Pub Date : 2023-10-01DOI: 10.26599/nbe.2023.9290040
Ban Saad Jasim, Hasanain K.A. Alalwan, Abdalbseet A. Fatalla, Manar E. Al-Samaray
The acrylic-based heat-cured soft denture lining material is the most commonly used in relining dentures. This material has poor thermomechanical properties which is a disadvantage. This research aimed to study the effect of the addition of modified metallic nanoparticles on glass transition, modulus of elasticity, and coefficient of thermal expansion and contraction of the acrylic soft liner. Alumina nanoparticles were first modified by a silane coupling agent and then added to a soft denture liner powder in different weight percentages (0, 0.5, 1, and 1.5 wt%) using a probe ultrasonication machine for mixing. 120 samples of acrylic-based soft liner were constructed and divided into four groups G1–G4 (n = 30). Each group was in turn subdivided into 3 subgroups (n = 10) according to the test performed. The mean value, SD, Kruskal-Wallis test, and Dunn’s Multiple Comparison tests were used to analyze the results statistically. Incorporating 0.5% by weight alumina nano-fillers into acrylic-based heat-cured soft denture lining material, increased the glass transition temperature significantly (p ≤ 0.01). Additionally, it significantly reduced the coefficient of thermal expansion and contraction, especially at 30 ºC, compared to the control group. The E-modulus was also reduced, especially at 50 ºC, compared to the control group. According to the reported results, the polymer nanocomposites possess distinctive material properties that distinguish them from unmodified acrylic-base soft denture lining materials. Nanocomposites have more thermal and mechanical stability than unmodified acrylic-base soft denture lining material especially when incorporating 0.5 wt% Al2O3.
{"title":"The Impact of Modified Metallic Nanoparticles on Thermomechanical Properties of PMMA Soft Liner","authors":"Ban Saad Jasim, Hasanain K.A. Alalwan, Abdalbseet A. Fatalla, Manar E. Al-Samaray","doi":"10.26599/nbe.2023.9290040","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290040","url":null,"abstract":"The acrylic-based heat-cured soft denture lining material is the most commonly used in relining dentures. This material has poor thermomechanical properties which is a disadvantage. This research aimed to study the effect of the addition of modified metallic nanoparticles on glass transition, modulus of elasticity, and coefficient of thermal expansion and contraction of the acrylic soft liner. Alumina nanoparticles were first modified by a silane coupling agent and then added to a soft denture liner powder in different weight percentages (0, 0.5, 1, and 1.5 wt%) using a probe ultrasonication machine for mixing. 120 samples of acrylic-based soft liner were constructed and divided into four groups G1–G4 (<i>n</i> = 30). Each group was in turn subdivided into 3 subgroups (<i>n</i> = 10) according to the test performed. The mean value, SD, Kruskal-Wallis test, and Dunn’s Multiple Comparison tests were used to analyze the results statistically. Incorporating 0.5% by weight alumina nano-fillers into acrylic-based heat-cured soft denture lining material, increased the glass transition temperature significantly (<i>p</i> ≤ 0.01). Additionally, it significantly reduced the coefficient of thermal expansion and contraction, especially at 30 ºC, compared to the control group. The <i>E</i>-modulus was also reduced, especially at 50 ºC, compared to the control group. According to the reported results, the polymer nanocomposites possess distinctive material properties that distinguish them from unmodified acrylic-base soft denture lining materials. Nanocomposites have more thermal and mechanical stability than unmodified acrylic-base soft denture lining material especially when incorporating 0.5 wt% Al<sub>2</sub>O<sub>3</sub>.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136198639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.26599/nbe.2023.9290042
Heba K. Tawfeeq, N. Abdalameer, R. Jassim, Maryam M. Shehab
{"title":"Silver Nanoparticles Synthesized by Cold Plasma as an Antibiofilm Agent against Staphylococcus epidermidis Isolated from Acne","authors":"Heba K. Tawfeeq, N. Abdalameer, R. Jassim, Maryam M. Shehab","doi":"10.26599/nbe.2023.9290042","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290042","url":null,"abstract":"","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"85 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139327881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.26599/nbe.2023.9290039
Sarah Habeeb Hamed, Ebaa Adnan Azooz, Emad Abbas Jaffar Al-Mulla
