Pub Date : 2024-06-01Epub Date: 2023-10-30DOI: 10.1111/omi.12437
Carolina Duarte, Chiaki Yamada, Bidii Ngala, Christopher Garcia, Juliet Akkaoui, Maxim Birsa, Anny Ho, Amilia Nusbaum, Hawra AlQallaf, Vanchit John, Alexandru Movila
Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1 receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.
{"title":"Effects of IL-34 and anti-IL-34 neutralizing mAb on alveolar bone loss in a ligature-induced model of periodontitis.","authors":"Carolina Duarte, Chiaki Yamada, Bidii Ngala, Christopher Garcia, Juliet Akkaoui, Maxim Birsa, Anny Ho, Amilia Nusbaum, Hawra AlQallaf, Vanchit John, Alexandru Movila","doi":"10.1111/omi.12437","DOIUrl":"10.1111/omi.12437","url":null,"abstract":"<p><p>Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1 receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"93-102"},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-10-18DOI: 10.1111/omi.12439
Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols
Porphyromonas gingivalis produces five classes of serine/glycine lipids that are recovered in lipid extracts from periodontitis-afflicted teeth and diseased gingival tissues, particularly at sites of periodontitis. Because these lipids are recovered in diseased gingival tissues, the purpose of the present study was to evaluate the capacity of cultured human gingival fibroblasts (HGF), keratinocytes, and macrophages to hydrolyze these lipids. We hypothesize that one or more of these cell types will hydrolyze the serine/glycine lipids. The primary aim was to treat these cell types for increasing time in culture with individual highly enriched serine/glycine lipid preparations. At specified times, cells and culture media samples were harvested and extracted for hydrolysis products. The serine/glycine lipids and hydrolysis products were quantified using liquid chromatography-mass spectrometry (LC-MS) and free fatty acids were quantified using gas chromatograph-mass spectrometer. LC-MS analysis used two different mass spectrometric methods. This study revealed that treatment of HGF or macrophage (THP1) cells with lipid (L) 654 resulted in breakdown to L342 and subsequent release into culture medium. However, L654 was converted only to L567 in gingival keratinocytes. By contrast, L1256 was converted to L654 by fibroblasts and macrophages but no further hydrolysis or release into medium was observed. Gingival keratinocytes showed no hydrolysis of L1256 to smaller lipid products but because L1256 was not recovered in these cells, it is not clear what hydrolysis products are produced from L1256. Although primary cultures of gingival fibroblasts and macrophages are capable of hydrolyzing specific serine/glycine lipids, prior analysis of lipid extracts from diseased gingival tissues revealed significantly elevated levels of L1256 in diseased tissues. These results suggest that the hydrolysis of bacterial lipids in gingival tissues may reduce the levels of specific lipids, but the hydrolysis of L1256 is not sufficiently rapid to prevent significant accumulation at periodontal disease sites.
