首页 > 最新文献

Mucosal Immunology最新文献

英文 中文
Gut-homing and intestinal TIGITnegCD38+ memory T cells acquire an IL-12-induced, ex-Th17 pathogenic phenotype in a subgroup of Crohn's disease patients with a severe disease course. 在病程严重的克罗恩病患者亚群中,肠道归巢和肠道 TIGITnegCD38+ 记忆 T 细胞获得了 IL-12 诱导的外 Th17 致病表型。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-11-24 DOI: 10.1016/j.mucimm.2024.11.008
Maud Heredia, Daniëlle M H Barendregt, Irma Tindemans, Renz C W Klomberg, Martine A Aardoom, Beatriz Calado, Léa M M Costes, Maria E Joosse, Daniëlle H Hulleman-van Haaften, Bastiaan Tuk, Lisette A van Berkel, Polychronis Kemos, Frank M Ruemmele, Nicholas M Croft, Johanna C Escher, Lissy de Ridder, Janneke N Samsom

CD4+ memory T cell (TM) reactivation drives chronicity in inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis. Defects driving loss of TM regulation likely differ between patients but remain undefined. In health, approximately 40 % of circulating gut-homing CD38+TM express co-inhibitory receptor T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT). TIGIT+CD38+TM have regulatory function while TIGITnegCD38+TM are enriched in IFN-γ-producing cells. We hypothesized TIGITnegCD38+TM are inflammatory and drive disease in a subgroup of IBD patients. We characterized TIGIT+CD38+TM in a uniquely large cohort of pediatric IBD patients from time of diagnosis into adulthood. Circulating TIGITnegCD38+TM frequencies were higher in a subgroup of therapy-naïve CD patients with high plasma IFN-γ and a more severe disease course. TIGITnegCD38+TM were highly enriched in HLA-DR+ and ex-Th17/Th1-like cells, high producers of IFN-γ. Cultures of healthy-adult-stimulated TM identified IL-12 as the only IBD-related inflammatory cytokine to drive the pathogenic ex-Th17-TIGITnegCD38+ phenotype. Moreover, IL12RB2 mRNA expression was higher in TIGITnegCD38+TM than TIGIT+CD38+TM, elevated in CD biopsies compared to controls, and correlated with severity of intestinal inflammation. Overall, we argue that in a subgroup of pediatric CD, increased IL-12 signaling drives reprogramming of Th17 to inflammatory Th1-like TIGITnegCD38+TM and causes more severe disease.

CD4+ 记忆 T 细胞(TM)再活化是炎症性肠病(IBD)(包括克罗恩病(CD)和溃疡性结肠炎)慢性化的驱动因素。导致 TM 失调的缺陷可能因患者而异,但目前仍未确定。在健康人体内,大约 40% 的循环肠道归巢 CD38+TM 表达具有免疫球蛋白和 ITIM 结构域的共抑制受体 T 细胞免疫受体(TIGIT)。TIGIT+CD38+TM 具有调节功能,而 TIGITnegCD38+TM 则富含 IFN-γ 生成细胞。我们推测 TIGITnegCD38+TM 具有炎症性,会导致一部分 IBD 患者发病。我们在一个独特的大型儿科 IBD 患者队列中描述了 TIGIT+CD38+TM 从诊断到成年的特征。在血浆 IFN-γ 含量高且病程更严重的 CD 患者亚群中,循环 TIGITnegCD38+TM 的频率更高。TIGITnegCD38+TM高度富集于HLA-DR+和外Th17/Th1样细胞中,这些细胞是IFN-γ的高产细胞。健康成人刺激的 TM 培养物发现,IL-12 是唯一能驱动致病性 ex-Th17-TIGITnegCD38+ 表型的 IBD 相关炎症细胞因子。此外,IL12RB2 mRNA 在 TIGITnegCD38+TM 中的表达高于 TIGIT+CD38+TM,在 CD 活检中的表达高于对照组,并与肠道炎症的严重程度相关。总之,我们认为在小儿 CD 亚群中,IL-12 信号的增加促使 Th17 重编程为炎性 Th1 样 TIGITnegCD38+TM 并导致更严重的疾病。
{"title":"Gut-homing and intestinal TIGIT<sup>neg</sup>CD38<sup>+</sup> memory T cells acquire an IL-12-induced, ex-Th17 pathogenic phenotype in a subgroup of Crohn's disease patients with a severe disease course.","authors":"Maud Heredia, Daniëlle M H Barendregt, Irma Tindemans, Renz C W Klomberg, Martine A Aardoom, Beatriz Calado, Léa M M Costes, Maria E Joosse, Daniëlle H Hulleman-van Haaften, Bastiaan Tuk, Lisette A van Berkel, Polychronis Kemos, Frank M Ruemmele, Nicholas M Croft, Johanna C Escher, Lissy de Ridder, Janneke N Samsom","doi":"10.1016/j.mucimm.2024.11.008","DOIUrl":"10.1016/j.mucimm.2024.11.008","url":null,"abstract":"<p><p>CD4<sup>+</sup> memory T cell (T<sub>M</sub>) reactivation drives chronicity in inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis. Defects driving loss of T<sub>M</sub> regulation likely differ between patients but remain undefined. In health, approximately 40 % of circulating gut-homing CD38<sup>+</sup>T<sub>M</sub> express co-inhibitory receptor T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT). TIGIT<sup>+</sup>CD38<sup>+</sup>T<sub>M</sub> have regulatory function while TIGIT<sup>neg</sup>CD38<sup>+</sup>T<sub>M</sub> are enriched in IFN-γ-producing cells. We hypothesized TIGIT<sup>neg</sup>CD38<sup>+</sup>T<sub>M</sub> are inflammatory and drive disease