Pub Date : 2024-02-06DOI: 10.1557/s43577-024-00666-0
{"title":"Science as art logo","authors":"","doi":"10.1557/s43577-024-00666-0","DOIUrl":"https://doi.org/10.1557/s43577-024-00666-0","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"1 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1557/s43577-023-00648-8
Joerg R. Jinschek, Stig Helveg, Lawrence F. Allard, Jennifer A. Dionne, Yuanyuan Zhu, Peter A. Crozier
Based on historical developments and the current state of the art in gas-phase transmission electron microscopy (GP-TEM), we provide a perspective covering exciting new technologies and methodologies of relevance for chemical and surface sciences. Considering thermal and photochemical reaction environments, we emphasize the benefit of implementing gas cells, quantitative TEM approaches using sensitive detection for structured electron illumination (in space and time) and data denoising, optical excitation, and data mining using autonomous machine learning techniques. These emerging advances open new ways to accelerate discoveries in chemical and surface sciences.
Graphical abstract
基于气相透射电子显微镜(GP-TEM)的历史发展和技术现状,我们提供了一个视角,涵盖了与化学和表面科学相关的令人兴奋的新技术和新方法。考虑到热反应和光化学反应环境,我们强调了实施气室、使用灵敏检测结构化电子照明(空间和时间)的定量 TEM 方法、数据去噪、光学激发以及使用自主机器学习技术进行数据挖掘的益处。这些新兴技术为加速化学和表面科学的发现开辟了新途径。
{"title":"Quantitative gas-phase transmission electron microscopy: Where are we now and what comes next?","authors":"Joerg R. Jinschek, Stig Helveg, Lawrence F. Allard, Jennifer A. Dionne, Yuanyuan Zhu, Peter A. Crozier","doi":"10.1557/s43577-023-00648-8","DOIUrl":"https://doi.org/10.1557/s43577-023-00648-8","url":null,"abstract":"<p>Based on historical developments and the current state of the art in gas-phase transmission electron microscopy (GP-TEM), we provide a perspective covering exciting new technologies and methodologies of relevance for chemical and surface sciences. Considering thermal and photochemical reaction environments, we emphasize the benefit of implementing gas cells, quantitative TEM approaches using sensitive detection for structured electron illumination (in space and time) and data denoising, optical excitation, and data mining using autonomous machine learning techniques. These emerging advances open new ways to accelerate discoveries in chemical and surface sciences.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"1 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.1557/s43577-023-00651-z
Minshen Zhu, Oliver G. Schmidt
The advent of small-scale robots holds immense potential for revolutionizing various industries, particularly in the domains of surgery and operations within confined spaces that are currently inaccessible to conventional tools. However, their tethered nature and dependence on external power sources impede their progress. To surmount these challenges, the integration of batteries into these diminutive robots emerges as a promising solution. This article explores the integration of batteries in small-scale robots, focusing on “hard” and “soft” approaches. The challenges of integrating rigid batteries into microrobots are discussed. Various battery materials suitable for microfabrication are explored, along with creating three-dimensional structures to optimize performance within limited space. The “soft” integration emphasizes the need for flexible and deformable battery technologies that seamlessly integrate with soft robotic systems. Challenges related to flexibility, stretchability, and biocompatibility are addressed. The concept of distributed and mobile energy units, where smaller batteries assemble into a larger power bank, is proposed for scalability and adaptability. Extracting energy from the environment, inspired by fuel cells, reduces reliance on traditional batteries. This article offers valuable insights into battery integration for small-scale robots, propelling advancements in autonomous and versatile systems. By overcoming current limitations, integrated batteries will unlock the full potential of small-scale robots across various industries.
{"title":"Batteries for small-scale robotics","authors":"Minshen Zhu, Oliver G. Schmidt","doi":"10.1557/s43577-023-00651-z","DOIUrl":"https://doi.org/10.1557/s43577-023-00651-z","url":null,"abstract":"<p>The advent of small-scale robots holds immense potential for revolutionizing various industries, particularly in the domains of surgery and operations within confined spaces that are currently inaccessible to conventional tools. However, their tethered nature and dependence on external power sources impede their progress. To surmount these challenges, the integration of batteries into these diminutive robots emerges as a promising solution. This article explores the integration of batteries in small-scale robots, focusing on “hard” and “soft” approaches. The challenges of integrating rigid batteries into microrobots are discussed. Various battery materials suitable for microfabrication are explored, along with creating three-dimensional structures to optimize performance within limited space. The “soft” integration emphasizes the need for flexible and deformable battery technologies that seamlessly integrate with soft robotic systems. Challenges related to flexibility, stretchability, and biocompatibility are addressed. The concept of distributed and mobile energy units, where smaller batteries assemble into a larger power bank, is proposed for scalability and adaptability. Extracting energy from the environment, inspired by fuel cells, reduces reliance on traditional batteries. This article offers valuable insights into battery integration for small-scale robots, propelling advancements in autonomous and versatile systems. By overcoming current limitations, integrated batteries will unlock the full potential of small-scale robots across various industries.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"62 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1557/s43577-023-00647-9
Jian Wang, Haixuan Xu, Huajian Gao, David L. McDowell
Defects in crystals influence and control many relevant material properties. It is essential to employ multiscale modeling to understand structure and evolution of crystal defects. Most multiscale modeling schemes are hierarchical in nature, typically passing results from modeling conducted at each successive length/time scale to the next higher scale(s), with the intent to inform model parameters or instruct the form of reduced-order models. Here, we briefly review some pertinent hierarchical multiscale modeling advances for fundamentals of crystal defects.