{"title":"Metabolism of serine/glycine lipids by human gingival cells in culture.","authors":"Tyler M Guido, Samuel D Ratcliffe, Amanda Rahmlow, Matthew A Zambrello, Anthony A Provates, Robert B Clark, Michael B Smith, Frank C Nichols","doi":"10.1111/omi.12439","DOIUrl":"10.1111/omi.12439","url":null,"abstract":"<p><p>Porphyromonas gingivalis produces five classes of serine/glycine lipids that are recovered in lipid extracts from periodontitis-afflicted teeth and diseased gingival tissues, particularly at sites of periodontitis. Because these lipids are recovered in diseased gingival tissues, the purpose of the present study was to evaluate the capacity of cultured human gingival fibroblasts (HGF), keratinocytes, and macrophages to hydrolyze these lipids. We hypothesize that one or more of these cell types will hydrolyze the serine/glycine lipids. The primary aim was to treat these cell types for increasing time in culture with individual highly enriched serine/glycine lipid preparations. At specified times, cells and culture media samples were harvested and extracted for hydrolysis products. The serine/glycine lipids and hydrolysis products were quantified using liquid chromatography-mass spectrometry (LC-MS) and free fatty acids were quantified using gas chromatograph-mass spectrometer. LC-MS analysis used two different mass spectrometric methods. This study revealed that treatment of HGF or macrophage (THP1) cells with lipid (L) 654 resulted in breakdown to L342 and subsequent release into culture medium. However, L654 was converted only to L567 in gingival keratinocytes. By contrast, L1256 was converted to L654 by fibroblasts and macrophages but no further hydrolysis or release into medium was observed. Gingival keratinocytes showed no hydrolysis of L1256 to smaller lipid products but because L1256 was not recovered in these cells, it is not clear what hydrolysis products are produced from L1256. Although primary cultures of gingival fibroblasts and macrophages are capable of hydrolyzing specific serine/glycine lipids, prior analysis of lipid extracts from diseased gingival tissues revealed significantly elevated levels of L1256 in diseased tissues. These results suggest that the hydrolysis of bacterial lipids in gingival tissues may reduce the levels of specific lipids, but the hydrolysis of L1256 is not sufficiently rapid to prevent significant accumulation at periodontal disease sites.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"103-112"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-12-18DOI: 10.1111/omi.12447
Yanfang Zhao, Kai Yang, Thalyta Amanda Ferreira, Xuejia Kang, Xu Feng, Jannet Katz, Suzanne M Michalek, Ping Zhang
Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b+c-fms+Ly6Chi cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b+c-fms+Ly6Chi OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b+c-fms+Ly6Chi population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.
{"title":"Activation of liver X receptors suppresses the abundance and osteoclastogenic potential of osteoclast precursors and periodontal bone loss.","authors":"Yanfang Zhao, Kai Yang, Thalyta Amanda Ferreira, Xuejia Kang, Xu Feng, Jannet Katz, Suzanne M Michalek, Ping Zhang","doi":"10.1111/omi.12447","DOIUrl":"10.1111/omi.12447","url":null,"abstract":"<p><p>Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b<sup>+</sup>c-fms<sup>+</sup>Ly6C<sup>hi</sup> population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"125-135"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-10-30DOI: 10.1111/omi.12442
Zhaoxu Chen, Rahul Debnath, Ifeoma Chikelu, Jonathan X Zhou, Kang I Ko
Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre+) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre+ fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre+ fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre+ fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.
{"title":"Primed inflammatory response by fibroblast subset is necessary for proper oral and cutaneous wound healing.","authors":"Zhaoxu Chen, Rahul Debnath, Ifeoma Chikelu, Jonathan X Zhou, Kang I Ko","doi":"10.1111/omi.12442","DOIUrl":"10.1111/omi.12442","url":null,"abstract":"<p><p>Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre<sup>+</sup>) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre<sup>+</sup> fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre<sup>+</sup> fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre<sup>+</sup> fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"113-124"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BackgroundArg‐gingipain A (RgpA) is the primary virulence factor of Porphyromonas gingivalis and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin‐binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against P. gingivalis–induced periodontal disease.MethodsC57 mice were immunized prophylactically with pVAX1‐CA, pVAX1‐HA, pVAX1, and phosphate‐buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before P. gingivalis–induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA‐seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co‐delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro‐computed tomography.ResultsAfter the immunization, both the pVAX1‐CA and pVAX1‐HA groups exhibited significantly elevated P. gingivalis–specific IgG and IgG1, as well as a reduction in bone loss around periodontitis‐affected teeth, compared to the pVAX1 and PBS groups (p < 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC‐specific intercellular adhesion molecule‐3‐grabbing non‐integrin (DC‐SIGN) in DCs. Furthermore, the RNA‐seq analysis revealed a significant increase in the chemokine (C–C motif) ligand 19 (p < 0.05). A notable elevation in the quantities of DCs co‐labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon‐gamma (IFN‐γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19‐CA immunization. This outcome effectively illustrated the preservation of peri‐implant bone mass in rats afflicted with P. gingivalis–induced peri‐implantitis (p < 0.05).ConclusionsThe co‐administration of a CCL19‐conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against P. gingivalis–induced periodontitis and peri‐implantitis.