in a subgroup of IBD patients. We characterized TIGIT<sup>+</sup>CD38<sup>+</sup>T<sub>M</sub> in a uniquely large cohort of pediatric IBD patients from time of diagnosis into adulthood. Circulating TIGIT<sup>neg</sup>CD38<sup>+</sup>T<sub>M</sub> frequencies were higher in a subgroup of therapy-naïve CD patients with high plasma IFN-γ and a more severe disease course. TIGIT<sup>neg</sup>CD38<sup>+</sup>T<sub>M</sub> were highly enriched in HLA-DR<sup>+</sup> and ex-Th17/Th1-like cells, high producers of IFN-γ. Cultures of healthy-adult-stimulated T<sub>M</sub> identified IL-12 as the only IBD-related inflammatory cytokine to drive the pathogenic ex-Th17-TIGIT<sup>neg</sup>CD38<sup>+</sup> phenotype. Moreover, IL12RB2 mRNA expression was higher in TIGIT<sup>neg</sup>CD38<sup>+</sup>T<sub>M</sub> than TIGIT<sup>+</sup>CD38<sup>+</sup>T<sub>M</sub>, elevated in CD biopsies compared to controls, and correlated with severity of intestinal inflammation. Overall, we argue that in a subgroup of pediatric CD, increased IL-12 signaling drives reprogramming of Th17 to inflammatory Th1-like TIGIT<sup>neg</sup>CD38<sup>+</sup>T<sub>M</sub> and causes more severe disease.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bite-sized immunology; damage and microbes educating immunity at the gingiva 咬合免疫学;损害和微生物教育牙龈免疫。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.07.004
Joanne E. Konkel, Joshua R. Cox, Kelly Wemyss
Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.
驻留在牙龈的免疫细胞会经历各种独特的信号,从而调整其功能,使其能够对免疫挑战做出适当的反应,并保持组织的完整性。牙龈被定义为环绕和支撑牙齿的粘膜屏障,是唯一一个被坚硬结构--牙齿--完全横切的屏障部位。牙龈组织在生命早期的牙齿萌出过程中受到损伤,并在整个生命过程中因咀嚼而长期受到损伤。这与屏障部位所面临的典型挑战同时发生,包括暴露于入侵病原体、当地共生微生物群落和环境抗原。本综述将重点讨论保护牙龈完整性的免疫网络,人们对该网络的了解远远少于对其他屏障部位的了解。详细了解牙龈驻留的免疫网络至关重要,因为牙龈是炎症性疾病牙周炎的发病部位,而牙周炎是人类最常见的慢性炎症性疾病,具有众所周知的有害全身影响。进一步了解牙龈内的免疫群体是如何发展的、在健康状态下是如何调整的,以及在疾病状态下是如何失调的,将有助于开发治疗牙周炎的有效疗法。
{"title":"Bite-sized immunology; damage and microbes educating immunity at the gingiva","authors":"Joanne E. Konkel,&nbsp;Joshua R. Cox,&nbsp;Kelly Wemyss","doi":"10.1016/j.mucimm.2024.07.004","DOIUrl":"10.1016/j.mucimm.2024.07.004","url":null,"abstract":"<div><div>Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 1141-1150"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term alterations in lung epithelial cells after EL-RSV infection exacerbate allergic responses through IL-1β-induced pathways EL-RSV感染后肺上皮细胞的长期改变通过IL-1β诱导途径加剧过敏反应运行标题:EL-RSV 和长期改变。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.07.007
Susan B. Morris , Ramon Ocadiz-Ruiz , Nobuhiro Asai , Carrie-Anne Malinczak , Andrew J Rasky , Grace K. Lombardo , Evan M. Velarde , Catherine Ptaschinski , Rachel L Zemans , Nicholas W. Lukacs , Wendy Fonseca
Early-life (EL) respiratory infections increase pulmonary disease risk, especially EL-Respiratory Syncytial Virus (EL-RSV) infections linked to asthma. Mechanisms underlying asthma predisposition remain unknown. In this study, we examined the long-term effects on the lung after four weeks post EL-RSV infection. We identified alterations in the lung epithelial cell, with a rise in the percentage of alveolar type 2 epithelial cells (AT2) and a decreased percentage of cells in the AT1 and AT2-AT1 subclusters, as well as upregulation of Bmp2 and Krt8 genes that are associated with AT2-AT1 trans-differentiation, suggesting potential defects in lung repair processes. We identified persistent upregulation of asthma-associated genes, including Il33. EL-RSV-infected mice allergen-challenged exhibited exacerbated allergic response, with significant upregulation of Il33 in the lung and AT2 cells. Similar long-term effects were observed in mice exposed to EL-IL-1β. Notably, treatment with IL-1ra during acute EL-RSV infection mitigated the long-term alveolar alterations and the allergen-exacerbated response. Finally, epigenetic modifications in the promoter of the Il33 gene were detected in AT2 cells harvested from EL-RSV and EL-IL1β groups, suggesting that long-term alteration in the epithelium after RSV infection is dependent on the IL-1β pathway. This study provides insight into the molecular mechanisms of asthma predisposition after RSV infection.
