Pub Date : 2023-01-01DOI: 10.1177/17448069231183902
Fredrik H G Ahlstrà M, Hanna Viisanen, Leena Karhinen, Kert Mã Tlik, Kim J Blomqvist, Tuomas Lilius, Yulia A Sidorova, Vinko Palada, Pekka Rauhala, Eija Kalso
Background: Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. Experimental Approach: In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. Key Results: Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm, apoptosis, and immune system processes. Conclusions: Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (Per2, Per3, Dbp). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.
{"title":"The effects of chronic high-dose morphine on microgliosis and the microglial transcriptome in rat spinal cord.","authors":"Fredrik H G Ahlstrà M, Hanna Viisanen, Leena Karhinen, Kert Mã Tlik, Kim J Blomqvist, Tuomas Lilius, Yulia A Sidorova, Vinko Palada, Pekka Rauhala, Eija Kalso","doi":"10.1177/17448069231183902","DOIUrl":"https://doi.org/10.1177/17448069231183902","url":null,"abstract":"<p><p><b>Background:</b> Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. <b>Experimental Approach:</b> In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. <b>Key Results:</b> Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm<i>,</i> apoptosis, and immune system processes. <b>Conclusions:</b> Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (<i>Per2, Per3, Dbp</i>). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231183902"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9825977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. The present study focused on the CACNA1C gene, which encodes the α1C subunit of the Cav1.2 L-type Ca2+ channel (LTCC) that has been reported to be associated with neuropathic pain in previous studies. We investigated genetic polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 33 patients with PTP and 118 patients without PTP but with pain or dysesthesia in the orofacial region. From within and around the CACNA1C gene, 155 polymorphisms were selected and analyzed for associations with clinical data. We found that the rs216009 single-nucleotide polymorphism (SNP) of the CACNA1C gene in the recessive model was significantly associated with the vulnerability to PTP. Homozygote carriers of the minor C allele of rs216009 had a higher rate of PTP. Nociceptive transmission in neuropathic pain has been reported to involve Ca2+ influx from LTCCs, and the rs216009 polymorphism may be involved in CACNA1C expression, which regulates intracellular Ca2+ levels, leading to the vulnerability to PTP. Furthermore, psychological factors may lead to the development of PTP by modulating the descending pain inhibitory system. Altogether, homozygous C-allele carriers of the rs216009 SNP were more likely to be vulnerable to PTP, possibly through the regulation of intracellular Ca2+ levels and affective pain systems, such as those that mediate fear memory recall.
{"title":"The rs216009 single-nucleotide polymorphism of the <i>CACNA1C</i> gene is associated with phantom tooth pain.","authors":"Masako Morii, Seii Ohka, Daisuke Nishizawa, Junko Hasegawa, Kyoko Nakayama, Yuko Ebata, Moe Soeda, Ken-Ichi Fukuda, Kaori Yoshida, Kyotaro Koshika, Tatsuya Ichinohe, Kazutaka Ikeda","doi":"10.1177/17448069231193383","DOIUrl":"10.1177/17448069231193383","url":null,"abstract":"<p><p>Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. The present study focused on the <i>CACNA1C</i> gene, which encodes the α1C subunit of the Ca<sub>v</sub>1.2 L-type Ca<sup>2+</sup> channel (LTCC) that has been reported to be associated with neuropathic pain in previous studies. We investigated genetic polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 33 patients with PTP and 118 patients without PTP but with pain or dysesthesia in the orofacial region. From within and around the <i>CACNA1C</i> gene, 155 polymorphisms were selected and analyzed for associations with clinical data. We found that the rs216009 single-nucleotide polymorphism (SNP) of the <i>CACNA1C</i> gene in the recessive model was significantly associated with the vulnerability to PTP. Homozygote carriers of the minor C allele of rs216009 had a higher rate of PTP. Nociceptive transmission in neuropathic pain has been reported to involve Ca<sup>2+</sup> influx from LTCCs, and the rs216009 polymorphism may be involved in <i>CACNA1C</i> expression, which regulates intracellular Ca<sup>2+</sup> levels, leading to the vulnerability to PTP. Furthermore, psychological factors may lead to the development of PTP by modulating the descending pain inhibitory system. Altogether, homozygous C-allele carriers of the rs216009 SNP were more likely to be vulnerable to PTP, possibly through the regulation of intracellular Ca<sup>2+</sup> levels and affective pain systems, such as those that mediate fear memory recall.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231193383"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5c/15/10.1177_17448069231193383.PMC10437699.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10102057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/17448069231203090
Shishu Pal Singh, Josee Guindon, Prapti H Mody, Gabriela Ashworth, Jonathan Kopel, Sai Chilakapati, Owoicho Adogwa, Volker Neugebauer, Michael D Burton
Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given that opposing processes in aging interact. This review article examines and summarizes pre-clinical research and clinical data on chronic pain among older adults to identify knowledge gaps and provide the base for future research and clinical practice. We provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response, whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.
