keratinocytes showed no hydrolysis of L1256 to smaller lipid products but because L1256 was not recovered in these cells, it is not clear what hydrolysis products are produced from L1256. Although primary cultures of gingival fibroblasts and macrophages are capable of hydrolyzing specific serine/glycine lipids, prior analysis of lipid extracts from diseased gingival tissues revealed significantly elevated levels of L1256 in diseased tissues. These results suggest that the hydrolysis of bacterial lipids in gingival tissues may reduce the levels of specific lipids, but the hydrolysis of L1256 is not sufficiently rapid to prevent significant accumulation at periodontal disease sites.

牙龈卟啉单胞菌产生五类丝氨酸/甘氨酸脂质,这些脂质在牙周炎患者牙齿和患病牙龈组织的脂质提取物中回收,特别是在牙周炎部位。由于这些脂质在患病的牙龈组织中被回收,本研究的目的是评估培养的人牙龈成纤维细胞(HGF)、角质形成细胞和巨噬细胞水解这些脂质的能力。我们假设这些细胞类型中的一种或多种会水解丝氨酸/甘氨酸脂质。主要目的是用单独的高富集丝氨酸/甘氨酸脂质制剂处理这些细胞类型以增加培养时间。在指定的时间,收获细胞和培养基样品并提取水解产物。丝氨酸/甘氨酸脂质和水解产物使用液相色谱-质谱法(LC-MS)进行定量,游离脂肪酸使用气相色谱-色谱法进行定量。LC-MS分析使用了两种不同的质谱法。该研究表明,用脂质(L)654处理HGF或巨噬细胞(THP1)细胞导致分解为L342并随后释放到培养基中。然而,L654在牙龈角质形成细胞中仅转化为L567。相反,L1256被成纤维细胞和巨噬细胞转化为L654,但没有观察到进一步水解或释放到培养基中。牙龈角质形成细胞没有显示L1256水解为较小的脂质产物,但由于L1256在这些细胞中没有回收,因此尚不清楚L1256产生了什么水解产物。尽管牙龈成纤维细胞和巨噬细胞的原代培养物能够水解特定的丝氨酸/甘氨酸脂质,但先前对患病牙龈组织的脂质提取物的分析显示,患病组织中L1256的水平显著升高。这些结果表明,牙龈组织中细菌脂质的水解可能会降低特定脂质的水平,但L1256的水解速度不够快,无法防止牙周病部位的显著积聚。
{"title":"Metabolism of serine/glycine lipids by human gingival cells in culture.","authors":"Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols","doi":"10.1111/omi.12439","DOIUrl":"10.1111/omi.12439","url":null,"abstract":"<p><p>Porphyromonas gingivalis produces five classes of serine/glycine lipids that are recovered in lipid extracts from periodontitis-afflicted teeth and diseased gingival tissues, particularly at sites of periodontitis. Because these lipids are recovered in diseased gingival tissues, the purpose of the present study was to evaluate the capacity of cultured human gingival fibroblasts (HGF), keratinocytes, and macrophages to hydrolyze these lipids. We hypothesize that one or more of these cell types will hydrolyze the serine/glycine lipids. The primary aim was to treat these cell types for increasing time in culture with individual highly enriched serine/glycine lipid preparations. At specified times, cells and culture media samples were harvested and extracted for hydrolysis products. The serine/glycine lipids and hydrolysis products were quantified using liquid chromatography-mass spectrometry (LC-MS) and free fatty acids were quantified using gas chromatograph-mass spectrometer. LC-MS analysis used two different mass spectrometric methods. This study revealed that treatment of HGF or macrophage (THP1) cells with lipid (L) 654 resulted in breakdown to L342 and subsequent release into culture medium. However, L654 was converted only to L567 in gingival keratinocytes. By contrast, L1256 was converted to L654 by fibroblasts and macrophages but no further hydrolysis or release into medium was observed. Gingival keratinocytes showed no hydrolysis of L1256 to smaller lipid products but because L1256 was not recovered in these cells, it is not clear what hydrolysis products are produced from L1256. Although primary cultures of gingival fibroblasts and macrophages are capable of hydrolyzing specific serine/glycine lipids, prior analysis of lipid extracts from diseased gingival tissues revealed significantly elevated levels of L1256 in diseased tissues. These results suggest that the hydrolysis of bacterial lipids in gingival tissues may reduce the levels of specific lipids, but the hydrolysis of L1256 is not sufficiently rapid to prevent significant accumulation at periodontal disease sites.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"103-112"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of liver X receptors suppresses the abundance and osteoclastogenic potential of osteoclast precursors and periodontal bone loss. 激活肝 X 受体可抑制破骨细胞前体的丰度和破骨细胞生成潜能以及牙周骨质流失。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-06-01 Epub Date: 2023-12-18 DOI: 10.1111/omi.12447
Yanfang Zhao, Kai Yang, Thalyta Amanda Ferreira, Xuejia Kang, Xu Feng, Jannet Katz, Suzanne M Michalek, Ping Zhang

Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b+c-fms+Ly6Chi cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b+c-fms+Ly6Chi OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b+c-fms+Ly6Chi population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.

