Its outstanding mechanical and thermodynamic characteristics make SrAl2O4 a highly desirable ceramic material for high-temperature applications. However, the effects of elevated pressure on the structural and other properties of SrAl2O4 are still poorly understood. This study encompassed structural, elastic, electronic, dynamic, and thermal characteristics. Band structure calculations indicate that the direct band gap of SrAl2O4 is 4.54 eV. In addition, the Cauchy pressures provide evidence of the brittle characteristics of SrAl2O4. The mechanical and dynamic stability of SrAl2O4 is evident from the accurate determination of its elastic constants and phonon dispersion relations. In addition, a comprehensive analysis was conducted of the relationship between specific heat and entropy concerning temperature variations.
{"title":"Structural, Elastic, Electronic, Dynamic, and Thermal Properties of SrAl<sub>2</sub>O<sub>4</sub> with an Orthorhombic Structure Under Pressure.","authors":"Hongli Guo, Huanyin Yang, Suihu Dang, Shunru Zhang, Haijun Hou","doi":"10.3390/molecules29215192","DOIUrl":"10.3390/molecules29215192","url":null,"abstract":"<p><p>Its outstanding mechanical and thermodynamic characteristics make SrAl<sub>2</sub>O<sub>4</sub> a highly desirable ceramic material for high-temperature applications. However, the effects of elevated pressure on the structural and other properties of SrAl<sub>2</sub>O<sub>4</sub> are still poorly understood. This study encompassed structural, elastic, electronic, dynamic, and thermal characteristics. Band structure calculations indicate that the direct band gap of SrAl<sub>2</sub>O<sub>4</sub> is 4.54 eV. In addition, the Cauchy pressures provide evidence of the brittle characteristics of SrAl<sub>2</sub>O<sub>4</sub>. The mechanical and dynamic stability of SrAl<sub>2</sub>O<sub>4</sub> is evident from the accurate determination of its elastic constants and phonon dispersion relations. In addition, a comprehensive analysis was conducted of the relationship between specific heat and entropy concerning temperature variations.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.3390/molecules29215189
Hyun-Joung Lim, Hyun Jeong Kwak
Inflammation is critical in the development of acute liver failure (ALF). Peroxisome proliferator-activated receptor delta (PPARδ) regulates anti-inflammatory responses and is protective in several diseases such as obesity and cancer. However, the beneficial effects and underlying mechanisms of PPARδ agonist GW501516 in ALF remain unclear. This study investigated the molecular mechanisms underlying the anti-inflammatory effects of GW501516 in macrophages and assessed its protective potential against lipopolysaccharide (LPS)/galactosamine (GalN)-induced ALF. In vivo administration of GW501516 significantly reduced LPS/GalN-induced hepatotoxicity, as evidenced by lower mortality, decreased liver damage, and attenuated secretion of IL-1β, IL-6, and TNF-α. GW501516 treatment also decreased LPS-induced nitric oxide synthase 2 (NOS2) expression and nitric oxide (NO) production in RAW264.7 cells, an effect reversed by PPARδ siRNA. Additionally, GW501516 inhibited LPS-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK), suggesting that inactivation of these MAPKs contributes to its effects. The secretion of IL-6, TNF-α, and NF-κB DNA-binding activity were also suppressed by GW501516, while the nuclear translocation of the NF-κB p65 subunit was unaffected. In conclusion, our findings suggest that GW501516 exerts protective effects in ALF by inhibiting the production of inflammatory mediators. Therefore, GW501516 may act as a potential agent for developing anti-inflammatory therapies for ALF.