Poor wound treatment impacts millions of humans worldwide, increasing deaths and costs. Wounds have three key complications: (a) a lack of an adequate environment for cell migration, proliferation, and angiogenesis; (b) microbial infection; and (c) unstable and prolonged inflammation.Regrettably, contemporary therapeutic treatments have not entirely tackled these basic difficulties and thus have insufficient medical accomplishment. The incorporation of the extraordinary capabilities of nanomaterials in wound healing has achieved major successes over the years. Nanomaterials can promote a variety of cellular and molecular processes that assist in the wound microenvironment through antibacterial, anti-inflammatory, and angiogenic activities, potentially shifting the surroundings from nonhealing to healing. The current review focuses on novel techniques, with a particular focus on recent revolutionary wound healing and infection control tactics based on nanomaterials, such as nanoparticles, nanocomposites, and scaffolds, which are discussed in depth. Furthermore, the effectiveness of nanoparticles as carriers for therapeutic compounds in wound-healing applications has been investigated which provide researchers an up-to-date sources on the use of nanomaterials and their creative ways that can improve wound-healing uses.
{"title":"Nanoparticles-assisted Wound Healing: A Review","authors":"Sarah Habeeb Hamed, Ebaa Adnan Azooz, Emad Abbas Jaffar Al-Mulla","doi":"10.26599/nbe.2023.9290039","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290039","url":null,"abstract":"Poor wound treatment impacts millions of humans worldwide, increasing deaths and costs. Wounds have three key complications: (a) a lack of an adequate environment for cell migration, proliferation, and angiogenesis; (b) microbial infection; and (c) unstable and prolonged inflammation.Regrettably, contemporary therapeutic treatments have not entirely tackled these basic difficulties and thus have insufficient medical accomplishment. The incorporation of the extraordinary capabilities of nanomaterials in wound healing has achieved major successes over the years. Nanomaterials can promote a variety of cellular and molecular processes that assist in the wound microenvironment through antibacterial, anti-inflammatory, and angiogenic activities, potentially shifting the surroundings from nonhealing to healing. The current review focuses on novel techniques, with a particular focus on recent revolutionary wound healing and infection control tactics based on nanomaterials, such as nanoparticles, nanocomposites, and scaffolds, which are discussed in depth. Furthermore, the effectiveness of nanoparticles as carriers for therapeutic compounds in wound-healing applications has been investigated which provide researchers an up-to-date sources on the use of nanomaterials and their creative ways that can improve wound-healing uses.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136199742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.26599/nbe.2023.9290034
Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali khan
A simple green method for the production of silver/gold bimetallic nanoparticles (Ag/Au BNPs) using a Heliotropium eichwaldi L. (HE) extract was designed in this study. The reduction of Ag/Au metals to stable Ag/Au BNPs within 24 h at pH 5 using 1 mL of HE at 40 °C signifies a greater rate of reaction compared with chemically elaborated synthesis. The confirmation of the synthesis and the examination of the size, shape, and elemental composition of these BNPs were performed using visible absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Stable, irregular-rod-shaped, and crystalline Ag/Au BNPs with a well-defined 6-nm diameter and a blue shift λmax of 532 nm were synthesized using the HE extract. Moreover, the anti-cholinesterase (anti-AChE) potential of the Ag/Au BNPs was tested as a treatment for Alzheimer’s disease (AD). An excellent anti-AChE activity (IC50, 71.2 ± 0.22 μg/mL) was observed for these biogenic-synthesized NPs. A statistical analysis revealed that Ag/Au BNPs inhibited AChE competitively, according to a Lineweaver–Burk plot, with Km increasing from 0.019 to 0.063 (288%–1185.7%) and Vmax remaining constant. The Ag/Au BNPs also caused an increase in KIapp, from 128 to 1184 (236%–828%), whereas they did not affect Vmaxiapp. The Km, KI, and Ki values were also calculated to be 0.0053 mmol/L, 595.25 µg, and 80 µg, respectively. Therefore, it is concluded that small-size, stable, and potent Ag/Au BNPs were synthesized successfully from HE extracts that exhibited anti-AChE activity, which renders them a significant remedy for AD.