{"title":"Pain and aging: A unique challenge in neuroinflammation and behavior.","authors":"Shishu Pal Singh, Josee Guindon, Prapti H Mody, Gabriela Ashworth, Jonathan Kopel, Sai Chilakapati, Owoicho Adogwa, Volker Neugebauer, Michael D Burton","doi":"10.1177/17448069231203090","DOIUrl":"10.1177/17448069231203090","url":null,"abstract":"<p><p>Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given that opposing processes in aging interact. This review article examines and summarizes pre-clinical research and clinical data on chronic pain among older adults to identify knowledge gaps and provide the base for future research and clinical practice. We provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response, whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069231203090"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f3/4a/10.1177_17448069231203090.PMC10552461.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10307272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/17448069231186592
Justin E LaVigne, Ian M Adams, Marena A Montera, Karin N Westlund, Sascha Ra Alles
Dynorphin A (1-17) (DynA17) has been identified as a key regulator of both sensory and affective dimensions of chronic pain. Following nerve injury, increases in DynA17 have been reported in the spinal and supraspinal areas involved in chronic pain. Blocking these increases provides therapeutic benefits in preclinical chronic pain models. Although heavily characterized at the behavioral level, how DynA17 mediates its effects at the cellular physiological level has not been investigated. In this report, we begin to decipher how DynA17 mediates its direct effects on mouse dorsal root ganglion (DRG) cells and how intrathecal administration modifies a key node in the pain axis, the periaqueductal gray These findings build on the plethora of literature defining DynA17 as a critical neuropeptide in the pathophysiology of chronic pain syndromes.
{"title":"Pain-related behavioral and electrophysiological actions of dynorphin A (1-17).","authors":"Justin E LaVigne, Ian M Adams, Marena A Montera, Karin N Westlund, Sascha Ra Alles","doi":"10.1177/17448069231186592","DOIUrl":"https://doi.org/10.1177/17448069231186592","url":null,"abstract":"<p><p>Dynorphin A (1-17) (DynA17) has been identified as a key regulator of both sensory and affective dimensions of chronic pain. Following nerve injury, increases in DynA17 have been reported in the spinal and supraspinal areas involved in chronic pain. Blocking these increases provides therapeutic benefits in preclinical chronic pain models. Although heavily characterized at the behavioral level, how DynA17 mediates its effects at the cellular physiological level has not been investigated. In this report, we begin to decipher how DynA17 mediates its direct effects on mouse dorsal root ganglion (DRG) cells and how intrathecal administration modifies a key node in the pain axis, the periaqueductal gray These findings build on the plethora of literature defining DynA17 as a critical neuropeptide in the pathophysiology of chronic pain syndromes.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231186592"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/fb/10.1177_17448069231186592.PMC10328155.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/17448069221148958
Ryan Vaden, Jianguo Gu
The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (IMA) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.