{"title":"Selective PPARδ Agonist GW501516 Protects Against LPS-Induced Macrophage Inflammation and Acute Liver Failure in Mice via Suppressing Inflammatory Mediators.","authors":"Hyun-Joung Lim, Hyun Jeong Kwak","doi":"10.3390/molecules29215189","DOIUrl":"10.3390/molecules29215189","url":null,"abstract":"<p><p>Inflammation is critical in the development of acute liver failure (ALF). Peroxisome proliferator-activated receptor delta (PPARδ) regulates anti-inflammatory responses and is protective in several diseases such as obesity and cancer. However, the beneficial effects and underlying mechanisms of PPARδ agonist GW501516 in ALF remain unclear. This study investigated the molecular mechanisms underlying the anti-inflammatory effects of GW501516 in macrophages and assessed its protective potential against lipopolysaccharide (LPS)/galactosamine (GalN)-induced ALF. In vivo administration of GW501516 significantly reduced LPS/GalN-induced hepatotoxicity, as evidenced by lower mortality, decreased liver damage, and attenuated secretion of IL-1β, IL-6, and TNF-α. GW501516 treatment also decreased LPS-induced nitric oxide synthase 2 (NOS2) expression and nitric oxide (NO) production in RAW264.7 cells, an effect reversed by PPARδ siRNA. Additionally, GW501516 inhibited LPS-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK), suggesting that inactivation of these MAPKs contributes to its effects. The secretion of IL-6, TNF-α, and NF-κB DNA-binding activity were also suppressed by GW501516, while the nuclear translocation of the NF-κB p65 subunit was unaffected. In conclusion, our findings suggest that GW501516 exerts protective effects in ALF by inhibiting the production of inflammatory mediators. Therefore, GW501516 may act as a potential agent for developing anti-inflammatory therapies for ALF.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A d10-Cd cluster containing sandwich-type arsenotungstate [C3H12N2]6[Cd4Cl2(B-α-AsW9O34)2] was synthesized and its structure characterized through elemental analyses, X-ray powder diffraction (XRPD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and single-crystal X-ray diffraction. The X-ray analysis revealed that the molecular unit of the compound consists of a captivating tetra-Cd-substituted sandwich-type polyoxoanion, accompanied by six elegantly protonated 1,2-diaminopropane as counter ions. The further novelty of the tetranuclear cadmium cluster lies in its occupied chlorine atom sites. This makes it highly susceptible to coordinate reactions with nitrogen on polycyclic aromatic hydrocarbons, thereby exhibiting different fluorescent signals that facilitate the identification and detection of these carcinogenic substances in methanol.
{"title":"A d<sup>10</sup>-Cd Cluster Containing Sandwich-Type Arsenotungstate Exhibiting Fluorescent Recognition of Carcinogenic Dye in Methanol.","authors":"Feng Wang, Xiang Ma, Haodong Li, Ziqi Zhao, Lele Zhang, Yutong Zhao, Haipeng Su, Zeqi Wang, Changchun Li, Jiai Hua","doi":"10.3390/molecules29215193","DOIUrl":"10.3390/molecules29215193","url":null,"abstract":"<p><p>A d<sup>10</sup>-Cd cluster containing sandwich-type arsenotungstate [C<sub>3</sub>H<sub>12</sub>N<sub>2</sub>]<sub>6</sub>[Cd<sub>4</sub>Cl<sub>2</sub>(B-<i>α</i>-AsW<sub>9</sub>O<sub>34</sub>)<sub>2</sub>] was synthesized and its structure characterized through elemental analyses, X-ray powder diffraction (XRPD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and single-crystal X-ray diffraction. The X-ray analysis revealed that the molecular unit of the compound consists of a captivating tetra-Cd-substituted sandwich-type polyoxoanion, accompanied by six elegantly protonated 1,2-diaminopropane as counter ions. The further novelty of the tetranuclear cadmium cluster lies in its occupied chlorine atom sites. This makes it highly susceptible to coordinate reactions with nitrogen on polycyclic aromatic hydrocarbons, thereby exhibiting different fluorescent signals that facilitate the identification and detection of these carcinogenic substances in methanol.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.3390/molecules29215194
Dongqiu Zhao, Xiao Tang, Xueying Gao, Wanyan Xing, Shuli Liu, Huabing Yin, Lin Ju
For metal-free low-dimensional ferromagnetic materials, a hopeful candidate for next-generation spintronic devices, investigating their magnetic mechanisms and exploring effective ways to regulate their magnetic properties are crucial for advancing their applications. Our work systematically investigated the origin of magnetism of a graphitic carbon nitride (Pca21 C4N3) monolayer based on the analysis on the partial electronic density of states. The magnetic moment of the Pca21 C4N3 originates from the spin-split of the 2pz orbit from special carbon (C) atoms and 2p orbit from N atoms around the Fermi energy, which was caused by the lone pair electrons in nitrogen (N) atoms. Notably, the magnetic moment of the Pca21 C4N3 monolayer could be effectively adjusted by adsorbing nitric oxide (NO) or oxygen (O2) gas molecules. The single magnetic electron from the adsorbed NO pairs with the unpaired electron in the N atom from the substrate, forming a Nsub-Nad bond, which reduces the system's magnetic moment from 4.00 μB to 2.99 μB. Moreover, the NO adsorption decreases the both spin-down and spin-up bandgaps, causing an increase in photoelectrical response efficiency. As for the case of O2 physisorption, it greatly enhances the magnetic moment of the Pca21 C4N3 monolayer from 4.00 μB to 6.00 μB through ferromagnetic coupling. This method of gas adsorption for tuning magnetic moments is reversible, simple, and cost-effective. Our findings reveal the magnetic mechanism of Pca21 C4N3 and its tunable magnetic performance realized by chemisorbing or physisorbing magnetic gas molecules, providing crucial theoretical foundations for the development and utilization of low-dimensional magnetic materials.