生命早期(EL)呼吸道感染会增加肺部疾病风险,尤其是与哮喘有关的EL-呼吸道合胞病毒(EL-RSV)感染。哮喘易感性的机制仍不清楚。在本研究中,我们研究了 EL-RSV 感染四周后对肺部的长期影响。我们发现肺上皮细胞发生了改变,肺泡2型上皮细胞(AT2)的比例上升,AT1和AT2-AT1亚群细胞的比例下降,与AT2-AT1跨分化相关的Bmp2和Krt8基因上调,这表明肺修复过程存在潜在缺陷。我们发现了哮喘相关基因(包括 Il33)的持续上调。EL-RSV 感染的小鼠在过敏原挑战下表现出加剧的过敏反应,肺部和 AT2 细胞中的 Il33 显著上调。在暴露于 EL-IL-1β 的小鼠中也观察到了类似的长期效应。值得注意的是,在急性EL-RSV感染期间用IL-1ra治疗可减轻肺泡的长期改变和过敏原加重的反应。最后,在 EL-RSV 组和 EL-IL1β 组收获的 AT2 细胞中检测到了 Il33 基因启动子的表观遗传修饰,这表明 RSV 感染后上皮细胞的长期改变依赖于 IL-1β 途径。这项研究有助于深入了解 RSV 感染后哮喘易感性的分子机制。
{"title":"Long-term alterations in lung epithelial cells after EL-RSV infection exacerbate allergic responses through IL-1β-induced pathways","authors":"Susan B. Morris ,&nbsp;Ramon Ocadiz-Ruiz ,&nbsp;Nobuhiro Asai ,&nbsp;Carrie-Anne Malinczak ,&nbsp;Andrew J Rasky ,&nbsp;Grace K. Lombardo ,&nbsp;Evan M. Velarde ,&nbsp;Catherine Ptaschinski ,&nbsp;Rachel L Zemans ,&nbsp;Nicholas W. Lukacs ,&nbsp;Wendy Fonseca","doi":"10.1016/j.mucimm.2024.07.007","DOIUrl":"10.1016/j.mucimm.2024.07.007","url":null,"abstract":"<div><div>Early-life (EL) respiratory infections increase pulmonary disease risk, especially EL-Respiratory Syncytial Virus (EL-RSV) infections linked to asthma. Mechanisms underlying asthma predisposition remain unknown. In this study, we examined the long-term effects on the lung after four weeks post EL-RSV infection. We identified alterations in the lung epithelial cell, with a rise in the percentage of alveolar type 2 epithelial cells (AT2) and a decreased percentage of cells in the AT1 and AT2-AT1 subclusters, as well as upregulation of <em>Bmp2</em> and <em>Krt8</em> genes that are associated with AT2-AT1 <em>trans</em>-differentiation, suggesting potential defects in lung repair processes. We identified persistent upregulation of asthma-associated genes, including <em>Il33</em>. EL-RSV-infected mice allergen-challenged exhibited exacerbated allergic response, with significant upregulation of <em>Il33</em> in the lung and AT2 cells. Similar long-term effects were observed in mice exposed to EL-IL-1β. Notably, treatment with IL-1ra during acute EL-RSV infection mitigated the long-term alveolar alterations and the allergen-exacerbated response. Finally, epigenetic modifications in the promoter of the <em>Il33</em> gene were detected in AT2 cells harvested from EL-RSV and EL-IL1β groups, suggesting that long-term alteration in the epithelium after RSV infection is dependent on the IL-1β pathway. This study provides insight into the molecular mechanisms of asthma predisposition after RSV infection.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 1072-1088"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine 局部抗原相遇可促进大肠中组织驻留记忆 T 细胞的生成。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.05.005
Upon infection, CD8+ T cells that have been primed in the draining lymph nodes migrate to the invaded tissue, where they receive cues prompting their differentiation into tissue-resident memory cells (Trm), which display niche-specific transcriptional features. Despite the importance of these cells, our understanding of their molecular landscape and the signals that dictate their development remains limited, particularly in specific anatomical niches such as the large intestine (LI). Here, we report that LI Trm-generated following oral infection exhibits a distinct transcriptional profile compared to Trm in other tissues. Notably, we observe that local cues play a crucial role in the preferential establishment of LI Trm, favoring precursors that migrate to the tissue early during infection. Our investigations identify cognate antigen recognition as a major driver of Trm differentiation at this anatomical site. Local antigen presentation not only promotes the proliferation of effector cells and memory precursors but also facilitates the acquisition of transcriptional features characteristic of gut Trm. Thus, antigen recognition in the LI favors the establishment of Trm by impacting T cell expansion and gene expression.
