首页 > 最新文献

Nature Microbiology最新文献

英文 中文
Host–gut microbiota crosstalk predicts neuroinflammation 宿主-肠道微生物群串联可预测神经炎症
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-19 DOI: 10.1038/s41564-024-01790-y
Carolina M. Polonio, Francisco J. Quintana
Microbial networks and host–microbiota interactions, especially immunoglobulin A coating of resident microbiota, outperform bacterial abundance as a predictor of neuroinflammation severity in a mouse model of multiple sclerosis.
在多发性硬化症小鼠模型中,作为神经炎症严重程度的预测指标,微生物网络和宿主与微生物群之间的相互作用,尤其是常驻微生物群的免疫球蛋白 A 涂层,优于细菌丰度。
{"title":"Host–gut microbiota crosstalk predicts neuroinflammation","authors":"Carolina M. Polonio, Francisco J. Quintana","doi":"10.1038/s41564-024-01790-y","DOIUrl":"10.1038/s41564-024-01790-y","url":null,"abstract":"Microbial networks and host–microbiota interactions, especially immunoglobulin A coating of resident microbiota, outperform bacterial abundance as a predictor of neuroinflammation severity in a mouse model of multiple sclerosis.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 9","pages":"2204-2205"},"PeriodicalIF":20.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary origin of the tropical race 4 banana pathogen and mechanisms of its virulence 热带第 4 种族香蕉病原体的进化起源及其致病机制
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-16 DOI: 10.1038/s41564-024-01783-x
Fusarium oxysporum f. sp. cubense tropical race 4 is threatening worldwide banana production. This study revealed a distinct evolutionary origin of tropical race 4 and how accessory genes and nitrosative pressure may have provided potential weaponries used by the pathogen to infect banana plants.
Fusarium oxysporum f. sp. cubense 热带第 4 种族正威胁着全世界的香蕉生产。这项研究揭示了热带第 4 种族的独特进化起源,以及附属基因和亚硝酸压力是如何为病原体感染香蕉植物提供潜在武器的。
{"title":"Evolutionary origin of the tropical race 4 banana pathogen and mechanisms of its virulence","authors":"","doi":"10.1038/s41564-024-01783-x","DOIUrl":"10.1038/s41564-024-01783-x","url":null,"abstract":"Fusarium oxysporum f. sp. cubense tropical race 4 is threatening worldwide banana production. This study revealed a distinct evolutionary origin of tropical race 4 and how accessory genes and nitrosative pressure may have provided potential weaponries used by the pathogen to infect banana plants.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 9","pages":"2212-2213"},"PeriodicalIF":20.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virulence of banana wilt-causing fungal pathogen Fusarium oxysporum tropical race 4 is mediated by nitric oxide biosynthesis and accessory genes 香蕉枯萎病真菌病原体 Fusarium oxysporum tropical race 4 的致病力由一氧化氮生物合成和附属基因介导
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-16 DOI: 10.1038/s41564-024-01779-7
Yong Zhang, Siwen Liu, Diane Mostert, Houlin Yu, Mengxia Zhuo, Gengtan Li, Cunwu Zuo, Sajeet Haridas, Katie Webster, Minhui Li, Igor V. Grigoriev, Ganjun Yi, Altus Viljoen, Chunyu Li, Li-Jun Ma
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most damaging plant diseases known. Foc race 1 (R1) decimated the Gros Michel-based banana (Musa acuminata) trade, and now Foc tropical race 4 (TR4) threatens global production of its replacement, the Cavendish banana. Here population genomics revealed that all Cavendish banana-infecting Foc race 4 strains share an evolutionary origin distinct from that of R1 strains. Although TR4 lacks accessory chromosomes, it contains accessory genes at the ends of some core chromosomes that are enriched for virulence and mitochondria-related functions. Meta-transcriptomics revealed the unique induction of the entire mitochondrion-localized nitric oxide (NO) biosynthesis pathway upon TR4 infection. Empirically, we confirmed the unique induction of a NO burst in TR4, suggesting that nitrosative pressure may contribute to virulence. Targeted mutagenesis demonstrated the functional importance of fungal NO production and the accessory gene SIX4 as virulence factors. Population genomics and meta-transcriptomics reveal a role of nitric oxide production and accessory genes in the virulence of the banana wilt-causing fungal pathogen Fusarium oxysporum.