肝 X 受体(LXRs)是参与胆固醇和脂质代谢的重要核激素受体。据信,它们还能调节炎症以及生理性和病理性骨转换。我们以前曾发现,小鼠感染牙周病病原体牙龈卟啉单胞菌(Pg)后,骨髓(BM)、脾脏(SPL)和外周血中 CD11b+ c-fms+ Ly6Chi 细胞的数量会增加。这些细胞在感染 Pg 后还表现出更强的破骨细胞生成活性和独特的基因谱。在此,我们研究了 LXRs 在调控这些破骨细胞前体(OCPs)和牙周骨质流失中的作用。我们发现,Pg 感染会下调 CD11b+ c-fms+ Ly6Chi OCPs 中 LXRs 以及 LXRs 转录靶标 ApoE 的基因表达。通过使用选择性 LXR 激动剂 GW3965 激活 LXRs,可显著减少 Pg 诱导的 CD11b+ c-fms+ Ly6Chi 群体在 BM 和 SPL 中的聚集。GW3965 还能明显抑制 Pg 感染诱导的这些 OCPs 的破骨细胞生成潜能。此外,在结扎诱导的牙周炎模型中,LXRs 的激活降低了 OCPs 在 BM 和牙周局部的丰度,并减轻了牙龈 c-fms 的表达和牙周骨质流失。这些数据揭示了 LXRs 在炎性骨质流失中调节 OCP 丰度和破骨细胞生成潜能的新作用。
{"title":"Activation of liver X receptors suppresses the abundance and osteoclastogenic potential of osteoclast precursors and periodontal bone loss.","authors":"Yanfang Zhao, Kai Yang, Thalyta Amanda Ferreira, Xuejia Kang, Xu Feng, Jannet Katz, Suzanne M Michalek, Ping Zhang","doi":"10.1111/omi.12447","DOIUrl":"10.1111/omi.12447","url":null,"abstract":"<p><p>Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"125-135"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primed inflammatory response by fibroblast subset is necessary for proper oral and cutaneous wound healing. 成纤维细胞亚群引发的炎症反应对于口腔和皮肤伤口的正确愈合是必要的。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-06-01 Epub Date: 2023-10-30 DOI: 10.1111/omi.12442
Zhaoxu Chen, Rahul Debnath, Ifeoma Chikelu, Jonathan X Zhou, Kang I Ko

Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre+) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre+ fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre+ fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre+ fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.

成纤维细胞是普遍存在的间充质细胞,表现出相当大的分子和功能异质性。除了维持基质完整性外,口腔成纤维细胞亚群被认为在损伤修复过程中在宿主-微生物相互作用中发挥重要作用,但在体内尚未得到很好的探索。在这里,我们表征了口腔粘膜和皮肤中由配对相关同源盒-1启动子活性(Prx1Cre+)标记的成纤维细胞谱系的亚群,并证明这些成纤维细胞容易对微生物产物产生反应,以促进正常的伤口愈合过程。使用报告小鼠模型,我们确定与其他成纤维细胞群体相比,Prx1Cre+成纤维细胞具有显著更高的toll样受体2和4的表达。此外,Prx1免疫阳性细胞在早期伤口愈合过程中表现出炎症转录因子NF-κB的激活增强。在细胞因子水平上,CXCL1和CCL2在基线和LPS刺激时被Prx1Cre+成纤维细胞显著上调。重要的是,在Prx1Cre+成纤维细胞中阻止NF-κB活化的谱系特异性敲除严重损害了口腔和皮肤伤口愈合过程,这与巨噬细胞浸润减少、无法解决炎症和细菌清除有关。总之,我们的数据表明,Prx1谱系成纤维细胞通过促进早期巨噬细胞募集和细菌清除而发挥促愈合作用。
{"title":"Primed inflammatory response by fibroblast subset is necessary for proper oral and cutaneous wound healing.","authors":"Zhaoxu Chen, Rahul Debnath, Ifeoma Chikelu, Jonathan X Zhou, Kang I Ko","doi":"10.1111/omi.12442","DOIUrl":"10.1111/omi.12442","url":null,"abstract":"<p><p>Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre<sup>+</sup>) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre<sup>+</sup> fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre<sup>+</sup> fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre<sup>+</sup> fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"113-124"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 39, Issue 3 封面图片,第 39 卷第 3 期
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-05-14 DOI: 10.1111/omi.12468
{"title":"Cover Image, Volume 39, Issue 3","authors":"","doi":"10.1111/omi.12468","DOIUrl":"https://doi.org/10.1111/omi.12468","url":null,"abstract":"","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"70 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cleaved adhesin DNA vaccine targeting dendritic cell against Porphyromonas gingivalis–induced periodontal disease 针对树突状细胞的裂解粘附素 DNA 疫苗,可预防牙龈卟啉单胞菌诱发的牙周病
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-05-02 DOI: 10.1111/omi.12465
Xin Fan, Peng‐Yu Qu, Ke‐Feng Luan, Chen‐Yu Sun, Hui‐Ping Ren, Xue‐Hui Sun, Jing Lan
