首页 > 最新文献

Molecules最新文献

英文 中文
Discovery of Isobavachin, a Natural Flavonoid, as an Apolipoprotein E4 (ApoE4) Structure Corrector for Alzheimer's Disease.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040940
Sachin P Patil, Bella R Kuehn, Christina McCullough, Dean Bates, Hadil Hazim, Mamadou Diallo, Naomie Francois

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extensive neurodegeneration and consequent severe memory loss. Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for AD, with its pathological effects linked to structural instability and altered interactions with lipids and other important disease proteins including amyloid beta (Aβ) and tau (τ). Therefore, correcting and stabilizing the ApoE4 structure has emerged as a promising therapeutic strategy for mitigating its detrimental effects. In this study, we investigated naturally occurring bioavailable flavonoids as ApoE4 stabilizers, focusing on their potential to modulate ApoE4 structure and function. A comprehensive investigation of a focused database using our integrated computational and experimental screening protocol led to the identification of Isobavachin as a potential corrector and stabilizer of ApoE4 structure. In addition, a few other bioavailable flavonoids with similar stabilizing properties were identified, albeit to a much lesser extent as compared to Isobavachin. The findings support the therapeutic potential of flavonoids as ApoE4 modulators and highlight Isobavachin as a lead candidate for further preclinical evaluation. These results provide new insights into the pharmacological targeting of ApoE4 and open avenues for the development of flavonoid-based, ApoE-directed therapies for AD.

{"title":"Discovery of Isobavachin, a Natural Flavonoid, as an Apolipoprotein E4 (ApoE4) Structure Corrector for Alzheimer's Disease.","authors":"Sachin P Patil, Bella R Kuehn, Christina McCullough, Dean Bates, Hadil Hazim, Mamadou Diallo, Naomie Francois","doi":"10.3390/molecules30040940","DOIUrl":"https://doi.org/10.3390/molecules30040940","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by extensive neurodegeneration and consequent severe memory loss. Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for AD, with its pathological effects linked to structural instability and altered interactions with lipids and other important disease proteins including amyloid beta (Aβ) and tau (<i>τ</i>). Therefore, correcting and stabilizing the ApoE4 structure has emerged as a promising therapeutic strategy for mitigating its detrimental effects. In this study, we investigated naturally occurring bioavailable flavonoids as ApoE4 stabilizers, focusing on their potential to modulate ApoE4 structure and function. A comprehensive investigation of a focused database using our integrated computational and experimental screening protocol led to the identification of Isobavachin as a potential corrector and stabilizer of ApoE4 structure. In addition, a few other bioavailable flavonoids with similar stabilizing properties were identified, albeit to a much lesser extent as compared to Isobavachin. The findings support the therapeutic potential of flavonoids as ApoE4 modulators and highlight Isobavachin as a lead candidate for further preclinical evaluation. These results provide new insights into the pharmacological targeting of ApoE4 and open avenues for the development of flavonoid-based, ApoE-directed therapies for AD.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Thiazolo[5,4-d]thiazoles in an Eco-Friendly L-Proline-Ethylene Glycol Mixture.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040938
Thiên Thuý Trang Nguyễn, Jean-François Longevial, Stéphanie Hesse

The hazardousness of solvents used in synthetic organic chemistry is well established. In this context, it is relevant to search for safer and greener alternatives. Within the last decades, deep eutectic solvents have been considered as possible and promising alternatives. Consequently, this study aims at using deep eutectic solvents to synthesize an emerging class of heteroaromatic compounds named thiazolo[5,4-d]thiazoles, for which interest is growing in the field of organics, electronics, and biology. To address this challenge, we developed a straightforward synthetic protocol consisting of condensing dithiooxamide and aromatic aldehyde in deep eutectic solvents to yield the desired thiazolo[5,4-d]thiazole without further purification. The first hit was obtained with the well-known L-proline:glycerol (1:2) mixture at 130 °C. However, dithiooxamide is degraded under these conditions, leading to the formation of impurities that may arise from the consequent amount of reactive L-proline. Reaction conditions were optimized by modifying the deep eutectic solvent nature and proportions, applying various temperatures, changing the activation and heating source, or adding auxiliary oxidants. As a consequence, eight thiazolo[5,4-d]thiazoles were synthesized in equal or better yields (20 to 75%) than the reported procedure under safe and eco-friendly conditions in a mixture of L-proline and ethylene glycol (1:50) with sodium metabisulfite at 130 °C for one hour.