{"title":"Theoretical Study of the Magnetic Mechanism of a Pca21 C<sub>4</sub>N<sub>3</sub> Monolayer and the Regulation of Its Magnetism by Gas Adsorption.","authors":"Dongqiu Zhao, Xiao Tang, Xueying Gao, Wanyan Xing, Shuli Liu, Huabing Yin, Lin Ju","doi":"10.3390/molecules29215194","DOIUrl":"10.3390/molecules29215194","url":null,"abstract":"<p><p>For metal-free low-dimensional ferromagnetic materials, a hopeful candidate for next-generation spintronic devices, investigating their magnetic mechanisms and exploring effective ways to regulate their magnetic properties are crucial for advancing their applications. Our work systematically investigated the origin of magnetism of a graphitic carbon nitride (Pca21 C<sub>4</sub>N<sub>3</sub>) monolayer based on the analysis on the partial electronic density of states. The magnetic moment of the Pca21 C<sub>4</sub>N<sub>3</sub> originates from the spin-split of the 2<i>p</i><sub>z</sub> orbit from special carbon (C) atoms and 2<i>p</i> orbit from N atoms around the Fermi energy, which was caused by the lone pair electrons in nitrogen (N) atoms. Notably, the magnetic moment of the Pca21 C<sub>4</sub>N<sub>3</sub> monolayer could be effectively adjusted by adsorbing nitric oxide (NO) or oxygen (O<sub>2</sub>) gas molecules. The single magnetic electron from the adsorbed NO pairs with the unpaired electron in the N atom from the substrate, forming a N<sub>sub</sub>-N<sub>ad</sub> bond, which reduces the system's magnetic moment from 4.00 μ<sub>B</sub> to 2.99 μ<sub>B</sub>. Moreover, the NO adsorption decreases the both spin-down and spin-up bandgaps, causing an increase in photoelectrical response efficiency. As for the case of O<sub>2</sub> physisorption, it greatly enhances the magnetic moment of the Pca21 C<sub>4</sub>N<sub>3</sub> monolayer from 4.00 μ<sub>B</sub> to 6.00 μ<sub>B</sub> through ferromagnetic coupling. This method of gas adsorption for tuning magnetic moments is reversible, simple, and cost-effective. Our findings reveal the magnetic mechanism of Pca21 C<sub>4</sub>N<sub>3</sub> and its tunable magnetic performance realized by chemisorbing or physisorbing magnetic gas molecules, providing crucial theoretical foundations for the development and utilization of low-dimensional magnetic materials.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.3390/molecules29215183
Jiangang Liu, Lu Wang, Guohuan Wu
Sintering is a common phenomenon, which often takes place during the oxidation roasting process of molybdenite concentrate in multiple-hearth furnaces. The occurrence of sintering phenomena has detrimental effects on the product quality and the service life of the furnace. In this work, the influence of two key factors (roasting temperature and K content) on the sintering behavior is investigated using molybdenite concentrate as the raw material. Different technologies such as XRD, FESEM-EDS, and phase diagrams are adopted to analyze the experimental data. The results show that the higher the roasting temperature is, the greater the mass loss and the more serious the sintering degree will be. The results also show that with the increase in K content, the mass loss of the raw material is first increased and then decreased, while its sintering degree is still gradually increased. The sintering products obtained during the oxidation roasting process are often tightly combined with the bottom of the used crucible with a smooth and dense surface structure, while their internal microstructures are very complicated, which not only includes numerous MoO3 species, but also unoxidized MoS2, Mo sub-oxide, SiO2, and a variety of molybdates. Among them, both MoO3 and molybdates can be easily dissolved into the ammonia solution, leading to a residue mainly composed of SiO2 and CaMoO4. This study also finds that the sintering phenomenon is caused by the increase in local temperature and the formation of various low-melting-point eutectics. It is suggested that decreasing the roasting temperature and K content, especially the K content, are effective methods for reducing the sintering degree of molybdenite concentrate during the oxidation roasting process.