BackgroundArg‐gingipain A (RgpA) is the primary virulence factor of Porphyromonas gingivalis and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin‐binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against P. gingivalis–induced periodontal disease.MethodsC57 mice were immunized prophylactically with pVAX1‐CA, pVAX1‐HA, pVAX1, and phosphate‐buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before P. gingivalis–induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA‐seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co‐delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro‐computed tomography.ResultsAfter the immunization, both the pVAX1‐CA and pVAX1‐HA groups exhibited significantly elevated P. gingivalis–specific IgG and IgG1, as well as a reduction in bone loss around periodontitis‐affected teeth, compared to the pVAX1 and PBS groups (p < 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC‐specific intercellular adhesion molecule‐3‐grabbing non‐integrin (DC‐SIGN) in DCs. Furthermore, the RNA‐seq analysis revealed a significant increase in the chemokine (C–C motif) ligand 19 (p < 0.05). A notable elevation in the quantities of DCs co‐labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon‐gamma (IFN‐γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19‐CA immunization. This outcome effectively illustrated the preservation of peri‐implant bone mass in rats afflicted with P. gingivalis–induced peri‐implantitis (p < 0.05).ConclusionsThe co‐administration of a CCL19‐conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against P. gingivalis–induced periodontitis and peri‐implantitis.
背景Arg-gingipain A(RgpA)是牙龈卟啉单胞菌(Porphyromonas gingivalis)的主要毒力因子,含有血凝素粘附素(HA),可帮助细菌粘附到细胞和蛋白质上。血凝素的功能域包括裂解粘附素(CA),它具有血凝和血红蛋白结合作用。在此,我们证实了 HA 和 CA 基因具有免疫原性,而且使用佐剂趋化因子靶向树突状细胞(DCs)可增强对牙龈脓胞诱发的牙周病的保护性自身免疫。方法 在牙龈炎诱导的牙周炎发生前,每两周用pVAX1-CA、pVAX1-HA、pVAX1和磷酸盐缓冲盐水(PBS)对C57小鼠进行预防性免疫,共注射三次。在转染 CA 慢病毒后,使用流式细胞术和核糖核酸测序(RNA-seq)转录组学检测对 DCs 进行了分析。结果与 pVAX1 组和 PBS 组相比,免疫后 pVAX1-CA 组和 pVAX1-HA 组的牙龈脓肿特异性 IgG 和 IgG1 均显著升高,牙周炎患牙周围的骨质流失也有所减少(p < 0.05)。CA的表达促进了DC中HLA、CD86、CD83和DC特异性细胞间粘附分子-3-抓取非整合素(DC-SIGN)的分泌。此外,RNA-seq 分析显示,趋化因子(C-C 矩阵)配体 19 的含量显著增加(p < 0.05)。在接受 CCL19-CA 免疫的小鼠腹股沟淋巴结中,观察到与 CD11c 和主要组织相容性复合体 II 类共标记的 DC 数量明显增加,同时干扰素-γ(IFN-γ)细胞也有所增加。结论联合注射 CCL19-CA DNA 疫苗有望成为针对牙龈脓毒性牙周炎和种植体周围炎的创新性、有针对性的免疫策略。
{"title":"A cleaved adhesin DNA vaccine targeting dendritic cell against Porphyromonas gingivalis–induced periodontal disease","authors":"Xin Fan, Peng‐Yu Qu, Ke‐Feng Luan, Chen‐Yu Sun, Hui‐Ping Ren, Xue‐Hui Sun, Jing Lan","doi":"10.1111/omi.12465","DOIUrl":"https://doi.org/10.1111/omi.12465","url":null,"abstract":"BackgroundArg‐gingipain A (RgpA) is the primary virulence factor of <jats:italic>Porphyromonas gingivalis</jats:italic> and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin‐binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against <jats:italic>P. gingivalis</jats:italic>–induced periodontal disease.MethodsC57 mice were immunized prophylactically with pVAX1‐CA, pVAX1‐HA, pVAX1, and phosphate‐buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before <jats:italic>P. gingivalis</jats:italic>–induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA‐seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co‐delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro‐computed tomography.ResultsAfter the immunization, both the pVAX1‐CA and pVAX1‐HA groups exhibited significantly elevated <jats:italic>P. gingivalis</jats:italic>–specific IgG and IgG1, as well as a reduction in bone loss around periodontitis‐affected teeth, compared to the pVAX1 and PBS groups (<jats:italic>p </jats:italic>&lt; 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC‐specific intercellular adhesion molecule‐3‐grabbing non‐integrin (DC‐SIGN) in DCs. Furthermore, the RNA‐seq analysis revealed a significant increase in the chemokine (C–C motif) ligand 19 (<jats:italic>p </jats:italic>&lt; 0.05). A notable elevation in the quantities of DCs co‐labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon‐gamma (IFN‐γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19‐CA immunization. This outcome effectively illustrated the preservation of peri‐implant bone mass in rats afflicted with <jats:italic>P. gingivalis</jats:italic>–induced peri‐implantitis (<jats:italic>p</jats:italic> &lt; 0.05).ConclusionsThe co‐administration of a CCL19‐conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against <jats:italic>P. gingivalis</jats:italic>–induced periodontitis and peri‐implantitis.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"61 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Streptococcus salivarius ameliorates the destructive effect on the epithelial barrier by inhibiting the growth of Prevotella melaninogenica via metabolic acid production 唾液链球菌通过代谢产酸抑制黑色素前驱菌的生长,从而改善对上皮屏障的破坏作用
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-04-30 DOI: 10.1111/omi.12464
Pingyi Zhu, Ruru Shao, Pan Xu, Ruowen Zhao, Chen Zhao, Jian Fei, Yuan He
BackgroundOral lichen planus (OLP) is one of the most common oral mucosal diseases, exhibiting a higher prevalence in women than men, but its pathogenesis is still unclear. Current research suggests that microbial dysbiosis may play an important role in the pathogenesis of OLP. Our previous research has found that the increase of Prevotella melaninogenica and decrease of Streptococcus salivarius have been identified as a potential pathogenic factor in OLP. Consequently, the objective of this study is to examine whether S. salivarius can counteract the detrimental effects of P. melaninogenica on the integrity of the epithelial barrier function.Materials and methodsEpithelial barrier disruption was induced by P. melaninogenica in human keratinocytes (HaCaT cells). HaCaT cells were pretreated with S. salivarius(MOI = 20) or cell‐free supernatant for 3 h, followed by treatment with P. melaninogenica (MOI = 5) for 3 h. The epithelial barrier integrity of HaCaT cells was detected by FD4 permeability. The mRNA level of tight junction protein was detected by quantitative real‐time polymerase chain reaction (PCR). Immunofluorescence and Western Blot were used to detect the protein expression of zonula occludin‐1 (ZO‐1). The serial dilution‐spotting assay was applied to monitor the viability of P. melaninogenica at the end of 8 and 24 h incubation.ResultsChallenge by P. melaninogenica decreased the levels of tight junction proteins, including occludin, ZO‐1, and claudin in HaCaT cells. S. salivarius or its cell‐free supernatant inhibited the down‐regulation of ZO‐1 mRNA and protein expression levels induced by P. melaninogenica and thus improved the epithelial barrier function. The inhibitory effect of the cell‐free supernatant of S. salivarius on the growth of P. melaninogenica is associated with metabolic acid production rather than with bacteriocins and hydrogen peroxide.ConclusionsThese results suggest that live S. salivarius or its cell‐free supernatant significantly ameliorated the disruption of epithelial tight junctions induced by P. melaninogenica, likely through the inhibition of P. melaninogenica growth mediated by metabolic acid production.