背景Arg-gingipain A(RgpA)是牙龈卟啉单胞菌(Porphyromonas gingivalis)的主要毒力因子,含有血凝素粘附素(HA),可帮助细菌粘附到细胞和蛋白质上。血凝素的功能域包括裂解粘附素(CA),它具有血凝和血红蛋白结合作用。在此,我们证实了 HA 和 CA 基因具有免疫原性,而且使用佐剂趋化因子靶向树突状细胞(DCs)可增强对牙龈脓胞诱发的牙周病的保护性自身免疫。方法 在牙龈炎诱导的牙周炎发生前,每两周用pVAX1-CA、pVAX1-HA、pVAX1和磷酸盐缓冲盐水(PBS)对C57小鼠进行预防性免疫,共注射三次。在转染 CA 慢病毒后,使用流式细胞术和核糖核酸测序(RNA-seq)转录组学检测对 DCs 进行了分析。结果与 pVAX1 组和 PBS 组相比,免疫后 pVAX1-CA 组和 pVAX1-HA 组的牙龈脓肿特异性 IgG 和 IgG1 均显著升高,牙周炎患牙周围的骨质流失也有所减少(p < 0.05)。CA的表达促进了DC中HLA、CD86、CD83和DC特异性细胞间粘附分子-3-抓取非整合素(DC-SIGN)的分泌。此外,RNA-seq 分析显示,趋化因子(C-C 矩阵)配体 19 的含量显著增加(p < 0.05)。在接受 CCL19-CA 免疫的小鼠腹股沟淋巴结中,观察到与 CD11c 和主要组织相容性复合体 II 类共标记的 DC 数量明显增加,同时干扰素-γ(IFN-γ)细胞也有所增加。结论联合注射 CCL19-CA DNA 疫苗有望成为针对牙龈脓毒性牙周炎和种植体周围炎的创新性、有针对性的免疫策略。
{"title":"A cleaved adhesin DNA vaccine targeting dendritic cell against Porphyromonas gingivalis–induced periodontal disease","authors":"Xin Fan, Peng‐Yu Qu, Ke‐Feng Luan, Chen‐Yu Sun, Hui‐Ping Ren, Xue‐Hui Sun, Jing Lan","doi":"10.1111/omi.12465","DOIUrl":"https://doi.org/10.1111/omi.12465","url":null,"abstract":"BackgroundArg‐gingipain A (RgpA) is the primary virulence factor of <jats:italic>Porphyromonas gingivalis</jats:italic> and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin‐binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against <jats:italic>P. gingivalis</jats:italic>–induced periodontal disease.MethodsC57 mice were immunized prophylactically with pVAX1‐CA, pVAX1‐HA, pVAX1, and phosphate‐buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before <jats:italic>P. gingivalis</jats:italic>–induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA‐seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co‐delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro‐computed tomography.ResultsAfter the immunization, both the pVAX1‐CA and pVAX1‐HA groups exhibited significantly elevated <jats:italic>P. gingivalis</jats:italic>–specific IgG and IgG1, as well as a reduction in bone loss around periodontitis‐affected teeth, compared to the pVAX1 and PBS groups (<jats:italic>p </jats:italic>< 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC‐specific intercellular adhesion molecule‐3‐grabbing non‐integrin (DC‐SIGN) in DCs. Furthermore, the RNA‐seq analysis revealed a significant increase in the chemokine (C–C motif) ligand 19 (<jats:italic>p </jats:italic>< 0.05). A notable elevation in the quantities of DCs co‐labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon‐gamma (IFN‐γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19‐CA immunization. This outcome effectively illustrated the preservation of peri‐implant bone mass in rats afflicted with <jats:italic>P. gingivalis</jats:italic>–induced peri‐implantitis (<jats:italic>p</jats:italic> < 0.05).ConclusionsThe co‐administration of a CCL19‐conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against <jats:italic>P. gingivalis</jats:italic>–induced periodontitis and peri‐implantitis.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"61 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pingyi Zhu, Ruru Shao, Pan Xu, Ruowen Zhao, Chen Zhao, Jian Fei, Yuan He