a - β传入在体感觉功能中的作用通常被过分简化为低阈值机械感受器(LTMRs),而忽略了a - β传入对伤害感觉的参与。最近,我们对三叉神经节(TG)中具有大直径胞体的a β-传入神经元进行了表征,并根据其电生理特性将其分为非伤害性和类伤害性TG传入神经元。在此,我们扩展了之前的观察结果,进一步表征了三叉神经a β传入神经元的电生理特性,并通过膜片钳记录了成年雄性和雌性大鼠离体TG制剂中大直径TG神经元的机械和化学敏感性。根据电生理特性聚类分析,三叉神经a β传入神经元可分为I型、IIa型、IIb型、IIIa型和IIIb型5种类型,它们对机械刺激和5-羟色胺(5-HT)、乙酰胆碱(ACh)、三磷酸腺苷(ATP)等感觉介质的反应存在差异。其中,I型神经元动作电位(AP)振幅小,宽度窄,持续时间短,dV/dt复极峰明显且无偏转,而IIa、IIb、IIIa和IIIb型神经元动作电位(AP)振幅增大,宽度变宽,且随着偏转的增加,dV/dt复极峰减小。I、IIa和IIb型神经元大多是机械敏感的,在响应膜位移时表现出鲁强和快速适应的机械激活电流(IMA),而IIIa和IIIb型神经元则相反,几乎都是机械不敏感的。有趣的是,机械不敏感与对5-羟色胺和乙酰胆碱的敏感性增加同时发生。I型、IIa型和IIb型表现为LTMR a β-传入神经元的特征,而IIIa型和IIIb型表现为伤害性a β-传入神经元的特征。
{"title":"Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: Distinct electrophysiological properties, mechanical and chemical sensitivity.","authors":"Ryan Vaden, Jianguo Gu","doi":"10.1177/17448069221148958","DOIUrl":"https://doi.org/10.1177/17448069221148958","url":null,"abstract":"<p><p>The role of Aβ-afferents in somatosensory function is often oversimplified as low threshold mechanoreceptors (LTMRs) with large omission of Aβ-afferent involvement in nociception. Recently, we have characterized Aβ-afferent neurons which have large diameter somas in the trigeminal ganglion (TG) and classified them into non-nociceptive and nociceptive-like TG afferent neurons based on their electrophysiological properties. Here, we extend our previous observations to further characterize electrophysiological properties of trigeminal Aβ-afferent neurons and investigate their mechanical and chemical sensitivity by patch-clamp recordings from large-diameter TG neurons in ex vivo TG preparations of adult male and female rats. Based on cluster analysis of electrophysiological properties, trigeminal Aβ-afferent neurons can be classified into five discrete types (type I, IIa, IIb, IIIa, and IIIb), which responded differentially to mechanical stimulation and sensory mediators including serotonin (5-HT), acetylcholine (ACh) and adenosine triphosphate (ATP). Notably, type I neuron action potential (AP) was small in amplitude, width was narrow in duration, and peak dV/dt repolarization was great with no deflection observed, whereas discretely graded differences were observed for type IIa, IIb, IIIa, and IIIb, as AP increased in amplitude, width broadened in duration, and peak dV/dt repolarization reduced with the emergence of increasing deflection. Type I, IIa, and IIb neurons were mostly mechanically sensitive, displaying robust and rapidly adapting mechanically activated current (I<sub>MA</sub>) in response to membrane displacement, while IIIa and IIIb, conversely, were almost all mechanically insensitive. Interestingly, mechanical insensitivity coincided with increased sensitivity to 5-HT and ACh. Together, type I, IIa and IIb display features of LTMR Aβ-afferent neurons while type IIIa and type IIIb show properties of nociceptive Aβ-afferent neurons.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069221148958"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/e2/10.1177_17448069221148958.PMC9829874.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9953015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/17448069231187366
Sotatsu Tonomura, Jianguo Gu
Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/β-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. The velocity and frequency of saltatory conduction in both types of fibers were similar. Resting membrane potentials (RMPs), input resistance, action potential (AP) threshold, and AP rheobase were also not significantly different at the NRs of the two types of fibers in the sciatic nerves. In comparison with Aα/β-afferent fibers, Aα-efferent fibers in the sciatic nerves show higher amplitude and broader width of APs at their NRs. At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/β-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.
{"title":"Saltatory conduction and intrinsic electrophysiological properties at the nodes of ranvier of Aα/β-afferent fibers and Aα-efferent fibers in rat sciatic nerves.","authors":"Sotatsu Tonomura, Jianguo Gu","doi":"10.1177/17448069231187366","DOIUrl":"10.1177/17448069231187366","url":null,"abstract":"<p><p>Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/β-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. The velocity and frequency of saltatory conduction in both types of fibers were similar. Resting membrane potentials (RMPs), input resistance, action potential (AP) threshold, and AP rheobase were also not significantly different at the NRs of the two types of fibers in the sciatic nerves. In comparison with Aα/β-afferent fibers, Aα-efferent fibers in the sciatic nerves show higher amplitude and broader width of APs at their NRs. At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/β-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231187366"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8b/4d/10.1177_17448069231187366.PMC10413906.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9968013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/17448069231185696
Fabiana C Dias, Zilong Wang, Garrett Scapellato, Yong Chen
Identification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. Yet, it remains unexplored whether functional silencing of TRPV4-expressing TG neurons attenuates TMD pain. In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.