{"title":"Acetylcholinesterase Activity in the Brain of Rats: Presence of an Inhibitor of Enzymatic Activity in <i>Heliotropium eichwaldi</i> L. Induced Silver/Gold Allied Bimetallic Nanoparticles","authors":"Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali khan","doi":"10.26599/nbe.2023.9290034","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290034","url":null,"abstract":"A simple green method for the production of silver/gold bimetallic nanoparticles (Ag/Au BNPs) using a <i>Heliotropium eichwaldi</i> L. (HE) extract was designed in this study. The reduction of Ag/Au metals to stable Ag/Au BNPs within 24 h at pH 5 using 1 mL of HE at 40 °C signifies a greater rate of reaction compared with chemically elaborated synthesis. The confirmation of the synthesis and the examination of the size, shape, and elemental composition of these BNPs were performed using visible absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Stable, irregular-rod-shaped, and crystalline Ag/Au BNPs with a well-defined 6-nm diameter and a blue shift <i>λ</i><sub>max</sub> of 532 nm were synthesized using the HE extract. Moreover, the anti-cholinesterase (anti-AChE) potential of the Ag/Au BNPs was tested as a treatment for Alzheimer’s disease (AD). An excellent anti-AChE activity (IC<sub>50</sub>, 71.2 ± 0.22 μg/mL) was observed for these biogenic-synthesized NPs. A statistical analysis revealed that Ag/Au BNPs inhibited AChE competitively, according to a Lineweaver–Burk plot, with <i>K</i><sub><i>m</i></sub> increasing from 0.019 to 0.063 (288%–1185.7%) and <i>V</i><sub>max</sub> remaining constant. The Ag/Au BNPs also caused an increase in <i>K</i><sub>Iapp</sub>, from 128 to 1184 (236%–828%), whereas they did not affect <i>V</i><sub>maxiapp</sub>. The <i>K</i><sub>m</sub>, <i>K</i><sub>I</sub>, and <i>K</i><sub>i</sub> values were also calculated to be 0.0053 mmol/L, 595.25 µg, and 80 µg, respectively. Therefore, it is concluded that small-size, stable, and potent Ag/Au BNPs were synthesized successfully from HE extracts that exhibited anti-AChE activity, which renders them a significant remedy for AD.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135688225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.26599/nbe.2023.9290037
Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan
The possible treatment of cancer with nanoparticles (NPs) would be carried out via inoculation into the veins; as a result, the NPs would come into contact with white blood cells (WBCs) and red blood cells (RBCs) prior to reaching the target cancerous cells. In the current study, the genotoxicity and cytotoxicity potential of silver NPs (AgNPs) against human blood lymphocytes and baby hamster kidney-21 (BHK-21) cells was tested using comet and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays, respectively. First, AgNPs were created using a Heliotropium eichwaldi L. (HE) extract. These AgNPs were then confirmed by ultraviolet–visible (UV–Vis) spectroscopy, which yielded a sharp peak at 416 nm with a maximum absorbance of 1.92. Moreover, an X-ray diffraction (XRD) analysis confirmed the crystalline nature and particle size (19.79 nm) of AgNPs, whereas scanning electron microscopy (SEM) revealed their irregular morphology and size of 30 nm. In turn, an EDX analysis indicated that AgNPs had an appreciable composition of Ag ions (30.68%). According to the comet assay, the HE-AgNPs, and standard H2O2 caused highly significant damage to DNA compared with HE extract. The comet assay was reported in terms of the total comet score (TCS). In the case of the MTT assay, a dose-dependent cytotoxicity was noted, in which doxorubicin, and AgNPs were more potent against BHK-21 cells compared with a plant extract. From these results, it is evident that the green-synthesized AgNPs interacted with blood lymphocytes and BHK-21 cells, caused damage to DNA via oxidative stress, and finally triggered cell death (apoptosis). However, further studies aimed at reducing their potential threats are recommended.