背景口腔扁平苔藓(OLP)是最常见的口腔黏膜疾病之一,女性发病率高于男性,但其发病机制仍不清楚。目前的研究表明,微生物菌群失调可能在 OLP 的发病机制中扮演重要角色。我们之前的研究发现,黑色素前驱菌的增加和唾液链球菌的减少被认为是 OLP 的潜在致病因素。因此,本研究的目的是探讨唾液链球菌能否抵消黑色素前驱菌对上皮屏障功能完整性的不利影响。用唾液腺球菌(MOI = 20)或无细胞上清液预处理 HaCaT 细胞 3 h,然后用黑色素原杆菌(MOI = 5)处理 HaCaT 细胞 3 h。实时定量聚合酶链反应(PCR)检测了紧密连接蛋白的 mRNA 水平。免疫荧光和 Western Blot 用于检测Zonula occludin-1 (ZO-1)的蛋白表达。结果黑色素原虫的挑战降低了 HaCaT 细胞中紧密连接蛋白的水平,包括闭锁蛋白、ZO-1 和 claudin。唾液酸酵母菌或其无细胞上清液抑制了黑色素原虫诱导的 ZO-1 mRNA 和蛋白表达水平的下调,从而改善了上皮屏障功能。结论:这些结果表明,活唾液酸菌或其无细胞上清液能显著改善黑色素原虫对上皮紧密连接的破坏,可能是通过代谢酸的产生抑制了黑色素原虫的生长。
{"title":"Streptococcus salivarius ameliorates the destructive effect on the epithelial barrier by inhibiting the growth of Prevotella melaninogenica via metabolic acid production","authors":"Pingyi Zhu, Ruru Shao, Pan Xu, Ruowen Zhao, Chen Zhao, Jian Fei, Yuan He","doi":"10.1111/omi.12464","DOIUrl":"https://doi.org/10.1111/omi.12464","url":null,"abstract":"BackgroundOral lichen planus (OLP) is one of the most common oral mucosal diseases, exhibiting a higher prevalence in women than men, but its pathogenesis is still unclear. Current research suggests that microbial dysbiosis may play an important role in the pathogenesis of OLP. Our previous research has found that the increase of <jats:italic>Prevotella melaninogenica</jats:italic> and decrease of <jats:italic>Streptococcus salivarius</jats:italic> have been identified as a potential pathogenic factor in OLP. Consequently, the objective of this study is to examine whether <jats:italic>S. salivarius</jats:italic> can counteract the detrimental effects of <jats:italic>P. melaninogenica</jats:italic> on the integrity of the epithelial barrier function.Materials and methodsEpithelial barrier disruption was induced by <jats:italic>P. melaninogenica</jats:italic> in human keratinocytes (HaCaT cells). HaCaT cells were pretreated with <jats:italic>S. salivarius</jats:italic>(MOI = 20) or cell‐free supernatant for 3 h, followed by treatment with <jats:italic>P. melaninogenica</jats:italic> (MOI = 5) for 3 h. The epithelial barrier integrity of HaCaT cells was detected by FD4 permeability. The mRNA level of tight junction protein was detected by quantitative real‐time polymerase chain reaction (PCR). Immunofluorescence and Western Blot were used to detect the protein expression of zonula occludin‐1 (ZO‐1). The serial dilution‐spotting assay was applied to monitor the viability of <jats:italic>P. melaninogenica</jats:italic> at the end of 8 and 24 h incubation.ResultsChallenge by <jats:italic>P. melaninogenica</jats:italic> decreased the levels of tight junction proteins, including occludin, ZO‐1, and claudin in HaCaT cells. <jats:italic>S. salivarius</jats:italic> or its cell‐free supernatant inhibited the down‐regulation of ZO‐1 mRNA and protein expression levels induced by <jats:italic>P. melaninogenica</jats:italic> and thus improved the epithelial barrier function. The inhibitory effect of the cell‐free supernatant of <jats:italic>S. salivarius</jats:italic> on the growth of <jats:italic>P. melaninogenica</jats:italic> is associated with metabolic acid production rather than with bacteriocins and hydrogen peroxide.ConclusionsThese results suggest that live <jats:italic>S. salivarius</jats:italic> or its cell‐free supernatant significantly ameliorated the disruption of epithelial tight junctions induced by <jats:italic>P. melaninogenica</jats:italic>, likely through the inhibition of <jats:italic>P. melaninogenica</jats:italic> growth mediated by metabolic acid production.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"76 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metronidazole may display anti‐inflammatory features in periodontitis treatment: A scoping review 甲硝唑在牙周炎治疗中可能具有抗炎功能:范围综述
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-04-13 DOI: 10.1111/omi.12459
Lina J Suárez, Roger M Arce, Cristiane Gonçalves, Camila Pinheiro Furquim, Nidia Castro Dos Santos, Belén Retamal‐Valdes, Magda Feres
AimMetronidazole (MTZ) is an antimicrobial agent used to treat anaerobic infections. It has been hypothesized that MTZ may also have anti‐inflammatory properties, but the evidence is limited and has not been previously reviewed. Thus, this scoping review aimed to answer the following question: “What is the evidence supporting anti‐inflammatory properties of metronidazole that are not mediated by its antimicrobial effects?”MethodsA scoping review was conducted according to the PRISMA‐ScR statement. Five databases were searched up to January 2023 for studies evaluating the anti‐inflammatory properties of MTZ used as monotherapy for treating infectious and inflammatory diseases.ResultsA total of 719 records were identified, and 27 studies (21 in vivo and 6 in vitro) were included. The studies reported experimental evidence of MTZ anti‐inflammatory effects on (1) innate immunity (barrier permeability, leukocyte adhesion, immune cell populations), (2) acquired immunity (lymphocyte proliferation, T‐cell function, cytokine profile), and (3) wound healing/resolution of inflammation.ConclusionTaken together, this scoping review supported a potential anti‐inflammatory effect of MTZ in periodontitis treatment. We recommend that future clinical studies should be conducted to evaluate specific MTZ anti‐inflammatory pathways in the treatment of periodontitis.