BackgroundOral lichen planus (OLP) is one of the most common oral mucosal diseases, exhibiting a higher prevalence in women than men, but its pathogenesis is still unclear. Current research suggests that microbial dysbiosis may play an important role in the pathogenesis of OLP. Our previous research has found that the increase of Prevotella melaninogenica and decrease of Streptococcus salivarius have been identified as a potential pathogenic factor in OLP. Consequently, the objective of this study is to examine whether S. salivarius can counteract the detrimental effects of P. melaninogenica on the integrity of the epithelial barrier function.Materials and methodsEpithelial barrier disruption was induced by P. melaninogenica in human keratinocytes (HaCaT cells). HaCaT cells were pretreated with S. salivarius(MOI = 20) or cell‐free supernatant for 3 h, followed by treatment with P. melaninogenica (MOI = 5) for 3 h. The epithelial barrier integrity of HaCaT cells was detected by FD4 permeability. The mRNA level of tight junction protein was detected by quantitative real‐time polymerase chain reaction (PCR). Immunofluorescence and Western Blot were used to detect the protein expression of zonula occludin‐1 (ZO‐1). The serial dilution‐spotting assay was applied to monitor the viability of P. melaninogenica at the end of 8 and 24 h incubation.ResultsChallenge by P. melaninogenica decreased the levels of tight junction proteins, including occludin, ZO‐1, and claudin in HaCaT cells. S. salivarius or its cell‐free supernatant inhibited the down‐regulation of ZO‐1 mRNA and protein expression levels induced by P. melaninogenica and thus improved the epithelial barrier function. The inhibitory effect of the cell‐free supernatant of S. salivarius on the growth of P. melaninogenica is associated with metabolic acid production rather than with bacteriocins and hydrogen peroxide.ConclusionsThese results suggest that live S. salivarius or its cell‐free supernatant significantly ameliorated the disruption of epithelial tight junctions induced by P. melaninogenica, likely through the inhibition of P. melaninogenica growth mediated by metabolic acid production.
{"title":"Streptococcus salivarius ameliorates the destructive effect on the epithelial barrier by inhibiting the growth of Prevotella melaninogenica via metabolic acid production","authors":"Pingyi Zhu, Ruru Shao, Pan Xu, Ruowen Zhao, Chen Zhao, Jian Fei, Yuan He","doi":"10.1111/omi.12464","DOIUrl":"https://doi.org/10.1111/omi.12464","url":null,"abstract":"BackgroundOral lichen planus (OLP) is one of the most common oral mucosal diseases, exhibiting a higher prevalence in women than men, but its pathogenesis is still unclear. Current research suggests that microbial dysbiosis may play an important role in the pathogenesis of OLP. Our previous research has found that the increase of <jats:italic>Prevotella melaninogenica</jats:italic> and decrease of <jats:italic>Streptococcus salivarius</jats:italic> have been identified as a potential pathogenic factor in OLP. Consequently, the objective of this study is to examine whether <jats:italic>S. salivarius</jats:italic> can counteract the detrimental effects of <jats:italic>P. melaninogenica</jats:italic> on the integrity of the epithelial barrier function.Materials and methodsEpithelial barrier disruption was induced by <jats:italic>P. melaninogenica</jats:italic> in human keratinocytes (HaCaT cells). HaCaT cells were pretreated with <jats:italic>S. salivarius</jats:italic>(MOI = 20) or cell‐free supernatant for 3 h, followed by treatment with <jats:italic>P. melaninogenica</jats:italic> (MOI = 5) for 3 h. The epithelial barrier integrity of HaCaT cells was detected by FD4 permeability. The mRNA level of tight junction protein was detected by quantitative real‐time polymerase chain reaction (PCR). Immunofluorescence and Western Blot were used to detect the protein expression of zonula occludin‐1 (ZO‐1). The serial dilution‐spotting assay was applied to monitor the viability of <jats:italic>P. melaninogenica</jats:italic> at the end of 8 and 24 h incubation.ResultsChallenge by <jats:italic>P. melaninogenica</jats:italic> decreased the levels of tight junction proteins, including occludin, ZO‐1, and claudin in HaCaT cells. <jats:italic>S. salivarius</jats:italic> or its cell‐free supernatant inhibited the down‐regulation of ZO‐1 mRNA and protein expression levels induced by <jats:italic>P. melaninogenica</jats:italic> and thus improved the epithelial barrier function. The inhibitory effect of the cell‐free supernatant of <jats:italic>S. salivarius</jats:italic> on the growth of <jats:italic>P. melaninogenica</jats:italic> is associated with metabolic acid production rather than with bacteriocins and hydrogen peroxide.ConclusionsThese results suggest that live <jats:italic>S. salivarius</jats:italic> or its cell‐free supernatant significantly ameliorated the disruption of epithelial tight junctions induced by <jats:italic>P. melaninogenica</jats:italic>, likely through the inhibition of <jats:italic>P. melaninogenica</jats:italic> growth mediated by metabolic acid production.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"76 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lina J Suárez, Roger M Arce, Cristiane Gonçalves, Camila Pinheiro Furquim, Nidia Castro Dos Santos, Belén Retamal‐Valdes, Magda Feres
AimMetronidazole (MTZ) is an antimicrobial agent used to treat anaerobic infections. It has been hypothesized that MTZ may also have anti‐inflammatory properties, but the evidence is limited and has not been previously reviewed. Thus, this scoping review aimed to answer the following question: “What is the evidence supporting anti‐inflammatory properties of metronidazole that are not mediated by its antimicrobial effects?”MethodsA scoping review was conducted according to the PRISMA‐ScR statement. Five databases were searched up to January 2023 for studies evaluating the anti‐inflammatory properties of MTZ used as monotherapy for treating infectious and inflammatory diseases.ResultsA total of 719 records were identified, and 27 studies (21 in vivo and 6 in vitro) were included. The studies reported experimental evidence of MTZ anti‐inflammatory effects on (1) innate immunity (barrier permeability, leukocyte adhesion, immune cell populations), (2) acquired immunity (lymphocyte proliferation, T‐cell function, cytokine profile), and (3) wound healing/resolution of inflammation.ConclusionTaken together, this scoping review supported a potential anti‐inflammatory effect of MTZ in periodontitis treatment. We recommend that future clinical studies should be conducted to evaluate specific MTZ anti‐inflammatory pathways in the treatment of periodontitis.