纳米颗粒(NPs)治疗癌症的可能方法是通过注射到静脉中进行;因此,NPs会在到达目标癌细胞之前先与白细胞(wbc)和红细胞(rbc)接触。本研究采用comet和3-[4,5-二甲基噻唑-2-基]-2,5二苯基溴化四氮唑(MTT)试验分别检测银NPs (AgNPs)对人血液淋巴细胞和幼鼠肾-21 (BHK-21)细胞的遗传毒性和细胞毒性。首先,利用Heliotropium eichwaldi L. (HE)提取物制备AgNPs。这些AgNPs通过紫外可见光谱(UV-Vis)得到了证实,在416 nm处有一个尖峰,最大吸光度为1.92。此外,x射线衍射(XRD)分析证实了AgNPs的结晶性质和粒径(19.79 nm),而扫描电子显微镜(SEM)显示其形状不规则,粒径为30 nm。反过来,EDX分析表明AgNPs具有可观的Ag离子组成(30.68%)。根据彗星试验,HE- agnps和标准H2O2与HE提取物相比,对DNA造成了非常显著的损伤。彗星试验是根据总彗星评分(TCS)进行报道的。在MTT试验的情况下,注意到剂量依赖性的细胞毒性,其中阿霉素和AgNPs对BHK-21细胞的作用比植物提取物更有效。从这些结果可以看出,绿色合成的AgNPs与血液淋巴细胞和BHK-21细胞相互作用,通过氧化应激导致DNA损伤,最终引发细胞死亡(凋亡)。然而,建议进一步研究以减少它们的潜在威胁。
{"title":"Detection of the Anticancer and Genotoxic Activities of <i>Heliotropium eichwaldi</i> L.-fabricated Silver Nanoparticles on BHK-21 Cells and Human Blood Lymphocytes Using MTT and Comet Assays","authors":"Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan","doi":"10.26599/nbe.2023.9290037","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290037","url":null,"abstract":"The possible treatment of cancer with nanoparticles (NPs) would be carried out via inoculation into the veins; as a result, the NPs would come into contact with white blood cells (WBCs) and red blood cells (RBCs) prior to reaching the target cancerous cells. In the current study, the genotoxicity and cytotoxicity potential of silver NPs (AgNPs) against human blood lymphocytes and baby hamster kidney-21 (BHK-21) cells was tested using comet and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays, respectively. First, AgNPs were created using a <i>Heliotropium eichwaldi</i> L. (HE) extract. These AgNPs were then confirmed by ultraviolet–visible (UV–Vis) spectroscopy, which yielded a sharp peak at 416 nm with a maximum absorbance of 1.92. Moreover, an X-ray diffraction (XRD) analysis confirmed the crystalline nature and particle size (19.79 nm) of AgNPs, whereas scanning electron microscopy (SEM) revealed their irregular morphology and size of 30 nm. In turn, an EDX analysis indicated that AgNPs had an appreciable composition of Ag ions (30.68%). According to the comet assay, the HE-AgNPs, and standard H<sub>2</sub>O<sub>2</sub> caused highly significant damage to DNA compared with HE extract. The comet assay was reported in terms of the total comet score (TCS). In the case of the MTT assay, a dose-dependent cytotoxicity was noted, in which doxorubicin, and AgNPs were more potent against BHK-21 cells compared with a plant extract. From these results, it is evident that the green-synthesized AgNPs interacted with blood lymphocytes and BHK-21 cells, caused damage to DNA via oxidative stress, and finally triggered cell death (apoptosis). However, further studies aimed at reducing their potential threats are recommended.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135738329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.26599/nbe.2023.9290035
Xiaoyang Zhu, Yan Li, Ning Gu
{"title":"Application of Artificial Intelligence in the Exploration and Optimization of Biomedical Nanomaterials","authors":"Xiaoyang Zhu, Yan Li, Ning Gu","doi":"10.26599/nbe.2023.9290035","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290035","url":null,"abstract":"","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135688686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.26599/nbe.2023.9290036
Mitra Rahimi, Tahereh Foroutan, Fatemeh Eini