目的甲硝唑(Metronidazole,MTZ)是一种用于治疗厌氧菌感染的抗菌剂。据推测,MTZ可能还具有抗炎特性,但相关证据有限,且此前未对其进行过综述。因此,本次范围界定综述旨在回答以下问题:"方法根据 PRISMA-ScR 声明进行了范围界定综述。结果共发现 719 条记录,纳入 27 项研究(21 项体内研究和 6 项体外研究)。这些研究报告了 MTZ 在以下方面抗炎作用的实验证据:(1) 先天免疫(屏障通透性、白细胞粘附性、免疫细胞群);(2) 后天免疫(淋巴细胞增殖、T 细胞功能、细胞因子谱);(3) 伤口愈合/炎症消退。我们建议今后应开展临床研究,评估 MTZ 在牙周炎治疗中的具体抗炎途径。
{"title":"Metronidazole may display anti‐inflammatory features in periodontitis treatment: A scoping review","authors":"Lina J Suárez, Roger M Arce, Cristiane Gonçalves, Camila Pinheiro Furquim, Nidia Castro Dos Santos, Belén Retamal‐Valdes, Magda Feres","doi":"10.1111/omi.12459","DOIUrl":"https://doi.org/10.1111/omi.12459","url":null,"abstract":"AimMetronidazole (MTZ) is an antimicrobial agent used to treat anaerobic infections. It has been hypothesized that MTZ may also have anti‐inflammatory properties, but the evidence is limited and has not been previously reviewed. Thus, this scoping review aimed to answer the following question: “What is the evidence supporting anti‐inflammatory properties of metronidazole that are not mediated by its antimicrobial effects?”MethodsA scoping review was conducted according to the PRISMA‐ScR statement. Five databases were searched up to January 2023 for studies evaluating the anti‐inflammatory properties of MTZ used as monotherapy for treating infectious and inflammatory diseases.ResultsA total of 719 records were identified, and 27 studies (21 in vivo and 6 in vitro) were included. The studies reported experimental evidence of MTZ anti‐inflammatory effects on (1) innate immunity (barrier permeability, leukocyte adhesion, immune cell populations), (2) acquired immunity (lymphocyte proliferation, T‐cell function, cytokine profile), and (3) wound healing/resolution of inflammation.ConclusionTaken together, this scoping review supported a potential anti‐inflammatory effect of MTZ in periodontitis treatment. We recommend that future clinical studies should be conducted to evaluate specific MTZ anti‐inflammatory pathways in the treatment of periodontitis.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"58 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tannerella forsythia scavenges Fusobacterium nucleatum secreted NOD2 stimulatory molecules to dampen oral epithelial cell inflammatory response. 连翘丹那菌能清除核酸镰刀菌分泌的 NOD2 刺激分子,从而抑制口腔上皮细胞的炎症反应。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-04-01 Epub Date: 2023-07-17 DOI: 10.1111/omi.12429
Rajendra P Settem, Angela Ruscitto, Sreedevi Chinthamani, Kiyonobu Honma, Ashu Sharma

The oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides. In this study, we utilized an in vitro T. forsythia-F. nucleatum co-culture model to determine if T. forsythia can selectively scavenge NOD ligands from the environment and impact NOD-mediated inflammation. The results showed that NOD-stimulatory molecules were secreted by F. nucleatum in the spent culture broth, which subsequently induced cytokine and antimicrobial peptide expression in oral epithelial cells. In the spent broth from T. forsythia-F. nucleatum co-cultures, the NOD-stimulatory activity was significantly reduced. These data indicated that F. nucleatum releases NOD2-stimulatory muropeptides in the environment, and T. forsythia can effectively scavenge the muropeptides released by co-habiting bacteria to dampen NOD-mediated host responses. This proof-of-principle study demonstrated that peptidoglycan scavenging by T. forsythia can impact the innate immunity of oral epithelium by dampening NOD activation.