{"title":"Synthesis of Thiazolo[5,4-<i>d</i>]thiazoles in an Eco-Friendly L-Proline-Ethylene Glycol Mixture.","authors":"Thiên Thuý Trang Nguyễn, Jean-François Longevial, Stéphanie Hesse","doi":"10.3390/molecules30040938","DOIUrl":"https://doi.org/10.3390/molecules30040938","url":null,"abstract":"<p><p>The hazardousness of solvents used in synthetic organic chemistry is well established. In this context, it is relevant to search for safer and greener alternatives. Within the last decades, deep eutectic solvents have been considered as possible and promising alternatives. Consequently, this study aims at using deep eutectic solvents to synthesize an emerging class of heteroaromatic compounds named thiazolo[5,4-<i>d</i>]thiazoles, for which interest is growing in the field of organics, electronics, and biology. To address this challenge, we developed a straightforward synthetic protocol consisting of condensing dithiooxamide and aromatic aldehyde in deep eutectic solvents to yield the desired thiazolo[5,4-<i>d</i>]thiazole without further purification. The first hit was obtained with the well-known L-proline:glycerol (1:2) mixture at 130 °C. However, dithiooxamide is degraded under these conditions, leading to the formation of impurities that may arise from the consequent amount of reactive L-proline. Reaction conditions were optimized by modifying the deep eutectic solvent nature and proportions, applying various temperatures, changing the activation and heating source, or adding auxiliary oxidants. As a consequence, eight thiazolo[5,4-<i>d</i>]thiazoles were synthesized in equal or better yields (20 to 75%) than the reported procedure under safe and eco-friendly conditions in a mixture of L-proline and ethylene glycol (1:50) with sodium metabisulfite at 130 °C for one hour.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Antibacterial and Antibiofilm Properties of Phenolics with Coumarin, Naphthoquinone and Pyranone Moieties Against Foodborne Microorganisms.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040944
Alejandra Alejo-Armijo, Antonio Cobo, Alfonso Alejo-Armijo, Joaquín Altarejos, Sofía Salido, Elena Ortega-Morente

Numerous studies have previously demonstrated the antimicrobial activity of plant extracts rich in procyanidins. However, these investigations that focused on uncharacterized extracts do not provide information on the structure-activity relationships of these compounds. The aim of this work was to investigate the antibacterial and antibiofilm properties of 27 phenolics with coumarin, naphthoquinone and pyranone moieties against foodborne microorganisms, as well as to establish structure-activity relationships. Minimal inhibitory concentrations (MICs) for each compound were investigated, as well as their ability for inhibiting biofilm formation as well as disrupting previously formed biofilms by food pathogens. Our compounds show high antibacterial and antibiofilm activities against Gram-positive bacteria. Regarding the structure-activity relationships observed, the coumarin moiety seems to favor the antibacterial activity against both S. aureus strains assayed, while a naphthoquinone moiety enhances antibacterial effects against B. cereus. Moreover, the replacement of OH groups in the B-ring by methoxy groups impairs antibacterial activity of the compounds against target bacteria, while the presence of Cl or OH groups in the molecules seems to enhance the inhibition of biofilm formation as well as the disruption of preformed biofilms. These results may be of great relevance for the food sector, increasing the options of additives that can be used industrially.