烧结是一种常见现象,通常发生在多层炉中钼精矿的氧化焙烧过程中。烧结现象的发生会对产品质量和炉子的使用寿命产生不利影响。本研究以钼精矿为原料,研究了两个关键因素(焙烧温度和 K 含量)对烧结行为的影响。实验数据采用了 XRD、FESEM-EDS 和相图等不同技术进行分析。结果表明,焙烧温度越高,质量损失越大,烧结程度越严重。结果还表明,随着 K 含量的增加,原料的质量损失先增大后减小,而烧结度仍逐渐增大。氧化焙烧过程中得到的烧结产物往往与所用坩埚的底部紧密结合,表面结构光滑致密,而其内部的微观结构却非常复杂,不仅包括众多的 MoO3 物种,还包括未氧化的 MoS2、亚氧化态 Mo、SiO2 以及多种钼酸盐。其中,MoO3 和钼酸盐都很容易溶解到氨溶液中,导致残留物主要由 SiO2 和 CaMoO4 组成。本研究还发现,烧结现象是由局部温度升高和各种低熔点共晶的形成引起的。建议在氧化焙烧过程中降低焙烧温度和 K 含量,尤其是 K 含量,是降低辉钼矿精矿烧结度的有效方法。
{"title":"Sintering Behavior of Molybdenite Concentrate During Oxidation Roasting Process in Air Atmosphere: Influences of Roasting Temperature and K Content.","authors":"Jiangang Liu, Lu Wang, Guohuan Wu","doi":"10.3390/molecules29215183","DOIUrl":"10.3390/molecules29215183","url":null,"abstract":"<p><p>Sintering is a common phenomenon, which often takes place during the oxidation roasting process of molybdenite concentrate in multiple-hearth furnaces. The occurrence of sintering phenomena has detrimental effects on the product quality and the service life of the furnace. In this work, the influence of two key factors (roasting temperature and K content) on the sintering behavior is investigated using molybdenite concentrate as the raw material. Different technologies such as XRD, FESEM-EDS, and phase diagrams are adopted to analyze the experimental data. The results show that the higher the roasting temperature is, the greater the mass loss and the more serious the sintering degree will be. The results also show that with the increase in K content, the mass loss of the raw material is first increased and then decreased, while its sintering degree is still gradually increased. The sintering products obtained during the oxidation roasting process are often tightly combined with the bottom of the used crucible with a smooth and dense surface structure, while their internal microstructures are very complicated, which not only includes numerous MoO<sub>3</sub> species, but also unoxidized MoS<sub>2</sub>, Mo sub-oxide, SiO<sub>2</sub>, and a variety of molybdates. Among them, both MoO<sub>3</sub> and molybdates can be easily dissolved into the ammonia solution, leading to a residue mainly composed of SiO<sub>2</sub> and CaMoO<sub>4</sub>. This study also finds that the sintering phenomenon is caused by the increase in local temperature and the formation of various low-melting-point eutectics. It is suggested that decreasing the roasting temperature and K content, especially the K content, are effective methods for reducing the sintering degree of molybdenite concentrate during the oxidation roasting process.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.3390/molecules29215195
Aneeqa Yasmeen, Amir Muhammad Afzal, Areej S Alqarni, Muhammad Waqas Iqbal, Sohail Mumtaz
Metal sulfide-based composites have become increasingly common as materials used for electrodes in supercapacitors because of their excellent conductivity, electrochemical activity, and redox capacity. This study synthesized a composite of NiFeS@MoS2@rGO nanostructure using a simple hydrothermal approach. The synthesized nanocomposite consisted of the composite of nickel sulfide and iron sulfide doped with MoS2@rGO. A three-electrode cell is employed to investigate the electrochemical properties of the NiFeS@MoS2@rGO electrode. The results demonstrated an optimal specific capacitance of 3188 F/g at 1.4 A/g in a 1 M KOH electrolyte. Furthermore, a supercapattery is designed utilizing NiFeS@MoS2@rGO//AC as the positive electrode and activated carbon (AC) as the negative electrode materials. The resulting supercapattery is designed at a cell voltage of 1.6 V, achieving a specific capacity value of 189 C/g at 1.4 A/g. It also demonstrated an excellent energy density of 55 Wh/kg with an enhanced power density of 3800 W/kg. Furthermore, the hybrid device demonstrated remarkable stability with a cycling stability of 95% over 30,000 charge-discharge cycles at a current density of 1.4 A/g. The supercapattery, which has excellent energy storage capabilities, is used as a power source for operating different portable electronic devices.