口腔细菌连翘丹那菌(Tannerella forsythia)对肽聚糖氨基糖 N-乙酰木氨酸(MurNAc)具有辅助营养作用。它通过清除与它形成协同生物膜的核酸镰刀菌等共栖细菌分泌的 MurNAc 和 MurNAc 链接的肽聚糖片段(muropeptides)在口腔中存活。室肽--MurNAc-l-Ala-d-isoGln(MDP,muramyl 二肽)和 d-γ-谷氨酰-meso-DAP(iE-DAP 二肽)是强免疫刺激分子,可激活核苷酸寡聚化结构域(NOD)类先天性免疫受体,诱导炎性细胞因子和抗菌肽的表达。在本研究中,我们利用体外连翘-F. nucleatum共培养模型来确定连翘是否能选择性地清除环境中的NOD配体并影响NOD介导的炎症。结果表明,F. nucleatum 在废培养液中分泌 NOD 刺激分子,随后诱导口腔上皮细胞表达细胞因子和抗菌肽。在连翘-F. nucleatum共培养的废培养液中,NOD刺激活性显著降低。这些数据表明,F. nucleatum会在环境中释放NOD2刺激性微肽,而连翘能有效清除共栖细菌释放的微肽,从而抑制NOD介导的宿主反应。这项原理性研究证明,连翘菌清除肽聚糖可通过抑制 NOD 激活来影响口腔上皮细胞的先天性免疫。
{"title":"Tannerella forsythia scavenges Fusobacterium nucleatum secreted NOD2 stimulatory molecules to dampen oral epithelial cell inflammatory response.","authors":"Rajendra P Settem, Angela Ruscitto, Sreedevi Chinthamani, Kiyonobu Honma, Ashu Sharma","doi":"10.1111/omi.12429","DOIUrl":"10.1111/omi.12429","url":null,"abstract":"<p><p>The oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides. In this study, we utilized an in vitro T. forsythia-F. nucleatum co-culture model to determine if T. forsythia can selectively scavenge NOD ligands from the environment and impact NOD-mediated inflammation. The results showed that NOD-stimulatory molecules were secreted by F. nucleatum in the spent culture broth, which subsequently induced cytokine and antimicrobial peptide expression in oral epithelial cells. In the spent broth from T. forsythia-F. nucleatum co-cultures, the NOD-stimulatory activity was significantly reduced. These data indicated that F. nucleatum releases NOD2-stimulatory muropeptides in the environment, and T. forsythia can effectively scavenge the muropeptides released by co-habiting bacteria to dampen NOD-mediated host responses. This proof-of-principle study demonstrated that peptidoglycan scavenging by T. forsythia can impact the innate immunity of oral epithelium by dampening NOD activation.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"40-46"},"PeriodicalIF":3.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9824215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel SUCNR1 inhibitor alleviates dysbiosis through inhibition of host responses without direct interaction with host microbiota. 一种新型SUCNR1抑制剂通过抑制宿主反应而不与宿主微生物群直接相互作用来缓解微生态失调。
IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Pub Date : 2024-04-01 Epub Date: 2023-09-16 DOI: 10.1111/omi.12431
Scott C Thomas, Yuqi Guo, Fangxi Xu, Deepak Saxena, Xin Li

Type 2 diabetes (T2D) is a chronic metabolic disorder in which insulin resistance and impaired insulin secretion result in altered metabolite balance, specifically elevated levels of circulating glucose and succinate, which increases the risk of many pathologies, including periodontitis. Succinate, a tricarboxylic acid (TCA) cycle intermediate, can be produced and metabolized by both host cells and host microbiota, where elevated levels serve as an inflammation and pathogen threat signal through activating the succinate G protein-coupled receptor, SUCNR1. Modulating succinate-induced SUCNR1 signaling remains a promising therapeutic approach for pathologies resulting in elevated levels of succinate, such as T2D and periodontitis. Here, we demonstrate hyperglycemia and elevated intracellular succinate in a T2D mouse model and determine gut microbiome composition. Drawing on previous work demonstrating the ability of a novel SUCNR1 antagonist, compound 7a, to block inflammation and alleviate dysbiosis in a mouse model, we examined if compound 7a has an impact on the growth and virulence gene expression of bacterial and fungal human microbiota in vitro, and if 7a could reduce bone loss in a periodontitis-induced mouse model. T2D mice harbored a significantly different gut microbiome, suggesting the altered metabolite profile of T2D causes shifts in host-microbial community structure, with enrichment in succinate producers and consumers and mucin-degrading bacteria. Bacterial and fungal cultures showed that 7a did not influence growth or virulence gene expression, suggesting the therapeutic effects of 7a are a direct result of 7a interacting with host cells and that alterations in microbial community structure are driven by reduced host SUCNR1 signaling. This work further suggests that targeting SUCNR1 signaling is a promising therapeutic approach in metabolic, inflammatory, or immune disorders with elevated succinate levels.