感染后,在引流淋巴结中被激活的 CD8+ T 细胞会迁移到受侵袭的组织,在那里它们会接收到促使它们分化为组织驻留记忆细胞(Trm)的信号,这些细胞会显示出龛位特异性转录特征。尽管这些细胞非常重要,但我们对其分子图谱和决定其发育的信号的了解仍然有限,尤其是在大肠(LI)等特定解剖龛位中。在这里,我们报告了口腔感染后产生的大肠Trm与其他组织中的Trm相比表现出不同的转录特征。值得注意的是,我们观察到局部线索在 LI Trm 的优先建立中起着至关重要的作用,有利于感染期间早期迁移到该组织的前体。我们的研究发现,同源抗原识别是这一解剖部位Trm分化的主要驱动力。局部抗原呈递不仅能促进效应细胞和记忆前体的增殖,还能促进获得肠道Trm特有的转录特征。因此,LI 中的抗原识别会影响 T 细胞的扩增和基因表达,从而有利于 Trm 的建立。
{"title":"Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine","authors":"","doi":"10.1016/j.mucimm.2024.05.005","DOIUrl":"10.1016/j.mucimm.2024.05.005","url":null,"abstract":"<div><div>Upon infection, CD8<sup>+</sup> T cells that have been primed in the draining lymph nodes migrate to the invaded tissue, where they receive cues prompting their differentiation into tissue-resident memory cells (Trm), which display niche-specific transcriptional features. Despite the importance of these cells, our understanding of their molecular landscape and the signals that dictate their development remains limited, particularly in specific anatomical niches such as the large intestine (LI). Here, we report that LI Trm-generated following oral infection exhibits a distinct transcriptional profile compared to Trm in other tissues. Notably, we observe that local cues play a crucial role in the preferential establishment of LI Trm, favoring precursors that migrate to the tissue early during infection. Our investigations identify cognate antigen recognition as a major driver of Trm differentiation at this anatomical site. Local antigen presentation not only promotes the proliferation of effector cells and memory precursors but also facilitates the acquisition of transcriptional features characteristic of gut Trm. Thus, antigen recognition in the LI favors the establishment of Trm by impacting T cell expansion and gene expression.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 810-824"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141088085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activated eosinophils in early life impair lung development and promote long-term lung damage 生命早期活化的嗜酸性粒细胞会损害肺部发育并促进长期肺损伤。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.06.003
Exaggeration of type 2 immune responses promotes lung inflammation and altered lung development; however, eosinophils, despite expansion in the postnatal lung, have not been specifically assessed in the context of neonatal lung disease. Furthermore, early life factors including prematurity and respiratory infection predispose infants to chronic obstructive pulmonary disease later in life. To assess eosinophils in the developing lung and how they may contribute to chronic lung disease, we generated mice harboring eosinophil-specific deletion of the negative regulatory enzyme SH2 domain-containing inositol 5′ phosphatase-1. This increased the activity and number of pulmonary eosinophils in the developing lung, which was associated with impaired lung development, expansion of activated alveolar macrophages (AMφ), multinucleated giant cell formation, enlargement of airspaces, and fibrosis. Despite regression of eosinophils following completion of lung development, AMφ-dominated inflammation persisted, alongside lung damage. Bone marrow chimera studies showed that SH2 domain-containing inositol 5′ phosphatase-1-deficient eosinophils were not sufficient to drive inflammatory lung disease in adult steady-state mice but once inflammation and damage were present, it could not be resolved. Depletion of eosinophils during alveolarization alleviated pulmonary inflammation and lung pathology, demonstrating an eosinophil-intrinsic effect. These results show that the presence of activated eosinophils during alveolarization aggravates AMφs and promotes sustained inflammation and long-lasting lung pathology.
2型免疫反应的加剧会促进肺部炎症和肺部发育的改变;然而,尽管嗜酸性粒细胞在出生后肺部扩大,但尚未对新生儿肺部疾病进行专门评估。此外,包括早产和呼吸道感染在内的生命早期因素使婴儿日后易患慢性阻塞性肺病。为了评估发育中肺部的嗜酸性粒细胞及其对慢性肺病的影响,我们培育了嗜酸性粒细胞特异性缺失负调控酶 SHIP-1 的小鼠。这增加了发育中肺部嗜酸性粒细胞的活性和数量,导致肺发育受损、活化肺泡巨噬细胞(AMφ)扩张、多核巨细胞形成、气孔扩大和纤维化。尽管嗜酸性粒细胞在肺发育完成后有所减少,但以 AMφ 为主的炎症仍持续存在,同时还伴有肺损伤。骨髓嵌合体研究表明,SHIP-1缺陷的嗜酸性粒细胞不足以驱动成年稳态小鼠的肺部炎症,但炎症和损伤一旦出现,就无法解决。在肺泡化过程中消耗嗜酸性粒细胞可缓解肺部炎症和肺部病理变化,这证明了嗜酸性粒细胞的内在效应。这些结果表明,肺泡化过程中活化的嗜酸性粒细胞会加重 AMφs,并促进持续的炎症和长期的肺部病变。
{"title":"Activated eosinophils in early life impair lung development and promote long-term lung damage","authors":"","doi":"10.1016/j.mucimm.2024.06.003","DOIUrl":"10.1016/j.mucimm.2024.06.003","url":null,"abstract":"<div><div>Exaggeration of type 2 immune responses promotes lung inflammation and altered lung development; however, eosinophils, despite expansion in the postnatal lung, have not been specifically assessed in the context of neonatal lung disease. Furthermore, early life factors including prematurity and respiratory infection predispose infants to chronic obstructive pulmonary disease later in life. To assess eosinophils in the developing lung and how they may contribute to chronic lung disease, we generated mice harboring eosinophil-specific deletion of the negative regulatory enzyme SH2 domain-containing inositol 5′ phosphatase-1. This increased the activity and number of pulmonary eosinophils in the developing lung, which was associated with impaired lung development, expansion of activated alveolar macrophages (AMφ), multinucleated giant cell formation, enlargement of airspaces, and fibrosis. Despite regression of eosinophils following completion of lung development, AMφ-dominated inflammation persisted, alongside lung damage. Bone marrow chimera studies showed that SH2 domain-containing inositol 5′ phosphatase-1-deficient eosinophils were not sufficient to drive inflammatory lung disease in adult steady-state mice but once inflammation and damage were present, it could not be resolved. Depletion of eosinophils during alveolarization alleviated pulmonary inflammation and lung pathology, demonstrating an eosinophil-intrinsic effect. These results show that the presence of activated eosinophils during alveolarization aggravates AMφs and promotes sustained inflammation and long-lasting lung pathology.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 871-891"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary protein modulates intestinal dendritic cells to establish mucosal homeostasis 膳食蛋白质调节肠道树突状细胞,建立粘膜稳态。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.06.006
Dietary proteins are taken up by intestinal dendritic cells (DCs), cleaved into peptides, loaded to major histocompatibility complexes, and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to major histocompatibility complex to activate T cells. Here, we show that impairment in regulatory T cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in Akkermansia muciniphilia and Oscillibacter and a decrease in Lactococcus lactis and Bifidobacterium. Although microbiome transfer experiments showed that AA-driven microbiome modulates intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.