{"title":"Design and Optimization of MoS<sub>2</sub>@rGO@NiFeS Nanocomposites for Hybrid Supercapattery Performance and Sensitive Electrochemical Detection.","authors":"Aneeqa Yasmeen, Amir Muhammad Afzal, Areej S Alqarni, Muhammad Waqas Iqbal, Sohail Mumtaz","doi":"10.3390/molecules29215195","DOIUrl":"10.3390/molecules29215195","url":null,"abstract":"<p><p>Metal sulfide-based composites have become increasingly common as materials used for electrodes in supercapacitors because of their excellent conductivity, electrochemical activity, and redox capacity. This study synthesized a composite of NiFeS@MoS<sub>2</sub>@rGO nanostructure using a simple hydrothermal approach. The synthesized nanocomposite consisted of the composite of nickel sulfide and iron sulfide doped with MoS<sub>2</sub>@rGO. A three-electrode cell is employed to investigate the electrochemical properties of the NiFeS@MoS<sub>2</sub>@rGO electrode. The results demonstrated an optimal specific capacitance of 3188 F/g at 1.4 A/g in a 1 M KOH electrolyte. Furthermore, a supercapattery is designed utilizing NiFeS@MoS<sub>2</sub>@rGO//AC as the positive electrode and activated carbon (AC) as the negative electrode materials. The resulting supercapattery is designed at a cell voltage of 1.6 V, achieving a specific capacity value of 189 C/g at 1.4 A/g. It also demonstrated an excellent energy density of 55 Wh/kg with an enhanced power density of 3800 W/kg. Furthermore, the hybrid device demonstrated remarkable stability with a cycling stability of 95% over 30,000 charge-discharge cycles at a current density of 1.4 A/g. The supercapattery, which has excellent energy storage capabilities, is used as a power source for operating different portable electronic devices.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.3390/molecules29215191
Yuanyuan Xu, Xiaofei Liu, Jingjing Guan, Jin Chen, Xiaofei Xu
In the present study, a heteromannan primarily composed of mannose, fucose, xylose, glucose, and arabinose at a molar ratio of 4.78:1.18:1:0.82:0.11 containing a low proportion of glucuronic acid with weight-average molecular weights of 3.6 × 106 Da, named NTP, was prepared from the fruiting body of Tremella fuciformis. The anti-skin-aging effects of NTP on d-Galactose-induced aging mice and the biological mechanisms were investigated by an iTRAQ-based proteomics approach. NTP substantially mitigated skin aging characterized by a decreased loss of hydroxyproline and hyaluronic acid and reduced oxidative stress in the skin. Moreover, 43 differentially expressed proteins (DEPs) were identified in response to NTP, of which 23 were up-regulated and 20 were down-regulated. Bioinformatics analysis revealed that these DEPs were mainly involved in the biological functions of cellular and metabolic regulations, immune system responses, and structural components. The findings provided new insights into the biological mechanisms underlying the anti-skin-aging actions of T. fuciformis-derived polysaccharides and facilitated NTP applications in naturally functional foods.