由 Fusarium oxysporum f. sp. cubense(Foc)引起的香蕉镰刀菌枯萎病是已知危害最大的植物病害之一。Foc 第 1 种(R1)使以格罗斯-米歇尔香蕉(Musa acuminata)为主的香蕉贸易锐减,现在 Foc 热带第 4 种(TR4)又威胁到其替代品卡文迪许香蕉的全球生产。群体基因组学在此揭示了所有感染卡文迪许香蕉的 Foc 第 4 种族菌株都有着不同于 R1 菌株的进化起源。虽然 TR4 缺乏附属染色体,但它在一些核心染色体的末端含有富含毒力和线粒体相关功能的附属基因。元转录组学揭示了 TR4 感染后对整个线粒体定位的一氧化氮(NO)生物合成途径的独特诱导作用。根据经验,我们证实了 TR4 对一氧化氮爆发的独特诱导作用,这表明亚硝酸压力可能有助于提高病毒的毒性。定向诱变证明了真菌一氧化氮产生和附属基因 SIX4 作为毒力因子的功能重要性。
{"title":"Virulence of banana wilt-causing fungal pathogen Fusarium oxysporum tropical race 4 is mediated by nitric oxide biosynthesis and accessory genes","authors":"Yong Zhang, Siwen Liu, Diane Mostert, Houlin Yu, Mengxia Zhuo, Gengtan Li, Cunwu Zuo, Sajeet Haridas, Katie Webster, Minhui Li, Igor V. Grigoriev, Ganjun Yi, Altus Viljoen, Chunyu Li, Li-Jun Ma","doi":"10.1038/s41564-024-01779-7","DOIUrl":"10.1038/s41564-024-01779-7","url":null,"abstract":"Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most damaging plant diseases known. Foc race 1 (R1) decimated the Gros Michel-based banana (Musa acuminata) trade, and now Foc tropical race 4 (TR4) threatens global production of its replacement, the Cavendish banana. Here population genomics revealed that all Cavendish banana-infecting Foc race 4 strains share an evolutionary origin distinct from that of R1 strains. Although TR4 lacks accessory chromosomes, it contains accessory genes at the ends of some core chromosomes that are enriched for virulence and mitochondria-related functions. Meta-transcriptomics revealed the unique induction of the entire mitochondrion-localized nitric oxide (NO) biosynthesis pathway upon TR4 infection. Empirically, we confirmed the unique induction of a NO burst in TR4, suggesting that nitrosative pressure may contribute to virulence. Targeted mutagenesis demonstrated the functional importance of fungal NO production and the accessory gene SIX4 as virulence factors. Population genomics and meta-transcriptomics reveal a role of nitric oxide production and accessory genes in the virulence of the banana wilt-causing fungal pathogen Fusarium oxysporum.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 9","pages":"2232-2243"},"PeriodicalIF":20.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translating between science and politics as a government adviser 作为政府顾问,在科学与政治之间进行转换
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-16 DOI: 10.1038/s41564-024-01776-w
Robin C. May
Moving from academia to government was challenging, but learning to translate evidence-based results into policy decisions that impact society is hugely rewarding, writes Robin May.
罗宾-梅(Robin May)写道,从学术界到政府部门的转变充满挑战,但学习如何将循证结果转化为影响社会的政策决定,则让人受益匪浅。
{"title":"Translating between science and politics as a government adviser","authors":"Robin C. May","doi":"10.1038/s41564-024-01776-w","DOIUrl":"10.1038/s41564-024-01776-w","url":null,"abstract":"Moving from academia to government was challenging, but learning to translate evidence-based results into policy decisions that impact society is hugely rewarding, writes Robin May.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 9","pages":"2202-2203"},"PeriodicalIF":20.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacteria modulate microalgal aging physiology through the induction of extracellular vesicle production to remove harmful metabolites 细菌通过诱导细胞外囊泡的产生来清除有害代谢物,从而调节微藻的衰老生理机能
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-14 DOI: 10.1038/s41564-024-01746-2
Yun Deng, Ruyi Yu, Veit Grabe, Thomas Sommermann, Markus Werner, Marine Vallet, Christian Zerfaß, Oliver Werz, Georg Pohnert
The bloom and bust patterns of microalgae in aquatic systems contribute massively to global biogeochemical cycles. The decline of algal blooms is mainly caused by nutrient limitation resulting in cell death, the arrest of cell division and the aging of surviving cells. Nutrient intake can re-initiate proliferation, but the processes involved are poorly understood. Here we characterize how the bloom-forming diatom Coscinodiscus radiatus recovers from starvation after nutrient influx. Rejuvenation is mediated by extracellular vesicles that shuttle reactive oxygen species, oxylipins and other harmful metabolites out of the old cells, thereby re-enabling their proliferation. By administering nutrient pulses to aged cells and metabolomic monitoring of the response, we show that regulated pathways are centred around the methionine cycle in C. radiatus. Co-incubation experiments show that bacteria mediate aging processes and trigger vesicle production using chemical signalling. This work opens new perspectives on cellular aging and rejuvenation in complex microbial communities. The release of vesicles that shuttle harmful metabolites out of aging cells of the bloom-forming Coscinodiscus radiatus is modulated by bacteria.