膳食蛋白质会被肠道树突状细胞(DC)吸收,裂解成肽,装载到主要组织相容性配体(MHC)上,并呈现给 T 细胞以产生免疫反应。氨基酸(AA)饮食没有同样的效果,因为AA不能与MHC结合以激活T细胞。在这里,我们发现,以缺乏全蛋白的饮食喂养的小鼠的 Treg 细胞生成障碍和耐受性丧失与肠道 DC 的主要转录变化有关,包括 DC 成熟、活化和迁移相关基因的下调以及免疫检查点分子基因表达的减少。此外,AA饮食对微生物组的组成也有深远影响,包括Akkermansia muciniphilia和Oscillibacter的增加以及乳酸乳球菌和双歧杆菌的减少。虽然微生物组转移实验表明 AA 驱动的微生物组会调节肠道直肠基因表达,但直肠中大多数独特的转录变化都与膳食中缺乏全蛋白质有关。我们的研究结果凸显了膳食蛋白质对肠道直流电功能和粘膜耐受性的重要性。
{"title":"Dietary protein modulates intestinal dendritic cells to establish mucosal homeostasis","authors":"","doi":"10.1016/j.mucimm.2024.06.006","DOIUrl":"10.1016/j.mucimm.2024.06.006","url":null,"abstract":"<div><div>Dietary proteins are taken up by intestinal dendritic cells (DCs), cleaved into peptides, loaded to major histocompatibility complexes, and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to major histocompatibility complex to activate T cells. Here, we show that impairment in regulatory T cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in <em>Akkermansia muciniphilia</em> and <em>Oscillibacter</em> and a decrease in <em>Lactococcus lactis</em> and <em>Bifidobacterium</em>. Although microbiome transfer experiments showed that AA-driven microbiome modulates intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 911-922"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Western diet reduces small intestinal intraepithelial lymphocytes via FXR-Interferon pathway 西式饮食通过 FXR- 干扰素途径减少小肠上皮内淋巴细胞。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.07.001
The prevalence of obesity in the United States has continued to increase over the past several decades. Understanding how diet-induced obesity modulates mucosal immunity is of clinical relevance. We previously showed that consumption of a high fat, high sugar “Western” diet (WD) reduces the density and function of small intestinal Paneth cells, a small intestinal epithelial cell type with innate immune function. We hypothesized that obesity could also result in repressed gut adaptive immunity. Using small intestinal intraepithelial lymphocytes (IEL) as a readout, we found that in non-inflammatory bowel disease (IBD) subjects, high body mass index correlated with reduced IEL density. We recapitulated this in wild type (WT) mice fed with WD. A 4-week WD consumption was able to reduce IEL but not splenic, blood, or bone marrow lymphocytes, and the effect was reversible after another 2 weeks of standard diet (SD) washout. Importantly, WD-associated IEL reduction was not dependent on the presence of gut microbiota, as WD-fed germ-free mice also showed IEL reduction. We further found that WD-mediated Farnesoid X Receptor (FXR) activation in the gut triggered IEL reduction, and this was partially mediated by intestinal phagocytes. Activated FXR signaling stimulated phagocytes to secrete type I IFN, and inhibition of either FXR or type I IFN signaling within the phagocytes prevented WD-mediated IEL loss. Therefore, WD consumption represses both innate and adaptive immunity in the gut. These findings have significant clinical implications in the understanding of how diet modulates mucosal immunity.