2型糖尿病(T2D)是一种慢性代谢紊乱,胰岛素抵抗和胰岛素分泌受损会导致代谢产物平衡改变,特别是循环葡萄糖和琥珀酸水平升高,这会增加包括牙周炎在内的许多疾病的风险。琥珀酸是一种三羧酸(TCA)循环中间体,可由宿主细胞和宿主微生物群产生和代谢,其中水平升高通过激活琥珀酸G蛋白偶联受体SUCNR1作为炎症和病原体威胁信号。调节琥珀酸盐诱导的SUCNR1信号传导对于导致琥珀酸盐水平升高的病理(如T2D和牙周炎)仍然是一种有前途的治疗方法。在这里,我们在T2D小鼠模型中证明了高血糖和细胞内琥珀酸盐升高,并确定了肠道微生物组组成。根据先前证明新型SUCNR1拮抗剂化合物7a在小鼠模型中阻断炎症和缓解微生态失调的能力的工作,我们研究了化合物7a是否对体外细菌和真菌人类微生物群的生长和毒力基因表达有影响,以及7a是否可以减少牙周炎诱导的小鼠模型中的骨丢失。T2D小鼠的肠道微生物组明显不同,这表明T2D代谢产物谱的改变导致宿主微生物群落结构的变化,琥珀酸生产商和消费者以及粘蛋白降解菌富集。细菌和真菌培养表明,7a不影响生长或毒力基因表达,这表明7a的治疗作用是7a与宿主细胞相互作用的直接结果,微生物群落结构的改变是由宿主SUCNR1信号传导减少驱动的。这项工作进一步表明,靶向SUCNR1信号传导在琥珀酸水平升高的代谢、炎症或免疫疾病中是一种很有前途的治疗方法。
{"title":"A novel SUCNR1 inhibitor alleviates dysbiosis through inhibition of host responses without direct interaction with host microbiota.","authors":"Scott C Thomas, Yuqi Guo, Fangxi Xu, Deepak Saxena, Xin Li","doi":"10.1111/omi.12431","DOIUrl":"10.1111/omi.12431","url":null,"abstract":"<p><p>Type 2 diabetes (T2D) is a chronic metabolic disorder in which insulin resistance and impaired insulin secretion result in altered metabolite balance, specifically elevated levels of circulating glucose and succinate, which increases the risk of many pathologies, including periodontitis. Succinate, a tricarboxylic acid (TCA) cycle intermediate, can be produced and metabolized by both host cells and host microbiota, where elevated levels serve as an inflammation and pathogen threat signal through activating the succinate G protein-coupled receptor, SUCNR1. Modulating succinate-induced SUCNR1 signaling remains a promising therapeutic approach for pathologies resulting in elevated levels of succinate, such as T2D and periodontitis. Here, we demonstrate hyperglycemia and elevated intracellular succinate in a T2D mouse model and determine gut microbiome composition. Drawing on previous work demonstrating the ability of a novel SUCNR1 antagonist, compound 7a, to block inflammation and alleviate dysbiosis in a mouse model, we examined if compound 7a has an impact on the growth and virulence gene expression of bacterial and fungal human microbiota in vitro, and if 7a could reduce bone loss in a periodontitis-induced mouse model. T2D mice harbored a significantly different gut microbiome, suggesting the altered metabolite profile of T2D causes shifts in host-microbial community structure, with enrichment in succinate producers and consumers and mucin-degrading bacteria. Bacterial and fungal cultures showed that 7a did not influence growth or virulence gene expression, suggesting the therapeutic effects of 7a are a direct result of 7a interacting with host cells and that alterations in microbial community structure are driven by reduced host SUCNR1 signaling. This work further suggests that targeting SUCNR1 signaling is a promising therapeutic approach in metabolic, inflammatory, or immune disorders with elevated succinate levels.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"80-90"},"PeriodicalIF":3.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10266107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Oral Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1