{"title":"Metronidazole may display anti‐inflammatory features in periodontitis treatment: A scoping review","authors":"Lina J Suárez, Roger M Arce, Cristiane Gonçalves, Camila Pinheiro Furquim, Nidia Castro Dos Santos, Belén Retamal‐Valdes, Magda Feres","doi":"10.1111/omi.12459","DOIUrl":"https://doi.org/10.1111/omi.12459","url":null,"abstract":"AimMetronidazole (MTZ) is an antimicrobial agent used to treat anaerobic infections. It has been hypothesized that MTZ may also have anti‐inflammatory properties, but the evidence is limited and has not been previously reviewed. Thus, this scoping review aimed to answer the following question: “What is the evidence supporting anti‐inflammatory properties of metronidazole that are not mediated by its antimicrobial effects?”MethodsA scoping review was conducted according to the PRISMA‐ScR statement. Five databases were searched up to January 2023 for studies evaluating the anti‐inflammatory properties of MTZ used as monotherapy for treating infectious and inflammatory diseases.ResultsA total of 719 records were identified, and 27 studies (21 in vivo and 6 in vitro) were included. The studies reported experimental evidence of MTZ anti‐inflammatory effects on (1) innate immunity (barrier permeability, leukocyte adhesion, immune cell populations), (2) acquired immunity (lymphocyte proliferation, T‐cell function, cytokine profile), and (3) wound healing/resolution of inflammation.ConclusionTaken together, this scoping review supported a potential anti‐inflammatory effect of MTZ in periodontitis treatment. We recommend that future clinical studies should be conducted to evaluate specific MTZ anti‐inflammatory pathways in the treatment of periodontitis.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"58 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides. In this study, we utilized an in vitro T. forsythia-F. nucleatum co-culture model to determine if T. forsythia can selectively scavenge NOD ligands from the environment and impact NOD-mediated inflammation. The results showed that NOD-stimulatory molecules were secreted by F. nucleatum in the spent culture broth, which subsequently induced cytokine and antimicrobial peptide expression in oral epithelial cells. In the spent broth from T. forsythia-F. nucleatum co-cultures, the NOD-stimulatory activity was significantly reduced. These data indicated that F. nucleatum releases NOD2-stimulatory muropeptides in the environment, and T. forsythia can effectively scavenge the muropeptides released by co-habiting bacteria to dampen NOD-mediated host responses. This proof-of-principle study demonstrated that peptidoglycan scavenging by T. forsythia can impact the innate immunity of oral epithelium by dampening NOD activation.
{"title":"Tannerella forsythia scavenges Fusobacterium nucleatum secreted NOD2 stimulatory molecules to dampen oral epithelial cell inflammatory response.","authors":"Rajendra P Settem, Angela Ruscitto, Sreedevi Chinthamani, Kiyonobu Honma, Ashu Sharma","doi":"10.1111/omi.12429","DOIUrl":"10.1111/omi.12429","url":null,"abstract":"<p><p>The oral organism Tannerella forsythia is auxotrophic for peptidoglycan amino sugar N-acetylmuramic acid (MurNAc). It survives in the oral cavity by scavenging MurNAc- and MurNAc-linked peptidoglycan fragments (muropeptides) secreted by co-habiting bacteria such as Fusobacterium nucleatum with which it forms synergistic biofilms. Muropeptides, MurNAc-l-Ala-d-isoGln (MDP, muramyl dipeptide) and d-γ-glutamyl-meso-DAP (iE-DAP dipeptide), are strong immunostimulatory molecules that activate nucleotide oligomerization domain (NOD)-like innate immune receptors and induce the expression of inflammatory cytokines and antimicrobial peptides. In this study, we utilized an in vitro T. forsythia-F. nucleatum co-culture model to determine if T. forsythia can selectively scavenge NOD ligands from the environment and impact NOD-mediated inflammation. The results showed that NOD-stimulatory molecules were secreted by F. nucleatum in the spent culture broth, which subsequently induced cytokine and antimicrobial peptide expression in oral epithelial cells. In the spent broth from T. forsythia-F. nucleatum co-cultures, the NOD-stimulatory activity was significantly reduced. These data indicated that F. nucleatum releases NOD2-stimulatory muropeptides in the environment, and T. forsythia can effectively scavenge the muropeptides released by co-habiting bacteria to dampen NOD-mediated host responses. This proof-of-principle study demonstrated that peptidoglycan scavenging by T. forsythia can impact the innate immunity of oral epithelium by dampening NOD activation.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"40-46"},"PeriodicalIF":3.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9824215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-09-16DOI: 10.1111/omi.12431