过去几十年来,美国的肥胖症发病率持续上升。了解饮食引起的肥胖如何调节粘膜免疫具有临床意义。我们以前的研究表明,摄入高脂肪、高糖的 "西式 "饮食(WD)会降低小肠帕奈斯细胞的密度和功能,帕奈斯细胞是一种具有先天性免疫功能的小肠上皮细胞类型。我们假设肥胖也会导致肠道适应性免疫功能受抑制。利用小肠上皮内淋巴细胞(IEL)作为读数,我们发现在非炎症性肠病(IBD)受试者中,高体重指数与 IEL 密度降低相关。我们在喂食 WD 的野生型(WT)小鼠身上重现了这一点。连续 4 周摄入 WD 能够减少 IEL,但不会减少脾脏、血液或骨髓淋巴细胞,而且这种影响在标准饮食(SD)间隔 2 周后是可逆的。重要的是,WD 相关的 IEL 减少并不依赖于肠道微生物群的存在,因为喂食 WD 的无菌小鼠也会出现 IEL 减少。我们进一步发现,WD 介导的肠道类囊体 X 受体(FXR)激活引发了 IEL 减少,而这部分是由肠道吞噬细胞介导的。激活的 FXR 信号刺激吞噬细胞分泌 I 型 IFN,抑制吞噬细胞内的 FXR 或 I 型 IFN 信号可防止 WD 介导的 IEL 损失。因此,摄入 WD 会抑制肠道内的先天性免疫和适应性免疫。这些发现对于了解饮食如何调节粘膜免疫具有重要的临床意义。
{"title":"Western diet reduces small intestinal intraepithelial lymphocytes via FXR-Interferon pathway","authors":"","doi":"10.1016/j.mucimm.2024.07.001","DOIUrl":"10.1016/j.mucimm.2024.07.001","url":null,"abstract":"<div><div>The prevalence of obesity in the United States has continued to increase over the past several decades. Understanding how diet-induced obesity modulates mucosal immunity is of clinical relevance. We previously showed that consumption of a high fat, high sugar “Western” diet (WD) reduces the density and function of small intestinal Paneth cells, a small intestinal epithelial cell type with innate immune function. We hypothesized that obesity could also result in repressed gut adaptive immunity. Using small intestinal intraepithelial lymphocytes (IEL) as a readout, we found that in non-inflammatory bowel disease (IBD) subjects, high body mass index correlated with reduced IEL density. We recapitulated this in wild type (WT) mice fed with WD. A 4-week WD consumption was able to reduce IEL but not splenic, blood, or bone marrow lymphocytes, and the effect was reversible after another 2 weeks of standard diet (SD) washout. Importantly, WD-associated IEL reduction was not dependent on the presence of gut microbiota, as WD-fed germ-free mice also showed IEL reduction. We further found that WD-mediated Farnesoid X Receptor (FXR) activation in the gut triggered IEL reduction, and this was partially mediated by intestinal phagocytes. Activated FXR signaling stimulated phagocytes to secrete type I IFN, and inhibition of either FXR or type I IFN signaling within the phagocytes prevented WD-mediated IEL loss. Therefore, WD consumption represses both innate and adaptive immunity in the gut. These findings have significant clinical implications in the understanding of how diet modulates mucosal immunity.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 1019-1028"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses 在 IRGM1 缺失的情况下,I 型 IFN 信号通过抑制 T 细胞反应促进结核杆菌在免疫细胞中的复制。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.07.002
Sumanta K. Naik, Michael E. McNehlan, Yassin Mreyoud, Rachel L. Kinsella, Asya Smirnov, Chanchal Sur Chowdhury, Samuel R. McKee, Neha Dubey, Reilly Woodson, Darren Kreamalmeyer, Christina L. Stallings
Polymorphisms in the IRGM gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of Irgm, Irgm1, is also essential for controlling Mycobacterium tuberculosis (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection in vivo and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis in vivo and found that Irgm1 deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in Irgm1−/− mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact TH1 immune responses.
IRGM基因的多态性与人类对结核病的易感性有关。Irgm的小鼠直向同源物Irgm1也是控制小鼠结核分枝杆菌(Mtb)感染的关键。与IRGM1活性相关的多个过程可能会影响宿主对Mtb感染的反应,包括在自噬介导的病原体清除和活化T细胞扩增中的作用。然而,IRGM1 介导的哪种途径是控制体内 Mtb 感染所必需的,以及这种控制的机理基础仍然未知。我们剖析了IRGM1对体内Mtb发病的免疫控制的贡献,发现Irgm1缺失会导致IRGM3依赖的I型干扰素信号水平升高。I型干扰素信号的增加阻止了T细胞在Mtb感染期间的扩增。Irgm1-/-小鼠缺乏Mtb特异性T细胞扩增,导致中性粒细胞和肺泡巨噬细胞中的Mtb感染失控,从而直接导致感染易感性。总之,我们的研究揭示了IRGM1是促进T细胞介导的中性粒细胞Mtb感染控制所必需的,这对Mtb感染小鼠的存活至关重要。这些研究还发现了 I 型干扰素信号转导影响 TH1 免疫反应的新途径。
{"title":"Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses","authors":"Sumanta K. Naik,&nbsp;Michael E. McNehlan,&nbsp;Yassin Mreyoud,&nbsp;Rachel L. Kinsella,&nbsp;Asya Smirnov,&nbsp;Chanchal Sur Chowdhury,&nbsp;Samuel R. McKee,&nbsp;Neha Dubey,&nbsp;Reilly Woodson,&nbsp;Darren Kreamalmeyer,&nbsp;Christina L. Stallings","doi":"10.1016/j.mucimm.2024.07.002","DOIUrl":"10.1016/j.mucimm.2024.07.002","url":null,"abstract":"<div><div>Polymorphisms in the <em>IRGM</em> gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of <em>Irgm</em>, <em>Irgm1</em>, is also essential for controlling <em>Mycobacterium tuberculosis</em> (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection <em>in vivo</em> and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis <em>in vivo</em> and found that <em>Irgm1</em> deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in <em>Irgm1</em><sup>−/−</sup> mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact T<sub>H</sub>1 immune responses.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 1114-1127"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translocating bacteria in SIV infection are not stochastic and preferentially express cytosine methyltransferases SIV 感染中的转运细菌并非随机,而是优先表达胞嘧啶甲基转移酶。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.07.008