水生系统中微藻类的盛衰模式对全球生物地球化学循环有重大贡献。藻华衰退的主要原因是营养限制导致细胞死亡、细胞分裂停止和存活细胞衰老。养分摄入可以重新启动增殖,但对其中的过程却知之甚少。在这里,我们描述了形成藻华的硅藻 Coscinodiscus radiatus 如何在营养流入后从饥饿中恢复。衰老是由细胞外囊泡介导的,这些囊泡将活性氧、氧脂蛋白和其他有害代谢物从老细胞中穿梭出来,从而使细胞重新增殖。通过对衰老细胞施加营养脉冲并对反应进行代谢组学监测,我们发现辐射鳕鱼的调节途径以蛋氨酸循环为中心。共孵育实验表明,细菌利用化学信号介导衰老过程并触发囊泡的产生。这项工作为复杂微生物群落中的细胞衰老和恢复活力开辟了新的视角。
{"title":"Bacteria modulate microalgal aging physiology through the induction of extracellular vesicle production to remove harmful metabolites","authors":"Yun Deng, Ruyi Yu, Veit Grabe, Thomas Sommermann, Markus Werner, Marine Vallet, Christian Zerfaß, Oliver Werz, Georg Pohnert","doi":"10.1038/s41564-024-01746-2","DOIUrl":"10.1038/s41564-024-01746-2","url":null,"abstract":"The bloom and bust patterns of microalgae in aquatic systems contribute massively to global biogeochemical cycles. The decline of algal blooms is mainly caused by nutrient limitation resulting in cell death, the arrest of cell division and the aging of surviving cells. Nutrient intake can re-initiate proliferation, but the processes involved are poorly understood. Here we characterize how the bloom-forming diatom Coscinodiscus radiatus recovers from starvation after nutrient influx. Rejuvenation is mediated by extracellular vesicles that shuttle reactive oxygen species, oxylipins and other harmful metabolites out of the old cells, thereby re-enabling their proliferation. By administering nutrient pulses to aged cells and metabolomic monitoring of the response, we show that regulated pathways are centred around the methionine cycle in C. radiatus. Co-incubation experiments show that bacteria mediate aging processes and trigger vesicle production using chemical signalling. This work opens new perspectives on cellular aging and rejuvenation in complex microbial communities. The release of vesicles that shuttle harmful metabolites out of aging cells of the bloom-forming Coscinodiscus radiatus is modulated by bacteria.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 9","pages":"2356-2368"},"PeriodicalIF":20.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41564-024-01746-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: A soybean cyst nematode suppresses microbial plant symbionts using a lipochitooligosaccharide-hydrolysing enzyme. 作者更正:大豆胞囊线虫利用脂寡糖水解酶抑制植物微生物共生体
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-12 DOI: 10.1038/s41564-024-01803-w
Wei Chen, Di Wang, Shaoyong Ke, Yangrong Cao, Wensheng Xiang, Xiaoli Guo, Qing Yang
{"title":"Author Correction: A soybean cyst nematode suppresses microbial plant symbionts using a lipochitooligosaccharide-hydrolysing enzyme.","authors":"Wei Chen, Di Wang, Shaoyong Ke, Yangrong Cao, Wensheng Xiang, Xiaoli Guo, Qing Yang","doi":"10.1038/s41564-024-01803-w","DOIUrl":"https://doi.org/10.1038/s41564-024-01803-w","url":null,"abstract":"","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":" ","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Staphylococcus aureus adapts to exploit collagen-derived proline during chronic infection 金黄色葡萄球菌在慢性感染期间适应利用源自胶原的脯氨酸
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-12 DOI: 10.1038/s41564-024-01769-9
Andreacarola Urso, Ian R. Monk, Ying-Tsun Cheng, Camilla Predella, Tania Wong Fok Lung, Erin M. Theiller, Jack Boylan, Sofya Perelman, Swikrity U. Baskota, Ahmed M. Moustafa, Gaurav Lohia, Ian A. Lewis, Benjamin P. Howden, Timothy P. Stinear, Nicolino V. Dorrello, Victor Torres, Alice S. Prince
Staphylococcus aureus is a pulmonary pathogen associated with substantial human morbidity and mortality. As vaccines targeting virulence determinants have failed to be protective in humans, other factors are likely involved in pathogenesis. Here we analysed transcriptomic responses of human clinical isolates of S. aureus from initial and chronic infections. We observed upregulated collagenase and proline transporter gene expression in chronic infection isolates. Metabolomics of bronchiolar lavage fluid and fibroblast infection, growth assays and analysis of bacterial mutant strains showed that airway fibroblasts produce collagen during S. aureus infection. Host-adapted bacteria upregulate collagenase, which degrades collagen and releases proline. S. aureus then imports proline, which fuels oxidative metabolism via the tricarboxylic acid cycle. Proline metabolism provides host-adapted S. aureus with a metabolic benefit enabling out-competition of non-adapted strains. These data suggest that clinical settings characterized by airway repair processes and fibrosis provide a milieu that promotes S. aureus adaptation and supports infection. Staphylococcus aureus upregulates collagenase and proline transporters to release collagen-derived proline and exploit fibroblasts as a nutrient source during chronic infection.