Graphene oxide (GO) and Fe3O4 super paramagnetic material are good candidate for some applications such as drug delivery. It has been shown that combining Fe3O4 with graphene oxide increases the biological efficiency of GO. The use of novel assisted reproductive technologies such as gonadotropins injection has been able to help the fertility of infertile people, but the side effects of these methods and high costs are still problems. The aim of the present study was to investigate the effect of magnetic graphene oxide (MGO) on the in vivo maturation of mouse oocytes. Thirty 6–8-week old female Naval Medical Research Institute (NMRI) mice were treated with intra peritoneal (I.P) injection of MGO mixed with hormones. 12 h after I.P. injection of MGO mixed with PMSG and HCG, the number of metaphase II (MII) oocytes obtained from the left fallopian tubes was counted in each group. Also, immuno-cytochemical staining of glutathione and morphometric analysis of ovaries were studied. The results of this study showed that the simultaneous use of MGO, pregnant mare serum gonadotropin (PMSG), and human chorionic gonadotrophin (HCG) increases the number of MII oocytes and helps to increase maturation of oocytes. It could be concluded that MGO can increase the efficiency of super ovulating hormones due to increase in adsorption of serum hormones and growth factors.
{"title":"The Effects of Nano Magnetic Graphene Oxide on <i>In Vivo</i> Maturation of Oocyte","authors":"Mitra Rahimi, Tahereh Foroutan, Fatemeh Eini","doi":"10.26599/nbe.2023.9290036","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290036","url":null,"abstract":"Graphene oxide (GO) and Fe<sub>3</sub>O<sub>4</sub> super paramagnetic material are good candidate for some applications such as drug delivery. It has been shown that combining Fe<sub>3</sub>O<sub>4</sub> with graphene oxide increases the biological efficiency of GO. The use of novel assisted reproductive technologies such as gonadotropins injection has been able to help the fertility of infertile people, but the side effects of these methods and high costs are still problems. The aim of the present study was to investigate the effect of magnetic graphene oxide (MGO) on the <i>in vivo</i> maturation of mouse oocytes. Thirty 6–8-week old female Naval Medical Research Institute (NMRI) mice were treated with intra peritoneal (I.P) injection of MGO mixed with hormones. 12 h after I.P. injection of MGO mixed with PMSG and HCG, the number of metaphase II (MII) oocytes obtained from the left fallopian tubes was counted in each group. Also, immuno-cytochemical staining of glutathione and morphometric analysis of ovaries were studied. The results of this study showed that the simultaneous use of MGO, pregnant mare serum gonadotropin (PMSG), and human chorionic gonadotrophin (HCG) increases the number of MII oocytes and helps to increase maturation of oocytes. It could be concluded that MGO can increase the efficiency of super ovulating hormones due to increase in adsorption of serum hormones and growth factors.","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135737777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.26599/nbe.2023.9290032
Wedian K. Abad, A. N. Abd, N. Habubi
{"title":"Synthesis of Ag\u0000 2O Nanoparticles via Fresh Pomegranate Peel Extract for Bioapplications","authors":"Wedian K. Abad, A. N. Abd, N. Habubi","doi":"10.26599/nbe.2023.9290032","DOIUrl":"https://doi.org/10.26599/nbe.2023.9290032","url":null,"abstract":"","PeriodicalId":18971,"journal":{"name":"Nano Biomedicine and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42817059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}