Jacob K. Flynn , Alexandra M. Ortiz , Ivan Vujkovic-Cvijin , Hugh C. Welles , Jennifer Simpson , Fabiola M. Castello Casta , Debra S. Yee , Andrew R. Rahmberg , Kelsie L. Brooks , Marlon De Leon , Samantha Knodel , Kenzie Birse , Laura Noel-Romas , Anshu Deewan , Yasmine Belkaid , Adam Burgener , Jason M. Brenchley
Microbial translocation is a significant contributor to chronic inflammation in people living with HIV (PLWH) and is associated with increased mortality and morbidity in individuals treated for long periods with antiretrovirals. The use of therapeutics to treat microbial translocation has yielded mixed effects, in part, because the species and mechanisms contributing to translocation in HIV remain incompletely characterized. To characterize translocating bacteria, we cultured translocators from chronically SIV-infected rhesus macaques. Proteomic profiling of these bacteria identified cytosine-specific methyltransferases as a common feature and therefore, a potential driver of translocation. Treatment of translocating bacteria with the cytosine methyltransferase inhibitor decitabine significantly impaired growth for several species in vitro. In rhesus macaques, oral treatment with decitabine led to some transient decreases in translocator taxa in the gut microbiome. These data provide mechanistic insight into bacterial translocation in lentiviral infection and explore a novel therapeutic intervention that may improve the prognosis of PLWH.
微生物易位是导致艾滋病病毒感染者(PLWH)慢性炎症的一个重要因素,并与长期接受抗逆转录病毒药物治疗者的死亡率和发病率增加有关。使用治疗药物治疗微生物易位的效果不一,部分原因是导致艾滋病病毒易位的菌种和机制尚未完全定性。为了确定转运细菌的特征,我们从长期感染 SIV 的猕猴身上培养出了转运细菌。对这些细菌的蛋白质组分析发现,胞嘧啶特异性甲基转移酶是它们的共同特征,因此也是易位的潜在驱动因素。用胞嘧啶甲基转移酶抑制剂地西他滨处理易位细菌,可显著抑制几种细菌在体外的生长。在猕猴体内,地西他滨口服治疗会导致肠道微生物群中的易位分类群短暂减少。这些数据提供了慢病毒感染中细菌易位的机理,并探索了一种可能改善 PLWH 预后的新型治疗干预方法。
{"title":"Translocating bacteria in SIV infection are not stochastic and preferentially express cytosine methyltransferases","authors":"Jacob K. Flynn ,&nbsp;Alexandra M. Ortiz ,&nbsp;Ivan Vujkovic-Cvijin ,&nbsp;Hugh C. Welles ,&nbsp;Jennifer Simpson ,&nbsp;Fabiola M. Castello Casta ,&nbsp;Debra S. Yee ,&nbsp;Andrew R. Rahmberg ,&nbsp;Kelsie L. Brooks ,&nbsp;Marlon De Leon ,&nbsp;Samantha Knodel ,&nbsp;Kenzie Birse ,&nbsp;Laura Noel-Romas ,&nbsp;Anshu Deewan ,&nbsp;Yasmine Belkaid ,&nbsp;Adam Burgener ,&nbsp;Jason M. Brenchley","doi":"10.1016/j.mucimm.2024.07.008","DOIUrl":"10.1016/j.mucimm.2024.07.008","url":null,"abstract":"<div><div>Microbial translocation is a significant contributor to chronic inflammation in people living with HIV (PLWH) and is associated with increased mortality and morbidity in individuals treated for long periods with antiretrovirals. The use of therapeutics to treat microbial translocation has yielded mixed effects, in part, because the species and mechanisms contributing to translocation in HIV remain incompletely characterized. To characterize translocating bacteria, we cultured translocators from chronically SIV-infected rhesus macaques. Proteomic profiling of these bacteria identified cytosine-specific methyltransferases as a common feature and therefore, a potential driver of translocation. Treatment of translocating bacteria with the cytosine methyltransferase inhibitor decitabine significantly impaired growth for several species in vitro. In rhesus macaques, oral treatment with decitabine led to some transient decreases in translocator taxa in the gut microbiome. These data provide mechanistic insight into bacterial translocation in lentiviral infection and explore a novel therapeutic intervention that may improve the prognosis of PLWH.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 1089-1101"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viral-vectored boosting of OmcB- or CPAF-specific T-cell responses fail to enhance protection from Chlamydia muridarum in infection-immune mice and elicits a non-protective CD8-dominant response in naïve mice 病毒载体增强的 OmcB 或 CPAF 特异性 T 细胞反应不能增强感染免疫小鼠对鼠衣原体的保护能力,并在幼稚小鼠中引起无保护作用的 CD8 优势反应。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.mucimm.2024.06.012