金黄色葡萄球菌是一种肺部病原体,与人类的大量发病和死亡有关。由于针对毒力决定因素的疫苗未能对人类产生保护作用,因此致病机理很可能与其他因素有关。在此,我们分析了初次感染和慢性感染的人类临床分离金黄色葡萄球菌的转录组反应。我们观察到慢性感染分离株的胶原酶和脯氨酸转运体基因表达上调。支气管灌洗液和成纤维细胞感染的代谢组学、生长试验和细菌突变株分析表明,气道成纤维细胞在金黄色葡萄球菌感染期间会产生胶原蛋白。适应宿主的细菌上调胶原酶,从而降解胶原并释放脯氨酸。然后,金黄色葡萄球菌输入脯氨酸,通过三羧酸循环促进氧化代谢。脯氨酸代谢为适应宿主的金黄色葡萄球菌提供了新陈代谢益处,使其能够超越非适应菌株。这些数据表明,以气道修复过程和纤维化为特征的临床环境提供了一个促进金黄色葡萄球菌适应和支持感染的环境。
{"title":"Staphylococcus aureus adapts to exploit collagen-derived proline during chronic infection","authors":"Andreacarola Urso, Ian R. Monk, Ying-Tsun Cheng, Camilla Predella, Tania Wong Fok Lung, Erin M. Theiller, Jack Boylan, Sofya Perelman, Swikrity U. Baskota, Ahmed M. Moustafa, Gaurav Lohia, Ian A. Lewis, Benjamin P. Howden, Timothy P. Stinear, Nicolino V. Dorrello, Victor Torres, Alice S. Prince","doi":"10.1038/s41564-024-01769-9","DOIUrl":"10.1038/s41564-024-01769-9","url":null,"abstract":"Staphylococcus aureus is a pulmonary pathogen associated with substantial human morbidity and mortality. As vaccines targeting virulence determinants have failed to be protective in humans, other factors are likely involved in pathogenesis. Here we analysed transcriptomic responses of human clinical isolates of S. aureus from initial and chronic infections. We observed upregulated collagenase and proline transporter gene expression in chronic infection isolates. Metabolomics of bronchiolar lavage fluid and fibroblast infection, growth assays and analysis of bacterial mutant strains showed that airway fibroblasts produce collagen during S. aureus infection. Host-adapted bacteria upregulate collagenase, which degrades collagen and releases proline. S. aureus then imports proline, which fuels oxidative metabolism via the tricarboxylic acid cycle. Proline metabolism provides host-adapted S. aureus with a metabolic benefit enabling out-competition of non-adapted strains. These data suggest that clinical settings characterized by airway repair processes and fibrosis provide a milieu that promotes S. aureus adaptation and supports infection. Staphylococcus aureus upregulates collagenase and proline transporters to release collagen-derived proline and exploit fibroblasts as a nutrient source during chronic infection.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 10","pages":"2506-2521"},"PeriodicalIF":20.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41564-024-01769-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Commensal production of a broad-spectrum and short-lived antimicrobial peptide polyene eliminates nasal Staphylococcus aureus. 作者更正:共生菌产生的广谱短效抗菌肽多烯可消灭鼻腔金黄色葡萄球菌
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-08 DOI: 10.1038/s41564-024-01798-4
Benjamin O Torres Salazar, Taulant Dema, Nadine A Schilling, Daniela Janek, Jan Bornikoel, Anne Berscheid, Ahmed M A Elsherbini, Sophia Krauss, Simon J Jaag, Michael Lämmerhofer, Min Li, Norah Alqahtani, Malcolm J Horsburgh, Tilmann Weber, José Manuel Beltrán-Beleña, Heike Brötz-Oesterhelt, Stephanie Grond, Bernhard Krismer, Andreas Peschel
{"title":"Author Correction: Commensal production of a broad-spectrum and short-lived antimicrobial peptide polyene eliminates nasal Staphylococcus aureus.","authors":"Benjamin O Torres Salazar, Taulant Dema, Nadine A Schilling, Daniela Janek, Jan Bornikoel, Anne Berscheid, Ahmed M A Elsherbini, Sophia Krauss, Simon J Jaag, Michael Lämmerhofer, Min Li, Norah Alqahtani, Malcolm J Horsburgh, Tilmann Weber, José Manuel Beltrán-Beleña, Heike Brötz-Oesterhelt, Stephanie Grond, Bernhard Krismer, Andreas Peschel","doi":"10.1038/s41564-024-01798-4","DOIUrl":"https://doi.org/10.1038/s41564-024-01798-4","url":null,"abstract":"","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":" ","pages":""},"PeriodicalIF":20.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bringing microbial ecology into focus 聚焦微生物生态学。
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-06 DOI: 10.1038/s41564-024-01785-9
This month’s issue of Nature Microbiology has a focus on microbial ecology, showcasing how these dynamics might be harnessed to better understand and safeguard life on Earth.