{"title":"Silencing of TRPV4-expressing sensory neurons attenuates temporomandibular disorders pain.","authors":"Fabiana C Dias, Zilong Wang, Garrett Scapellato, Yong Chen","doi":"10.1177/17448069231185696","DOIUrl":"https://doi.org/10.1177/17448069231185696","url":null,"abstract":"<p><p>Identification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. Yet, it remains unexplored whether functional silencing of TRPV4-expressing TG neurons attenuates TMD pain. In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231185696"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/d3/10.1177_17448069231185696.PMC10288408.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10086699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/17448069231158289
Meng Liu, Jing-Wen Mai, De-Xing Luo, Guan-Xi Liu, Ting Xu, Wen-Jun Xin, Su-Yan Lin, Zhen-Yu Li
Neuropathic pain is a common dose-limiting side effect of oxaliplatin, which hampers the effective treatment of tumors. Here, we found that upregulation of transcription factor NFATc2 decreased the expression of Beclin-1, a critical molecule in autophagy, in the spinal dorsal horn, and contributed to neuropathic pain following oxaliplatin treatment. Meanwhile, manipulating autophagy levels by intrathecal injection of rapamycin (RAPA) or 3-methyladenine (3-MA) differentially altered mechanical allodynia in oxaliplatin-treated or naïve rats. Utilizing chromatin immunoprecipitation-sequencing (ChIP-seq) assay combined with bioinformatics analysis, we found that NFATc2 negatively regulated the transcription of tuberous sclerosis complex protein 2 (TSC2), which contributed to the oxaliplatin-induced Beclin-1 downregulation. Further assays revealed that NFATc2 regulated histone H4 acetylation and methylation in the TSC2 promoter site 1 in rats' dorsal horns with oxaliplatin treatment. These results suggested that NFATc2 mediated the epigenetic downregulation of the TSC2/Beclin-1 autophagy pathway and contributed to oxaliplatin-induced mechanical allodynia, which provided a new therapeutic insight for chemotherapy-induced neuropathic pain.
{"title":"NFATc2-dependent epigenetic downregulation of the TSC2/Beclin-1 pathway is involved in neuropathic pain induced by oxaliplatin.","authors":"Meng Liu, Jing-Wen Mai, De-Xing Luo, Guan-Xi Liu, Ting Xu, Wen-Jun Xin, Su-Yan Lin, Zhen-Yu Li","doi":"10.1177/17448069231158289","DOIUrl":"10.1177/17448069231158289","url":null,"abstract":"<p><p>Neuropathic pain is a common dose-limiting side effect of oxaliplatin, which hampers the effective treatment of tumors. Here, we found that upregulation of transcription factor NFATc2 decreased the expression of Beclin-1, a critical molecule in autophagy, in the spinal dorsal horn, and contributed to neuropathic pain following oxaliplatin treatment. Meanwhile, manipulating autophagy levels by intrathecal injection of rapamycin (RAPA) or 3-methyladenine (3-MA) differentially altered mechanical allodynia in oxaliplatin-treated or naïve rats. Utilizing chromatin immunoprecipitation-sequencing (ChIP-seq) assay combined with bioinformatics analysis, we found that NFATc2 negatively regulated the transcription of tuberous sclerosis complex protein 2 (TSC2), which contributed to the oxaliplatin-induced Beclin-1 downregulation. Further assays revealed that NFATc2 regulated histone H4 acetylation and methylation in the <i>TSC2</i> promoter site 1 in rats' dorsal horns with oxaliplatin treatment. These results suggested that NFATc2 mediated the epigenetic downregulation of the TSC2/Beclin-1 autophagy pathway and contributed to oxaliplatin-induced mechanical allodynia, which provided a new therapeutic insight for chemotherapy-induced neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231158289"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5a/35/10.1177_17448069231158289.PMC9941598.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9483132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/17448069231182501
{"title":"Corrigendum to \"Rac1/PAK1 signaling contributes to bone cancer pain by Regulation dendritic spine remodeling in rats\".","authors":"","doi":"10.1177/17448069231182501","DOIUrl":"10.1177/17448069231182501","url":null,"abstract":"","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":"19 ","pages":"17448069231182501"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10469238/pdf/10.1177_17448069231182501.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10522497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}