A vaccine is needed to combat the Chlamydia epidemic. Replication-deficient viral vectors are safe and induce antigen-specific T-cell memory. We tested the ability of intramuscular immunization with modified vaccinia Ankara (MVA) virus or chimpanzee adenovirus (ChAd) expressing chlamydial outer membrane protein (OmcB) or the secreted protein, chlamydial protease-like activating factor (CPAF), to enhance T-cell immunity and protection in mice previously infected with plasmid-deficient Chlamydia muridarum CM972 and elicit protection in naïve mice. MVA.OmcB or MVA.CPAF increased antigen-specific T cells in CM972-immune mice ∼150 and 50-fold, respectively, but failed to improve bacterial clearance. ChAd.OmcB/MVA.OmcB prime-boost immunization of naïve mice elicited a cluster of differentiation (CD) 8-dominant T-cell response dominated by cluster of differentiation (CD)8 T cells that failed to protect. ChAd.CPAF/ChAd.CPAF prime-boost also induced a CD8-dominant response with a marginal reduction in burden. Challenge of ChAd.CPAF-immunized mice genetically deficient in CD4 or CD8 T cells showed that protection was entirely CD4-dependent. CD4-deficient mice had prolonged infection, whereas CD8-deficient mice had higher frequencies of CPAF-specific CD4 T cells, earlier clearance, and reduced burden than wild-type controls. These data reinforce the essential nature of the CD4 T-cell response in protection from chlamydial genital infection in mice and the need for vaccine platforms that drive CD4-dominant responses.
需要一种疫苗来防治衣原体流行病。复制缺陷病毒载体既安全又能诱导抗原特异性 T 细胞记忆。我们测试了用表达衣原体外膜蛋白OmcB或分泌蛋白CPAF的改良安卡拉疫苗病毒(MVA)或黑猩猩腺病毒(ChAd)进行肌肉注射免疫,增强小鼠T细胞免疫力和保护力的能力,这些小鼠以前感染过质粒缺陷的鼠衣原体CM972,并在天真小鼠中产生保护作用。MVA.OmcB 或 MVA.CPAF 可使 CM972-免疫小鼠的抗原特异性 T 细胞分别增加 150 倍和 50 倍,但未能提高细菌清除率。ChAd.OmcB/MVA.OmcB对幼稚小鼠的原代增强免疫引起了CD8占优势的T细胞反应,但未能起到保护作用。ChAd.CPAF/ChAd.CPAF原代增强免疫也能诱导CD8优势反应,但负担略有减少。对基因上缺乏 CD4 或 CD8 T 细胞的 ChAd.CPAF 免疫小鼠的挑战表明,保护作用完全依赖于 CD4。与野生型对照组相比,CD4缺陷小鼠的感染时间延长,而CD8缺陷小鼠的CPAF特异性CD4 T细胞频率更高,清除时间更早,负担更轻。这些数据进一步证实了 CD4 T 细胞应答在保护小鼠免受衣原体生殖器感染中的重要作用,同时也证明了开发 CD4 主导应答的疫苗平台的必要性。
{"title":"Viral-vectored boosting of OmcB- or CPAF-specific T-cell responses fail to enhance protection from Chlamydia muridarum in infection-immune mice and elicits a non-protective CD8-dominant response in naïve mice","authors":"","doi":"10.1016/j.mucimm.2024.06.012","DOIUrl":"10.1016/j.mucimm.2024.06.012","url":null,"abstract":"<div><div>A vaccine is needed to combat the <em>Chlamydia</em> epidemic. Replication-deficient viral vectors are safe and induce antigen-specific T-cell memory. We tested the ability of intramuscular immunization with modified vaccinia Ankara (MVA) virus or chimpanzee adenovirus (ChAd) expressing chlamydial outer membrane protein (OmcB) or the secreted protein, chlamydial protease-like activating factor (CPAF), to enhance T-cell immunity and protection in mice previously infected with plasmid-deficient <em>Chlamydia muridarum</em> CM972 and elicit protection in naïve mice. MVA.OmcB or MVA.CPAF increased antigen-specific T cells in CM972-immune mice ∼150 and 50-fold, respectively, but failed to improve bacterial clearance. ChAd.OmcB/MVA.OmcB prime-boost immunization of naïve mice elicited a cluster of differentiation (CD) 8-dominant T-cell response dominated by cluster of differentiation (CD)8 T cells that failed to protect. ChAd.CPAF/ChAd.CPAF prime-boost also induced a CD8-dominant response with a marginal reduction in burden. Challenge of ChAd.CPAF-immunized mice genetically deficient in CD4 or CD8 T cells showed that protection was entirely CD4-dependent. CD4-deficient mice had prolonged infection, whereas CD8-deficient mice had higher frequencies of CPAF-specific CD4 T cells, earlier clearance, and reduced burden than wild-type controls. These data reinforce the essential nature of the CD4 T-cell response in protection from chlamydial genital infection in mice and the need for vaccine platforms that drive CD4-dominant responses.</div></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 5","pages":"Pages 1005-1018"},"PeriodicalIF":7.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mucosal Immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1