本月的《自然-微生物学》(Nature Microbiology)杂志以微生物生态学为主题,展示了如何利用这些动态来更好地了解和保护地球上的生命。
{"title":"Bringing microbial ecology into focus","authors":"","doi":"10.1038/s41564-024-01785-9","DOIUrl":"10.1038/s41564-024-01785-9","url":null,"abstract":"This month’s issue of Nature Microbiology has a focus on microbial ecology, showcasing how these dynamics might be harnessed to better understand and safeguard life on Earth.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 8","pages":"1901-1902"},"PeriodicalIF":20.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41564-024-01785-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative principles of microbial metabolism shared across scales 跨尺度共享微生物新陈代谢的定量原则
IF 20.5 1区 生物学 Q1 MICROBIOLOGY Pub Date : 2024-08-06 DOI: 10.1038/s41564-024-01764-0
Daniel Sher, Daniel Segrè, Michael J. Follows
Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth’s climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life. Mass, electron and energy balance provide quantitative constraints on their flow within metabolic networks, organisms and ecosystems, shaping how each responds to its environment. The mechanisms underlying these flows, such as enzyme–substrate interactions, often involve encounter and handling stages that are represented by equations similar to those for cells and resources, or predators and prey. We propose that these formal similarities reflect shared principles and discuss how their investigation through experiments and models may contribute to a common language for studying microbial metabolism across scales. Mass, electron and energy balances define metabolic networks in a cell, but this framework could also be applied to interactions, ecosystems and global processes, creating a common language for microbial metabolism across scales.
新陈代谢是发生在每个细胞和生物体内的复杂的化学反应网络,它维持生命、调节生态系统过程并影响地球气候。微生物新陈代谢的实验和模型通常只关注一个特定的尺度,而忽略了分子、细胞和生态系统之间的联系。在此,我们强调了在不同尺度上表现出共性的定量代谢原理,我们认为这些原理有助于从综合角度看待微生物生命。质量、电子和能量平衡为它们在新陈代谢网络、生物体和生态系统中的流动提供了定量约束,影响着每种物质如何对环境做出反应。这些流动的基本机制,如酶与底物的相互作用,往往涉及相遇和处理阶段,这些阶段用类似于细胞与资源或捕食者与猎物的方程来表示。我们认为,这些形式上的相似性反映了共同的原理,并讨论了如何通过实验和模型对其进行研究,从而为跨尺度的微生物新陈代谢研究提供一种共同语言。
{"title":"Quantitative principles of microbial metabolism shared across scales","authors":"Daniel Sher, Daniel Segrè, Michael J. Follows","doi":"10.1038/s41564-024-01764-0","DOIUrl":"10.1038/s41564-024-01764-0","url":null,"abstract":"Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth’s climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life. Mass, electron and energy balance provide quantitative constraints on their flow within metabolic networks, organisms and ecosystems, shaping how each responds to its environment. The mechanisms underlying these flows, such as enzyme–substrate interactions, often involve encounter and handling stages that are represented by equations similar to those for cells and resources, or predators and prey. We propose that these formal similarities reflect shared principles and discuss how their investigation through experiments and models may contribute to a common language for studying microbial metabolism across scales. Mass, electron and energy balances define metabolic networks in a cell, but this framework could also be applied to interactions, ecosystems and global processes, creating a common language for microbial metabolism across scales.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 8","pages":"1940-1953"},"PeriodicalIF":20.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1