{"title":"iTRAQ-Based Proteomic Profiling of Skin Aging Protective Effects of <i>Tremella fuciformis</i>-Derived Polysaccharides on D-Galactose-Induced Aging Mice.","authors":"Yuanyuan Xu, Xiaofei Liu, Jingjing Guan, Jin Chen, Xiaofei Xu","doi":"10.3390/molecules29215191","DOIUrl":"10.3390/molecules29215191","url":null,"abstract":"<p><p>In the present study, a heteromannan primarily composed of mannose, fucose, xylose, glucose, and arabinose at a molar ratio of 4.78:1.18:1:0.82:0.11 containing a low proportion of glucuronic acid with weight-average molecular weights of 3.6 × 10<sup>6</sup> Da, named NTP, was prepared from the fruiting body of <i>Tremella fuciformis</i>. The anti-skin-aging effects of NTP on d-Galactose-induced aging mice and the biological mechanisms were investigated by an iTRAQ-based proteomics approach. NTP substantially mitigated skin aging characterized by a decreased loss of hydroxyproline and hyaluronic acid and reduced oxidative stress in the skin. Moreover, 43 differentially expressed proteins (DEPs) were identified in response to NTP, of which 23 were up-regulated and 20 were down-regulated. Bioinformatics analysis revealed that these DEPs were mainly involved in the biological functions of cellular and metabolic regulations, immune system responses, and structural components. The findings provided new insights into the biological mechanisms underlying the anti-skin-aging actions of <i>T. fuciformis</i>-derived polysaccharides and facilitated NTP applications in naturally functional foods.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.3390/molecules29215184
Regiane G Lima, Raphael S Flores, Gabriella Miessi, Jhoenne H V Pulcherio, Laís F Aguilera, Leandro O Araujo, Samuel L Oliveira, Anderson R L Caires
Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to combat drug-resistant bacteria. This study explores the potential of lapachol, a natural naphthoquinone derived from Tabebuia avellanedae, as a photosensitizer (PS) for aPDI. Lapachol's photosensitizing properties were evaluated using Staphylococcus aureus and Escherichia coli strains under blue LED light (450 nm). UV-vis spectroscopy confirmed lapachol's absorption peak at 482 nm, aligning with effective excitation wavelengths for phototherapy. Photoinactivation assays demonstrated significant bacterial growth inhibition, achieving complete eradication of S. aureus at 25 µg·mL-1 under light exposure. Scanning electron microscopy (SEM) revealed morphological damage in irradiated bacterial cells, confirming lapachol's bactericidal effect. This research underscores lapachol's potential as a novel photosensitizer in antimicrobial photodynamic therapy, addressing a critical need in combating antibiotic resistance.
{"title":"Determination of Photosensitizing Potential of Lapachol for Photodynamic Inactivation of Bacteria.","authors":"Regiane G Lima, Raphael S Flores, Gabriella Miessi, Jhoenne H V Pulcherio, Laís F Aguilera, Leandro O Araujo, Samuel L Oliveira, Anderson R L Caires","doi":"10.3390/molecules29215184","DOIUrl":"10.3390/molecules29215184","url":null,"abstract":"<p><p>Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to combat drug-resistant bacteria. This study explores the potential of lapachol, a natural naphthoquinone derived from <i>Tabebuia avellanedae</i>, as a photosensitizer (PS) for aPDI. Lapachol's photosensitizing properties were evaluated using <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> strains under blue LED light (450 nm). UV-vis spectroscopy confirmed lapachol's absorption peak at 482 nm, aligning with effective excitation wavelengths for phototherapy. Photoinactivation assays demonstrated significant bacterial growth inhibition, achieving complete eradication of <i>S. aureus</i> at 25 µg·mL<sup>-1</sup> under light exposure. Scanning electron microscopy (SEM) revealed morphological damage in irradiated bacterial cells, confirming lapachol's bactericidal effect. This research underscores lapachol's potential as a novel photosensitizer in antimicrobial photodynamic therapy, addressing a critical need in combating antibiotic resistance.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A benzothiazole-based derivative aggregation-induced emission (AIE) fluorescent 'turn-on' probe named 2-(2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)benzo[d]thiazole (probe BT-BO) was developed and synthesized successfully for detecting hydrogen peroxide (H2O2) in living cells. The synthesis method of probe BT-BO is facile. Probe BT-BO demonstrates a well-resolved emission peak at 604 nm and the ability to prevent the interference of reactive oxygen species (ROS), various metal ions and anion ions, and good sensitivity. Additionally, the probe boasts impressive pH range versatility, a fast response time to H2O2 and low cytotoxicity. Finally, probe BT-BO was applied successfully to image A549 and Hep G2 cells to monitor both exogenous and endogenous H2O2.
