This article highlights the applications of integrated unified phase-field methods in guiding the design of high-performance engineering alloys and the optimization of manufacturing processes within an integrated computational materials engineering (ICME) framework. By combining macro process data, solidification, precipitation, and recrystallization conditions, phase-field modeling is used to predict the precipitation, segregation, and crack tendency of NbC as the crack source in austenitic stainless steels, thereby optimizing casting parameters and improving the product qualification rate from 40% to more than 80%. Phase-field modeling is also used to reveal the internal microstructure evolution of Mg–Li-based alloys during spinodal phase separation and help design the Mg–Li–Al alloy with an ultrahigh specific strength (470–500 kN m kg−1) surpassing all engineering alloys. Phase-field simulations of dendritic growth incorporating macro-temperature field and shrinkage defects in solidification allow us to adjust the casting process parameters for optimizing the alloy and casting’s mechanical properties.