Pub Date : 2024-05-07DOI: 10.1557/s43577-024-00718-5
Hanjun Yang, Wenhao Shao, Jiaonan Sun, Jeong Hui Kim, Yoon Ho Lee, Libai Huang, Letian Dou
The perovskite heterostructure is a novel semiconducting building block that contains multiple spatially organized functionalities within individual particles. The structurally tunable organic ligands in a two-dimensional (2D) perovskite heterostructure play a central role enhancing the stability and affecting the optical properties. Here, we report the synthesis of ligand-variant 2D perovskite lateral heterostructure nanocrystals, based on the sequential solvent evaporation strategy. The fabricated 2D perovskite heterostructures can tolerate large lattice mismatch in the vertical orientation as much as 16.5 percent. The synthesis strategy can be expanded to various combinations of ligands and halides, yielding a clear interface and tailorable electronic structure. This work presents an important step to further the understanding of the interfacial structure of the 2D perovskite heterostructure and the design of perovskite nanodevices with tailored optoelectronic properties.
{"title":"Ligand-variant two-dimensional halide perovskite lateral heterostructure","authors":"Hanjun Yang, Wenhao Shao, Jiaonan Sun, Jeong Hui Kim, Yoon Ho Lee, Libai Huang, Letian Dou","doi":"10.1557/s43577-024-00718-5","DOIUrl":"https://doi.org/10.1557/s43577-024-00718-5","url":null,"abstract":"<p>The perovskite heterostructure is a novel semiconducting building block that contains multiple spatially organized functionalities within individual particles. The structurally tunable organic ligands in a two-dimensional (2D) perovskite heterostructure play a central role enhancing the stability and affecting the optical properties. Here, we report the synthesis of ligand-variant 2D perovskite lateral heterostructure nanocrystals, based on the sequential solvent evaporation strategy. The fabricated 2D perovskite heterostructures can tolerate large lattice mismatch in the vertical orientation as much as 16.5 percent. The synthesis strategy can be expanded to various combinations of ligands and halides, yielding a clear interface and tailorable electronic structure. This work presents an important step to further the understanding of the interfacial structure of the 2D perovskite heterostructure and the design of perovskite nanodevices with tailored optoelectronic properties.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"156 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1557/s43577-024-00719-4
Sabrina Sartori, Ryan O’Hayre, Zongping Shao
{"title":"Materials for green hydrogen production, storage, and conversion","authors":"Sabrina Sartori, Ryan O’Hayre, Zongping Shao","doi":"10.1557/s43577-024-00719-4","DOIUrl":"https://doi.org/10.1557/s43577-024-00719-4","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"1 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1557/s43577-024-00699-5
Jia-Mian Hu
The phase-field method enables simulating the spatiotemporal evolution of the coupled physical-order parameters under externally applied fields in a wide range of materials and devices. Leveraging advanced numerical algorithms for solving the nonlinear partial differential equations and scalable parallelization techniques, the phase-field method is becoming a powerful computational tool to model and design devices operating based on multiple-coupled physical processes. This article will highlight examples of applying phase-field simulations to predict new mesoscale physical phenomena and design new-concept magnetomechanical devices by identifying the desirable combination of the composition, size, and geometry of monolithic materials as well as the device structure. A brief outlook of the opportunities and challenges for modeling and designing magnetomechanical devices with phase-field modeling is also provided.
{"title":"Design of new-concept magnetomechanical devices by phase-field simulations","authors":"Jia-Mian Hu","doi":"10.1557/s43577-024-00699-5","DOIUrl":"https://doi.org/10.1557/s43577-024-00699-5","url":null,"abstract":"<p>The phase-field method enables simulating the spatiotemporal evolution of the coupled physical-order parameters under externally applied fields in a wide range of materials and devices. Leveraging advanced numerical algorithms for solving the nonlinear partial differential equations and scalable parallelization techniques, the phase-field method is becoming a powerful computational tool to model and design devices operating based on multiple-coupled physical processes. This article will highlight examples of applying phase-field simulations to predict new mesoscale physical phenomena and design new-concept magnetomechanical devices by identifying the desirable combination of the composition, size, and geometry of monolithic materials as well as the device structure. A brief outlook of the opportunities and challenges for modeling and designing magnetomechanical devices with phase-field modeling is also provided.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"16 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1557/s43577-024-00692-y
Fei Li, Bo Wang, Long-Qing Chen
The phase-field method has been extensively applied to predicting the domain structures and their responses to external fields and understanding experimentally observed domain states under different electromechanical conditions in ferroelectric heterostructures. This article highlights the successful examples of phase-field applications in guiding the design of relaxor ferroelectric ceramics and crystals with record-high piezoelectricity and the discovery of simultaneous high light transparency and piezoelectricity of relaxor ferroelectric crystals for a wide range of biomedical, robotics, and optoelectronics applications.