{"title":"A Novel Benzothiazole-Based Fluorescent AIE Probe for the Detection of Hydrogen Peroxide in Living Cells.","authors":"Dezhi Shi, Yulong Yang, Luan Tong, Likang Zhang, Fengqing Yang, Jiali Tao, Mingxia Zhao","doi":"10.3390/molecules29215181","DOIUrl":"10.3390/molecules29215181","url":null,"abstract":"<p><p>A benzothiazole-based derivative aggregation-induced emission (AIE) fluorescent 'turn-on' probe named 2-(2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)benzo[<i>d</i>]thiazole (probe <b>BT-BO</b>) was developed and synthesized successfully for detecting hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in living cells. The synthesis method of probe <b>BT-BO</b> is facile. Probe <b>BT-BO</b> demonstrates a well-resolved emission peak at 604 nm and the ability to prevent the interference of reactive oxygen species (ROS), various metal ions and anion ions, and good sensitivity. Additionally, the probe boasts impressive pH range versatility, a fast response time to H<sub>2</sub>O<sub>2</sub> and low cytotoxicity. Finally, probe <b>BT-BO</b> was applied successfully to image A549 and Hep G2 cells to monitor both exogenous and endogenous H<sub>2</sub>O<sub>2</sub>.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.3390/molecules29215179
Younghee Jang, Sang Moon Lee, Sung Su Kim, D Duc Nguyen
This study investigated the development and optimization of sol-gel synthesized Ni/ZrO2-Al2O3 catalysts, aiming to enhance the decomposition efficiency of CF4, a potent greenhouse gas. The research focused on improving catalytic performance at temperatures below 700 °C by incorporating zirconium and tungsten as co-catalysts. Comprehensive characterization techniques including XRD, BET, FTIR, and XPS were employed to elucidate the structural and chemical properties contributing to the catalyst's activity and durability. Various synthesis ratios, heat treatment temperatures, and co-catalyst addition positions were explored to identify the optimal conditions for CF4 decomposition. The catalyst composition with 7.5 wt% ZrO2 and 3 wt% WO3 on Al2O3 (3W-S3) achieved over 99% CF4 decomposition efficiency at 550 °C. The study revealed that the appropriate incorporation of ZrO2 enhanced the specific surface area and prevented sintering, while the addition of tungsten further improved the distribution of active sites. These findings offer valuable insights into the design of more efficient catalysts for environmental applications, particularly in mitigating emissions from semiconductor manufacturing processes.
{"title":"Optimization of Sol-Gel Catalysts with Zirconium and Tungsten Additives for Enhanced CF<sub>4</sub> Decomposition Performance.","authors":"Younghee Jang, Sang Moon Lee, Sung Su Kim, D Duc Nguyen","doi":"10.3390/molecules29215179","DOIUrl":"10.3390/molecules29215179","url":null,"abstract":"<p><p>This study investigated the development and optimization of sol-gel synthesized Ni/ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalysts, aiming to enhance the decomposition efficiency of CF<sub>4</sub>, a potent greenhouse gas. The research focused on improving catalytic performance at temperatures below 700 °C by incorporating zirconium and tungsten as co-catalysts. Comprehensive characterization techniques including XRD, BET, FTIR, and XPS were employed to elucidate the structural and chemical properties contributing to the catalyst's activity and durability. Various synthesis ratios, heat treatment temperatures, and co-catalyst addition positions were explored to identify the optimal conditions for CF<sub>4</sub> decomposition. The catalyst composition with 7.5 wt% ZrO<sub>2</sub> and 3 wt% WO<sub>3</sub> on Al<sub>2</sub>O<sub>3</sub> (3W-S3) achieved over 99% CF<sub>4</sub> decomposition efficiency at 550 °C. The study revealed that the appropriate incorporation of ZrO<sub>2</sub> enhanced the specific surface area and prevented sintering, while the addition of tungsten further improved the distribution of active sites. These findings offer valuable insights into the design of more efficient catalysts for environmental applications, particularly in mitigating emissions from semiconductor manufacturing processes.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"29 21","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}