Scott C Thomas, Yuqi Guo, Fangxi Xu, Deepak Saxena, Xin Li
Type 2 diabetes (T2D) is a chronic metabolic disorder in which insulin resistance and impaired insulin secretion result in altered metabolite balance, specifically elevated levels of circulating glucose and succinate, which increases the risk of many pathologies, including periodontitis. Succinate, a tricarboxylic acid (TCA) cycle intermediate, can be produced and metabolized by both host cells and host microbiota, where elevated levels serve as an inflammation and pathogen threat signal through activating the succinate G protein-coupled receptor, SUCNR1. Modulating succinate-induced SUCNR1 signaling remains a promising therapeutic approach for pathologies resulting in elevated levels of succinate, such as T2D and periodontitis. Here, we demonstrate hyperglycemia and elevated intracellular succinate in a T2D mouse model and determine gut microbiome composition. Drawing on previous work demonstrating the ability of a novel SUCNR1 antagonist, compound 7a, to block inflammation and alleviate dysbiosis in a mouse model, we examined if compound 7a has an impact on the growth and virulence gene expression of bacterial and fungal human microbiota in vitro, and if 7a could reduce bone loss in a periodontitis-induced mouse model. T2D mice harbored a significantly different gut microbiome, suggesting the altered metabolite profile of T2D causes shifts in host-microbial community structure, with enrichment in succinate producers and consumers and mucin-degrading bacteria. Bacterial and fungal cultures showed that 7a did not influence growth or virulence gene expression, suggesting the therapeutic effects of 7a are a direct result of 7a interacting with host cells and that alterations in microbial community structure are driven by reduced host SUCNR1 signaling. This work further suggests that targeting SUCNR1 signaling is a promising therapeutic approach in metabolic, inflammatory, or immune disorders with elevated succinate levels.
{"title":"A novel SUCNR1 inhibitor alleviates dysbiosis through inhibition of host responses without direct interaction with host microbiota.","authors":"Scott C Thomas, Yuqi Guo, Fangxi Xu, Deepak Saxena, Xin Li","doi":"10.1111/omi.12431","DOIUrl":"10.1111/omi.12431","url":null,"abstract":"<p><p>Type 2 diabetes (T2D) is a chronic metabolic disorder in which insulin resistance and impaired insulin secretion result in altered metabolite balance, specifically elevated levels of circulating glucose and succinate, which increases the risk of many pathologies, including periodontitis. Succinate, a tricarboxylic acid (TCA) cycle intermediate, can be produced and metabolized by both host cells and host microbiota, where elevated levels serve as an inflammation and pathogen threat signal through activating the succinate G protein-coupled receptor, SUCNR1. Modulating succinate-induced SUCNR1 signaling remains a promising therapeutic approach for pathologies resulting in elevated levels of succinate, such as T2D and periodontitis. Here, we demonstrate hyperglycemia and elevated intracellular succinate in a T2D mouse model and determine gut microbiome composition. Drawing on previous work demonstrating the ability of a novel SUCNR1 antagonist, compound 7a, to block inflammation and alleviate dysbiosis in a mouse model, we examined if compound 7a has an impact on the growth and virulence gene expression of bacterial and fungal human microbiota in vitro, and if 7a could reduce bone loss in a periodontitis-induced mouse model. T2D mice harbored a significantly different gut microbiome, suggesting the altered metabolite profile of T2D causes shifts in host-microbial community structure, with enrichment in succinate producers and consumers and mucin-degrading bacteria. Bacterial and fungal cultures showed that 7a did not influence growth or virulence gene expression, suggesting the therapeutic effects of 7a are a direct result of 7a interacting with host cells and that alterations in microbial community structure are driven by reduced host SUCNR1 signaling. This work further suggests that targeting SUCNR1 signaling is a promising therapeutic approach in metabolic, inflammatory, or immune disorders with elevated succinate levels.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"80-90"},"PeriodicalIF":3.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10266107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}