{"title":"Evaluation of Antibacterial and Antibiofilm Properties of Phenolics with Coumarin, Naphthoquinone and Pyranone Moieties Against Foodborne Microorganisms.","authors":"Alejandra Alejo-Armijo, Antonio Cobo, Alfonso Alejo-Armijo, Joaquín Altarejos, Sofía Salido, Elena Ortega-Morente","doi":"10.3390/molecules30040944","DOIUrl":"https://doi.org/10.3390/molecules30040944","url":null,"abstract":"<p><p>Numerous studies have previously demonstrated the antimicrobial activity of plant extracts rich in procyanidins. However, these investigations that focused on uncharacterized extracts do not provide information on the structure-activity relationships of these compounds. The aim of this work was to investigate the antibacterial and antibiofilm properties of 27 phenolics with coumarin, naphthoquinone and pyranone moieties against foodborne microorganisms, as well as to establish structure-activity relationships. Minimal inhibitory concentrations (MICs) for each compound were investigated, as well as their ability for inhibiting biofilm formation as well as disrupting previously formed biofilms by food pathogens. Our compounds show high antibacterial and antibiofilm activities against Gram-positive bacteria. Regarding the structure-activity relationships observed, the coumarin moiety seems to favor the antibacterial activity against both <i>S. aureus</i> strains assayed, while a naphthoquinone moiety enhances antibacterial effects against <i>B. cereus</i>. Moreover, the replacement of OH groups in the B-ring by methoxy groups impairs antibacterial activity of the compounds against target bacteria, while the presence of Cl or OH groups in the molecules seems to enhance the inhibition of biofilm formation as well as the disruption of preformed biofilms. These results may be of great relevance for the food sector, increasing the options of additives that can be used industrially.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Benzothiazole Boc-Phe-Phe-Bz Derivative Dipeptide Forming Fluorescent and Nonlinear Optical Self-Assembled Structures.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040942
Rosa M F Baptista, Daniela Santos, N F Cunha, Maria Cidália R Castro, Pedro V Rodrigues, Ana V Machado, Michael S Belsley, Etelvina de Matos Gomes

This work explores the self-assembly and optical properties of a novel chiral, aromatic-rich Boc-Phe-Phe dipeptide derivative functionalized with a benzothiazole bicyclic ring that forms supramolecular structures. Leveraging the well-known self-assembling capabilities of diphenylalanine dipeptides, this modified derivative introduces a heterocyclic benzothiazole unit that significantly enhances the fluorescence of the resulting nanostructures. The derivative's rich aromatic character drives the formation of supramolecular structures through self-organization mechanisms influenced by quantum confinement. By adjusting the solvent system, the nanostructures exhibit tunable morphologies, ranging from nanospheres to nanobelts. The nonlinear optical properties of these self-assembled structures were studied and an estimated deff of ~0.9 pm/V was obtained, which is comparable to that reported for the highly aromatic triphenylalanine peptide.

{"title":"Novel Benzothiazole Boc-Phe-Phe-Bz Derivative Dipeptide Forming Fluorescent and Nonlinear Optical Self-Assembled Structures.","authors":"Rosa M F Baptista, Daniela Santos, N F Cunha, Maria Cidália R Castro, Pedro V Rodrigues, Ana V Machado, Michael S Belsley, Etelvina de Matos Gomes","doi":"10.3390/molecules30040942","DOIUrl":"https://doi.org/10.3390/molecules30040942","url":null,"abstract":"<p><p>This work explores the self-assembly and optical properties of a novel chiral, aromatic-rich Boc-Phe-Phe dipeptide derivative functionalized with a benzothiazole bicyclic ring that forms supramolecular structures. Leveraging the well-known self-assembling capabilities of diphenylalanine dipeptides, this modified derivative introduces a heterocyclic benzothiazole unit that significantly enhances the fluorescence of the resulting nanostructures. The derivative's rich aromatic character drives the formation of supramolecular structures through self-organization mechanisms influenced by quantum confinement. By adjusting the solvent system, the nanostructures exhibit tunable morphologies, ranging from nanospheres to nanobelts. The nonlinear optical properties of these self-assembled structures were studied and an estimated deff of ~0.9 pm/V was obtained, which is comparable to that reported for the highly aromatic triphenylalanine peptide.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Design of Metal-Free Nitrogen-Doped Carbon for Controllable Reduction of CO2 to Syngas.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040953
Guangbin An, Kang Wang, Min Yang, Jiye Zhang, Haijian Zhong, Liang Wang, Huazhang Guo

The electrocatalytic reduction of CO2 (ECO2RR) to syngas with tunable CO/H2 ratios offers a promising route for sustainable energy conversion and chemical production. Here, we report a series of N-doped carbon black (NCBx) catalysts with tailored nitrogen species that enable precise control over the composition of syngas. Among the catalysts, NCB3 exhibits the optimal performance, achieving high CO selectivity (64.14%) and activity (1.9 mA cm-2) in an H-type cell at -0.9 V. Furthermore, NCB3 produces syngas with a wide range of CO/H2 ratios (0.52 to 4.77) across the applied potentials (-0.5 to -1.0 V). Stability tests confirm the robust durability of NCB3, which maintains consistent activity and selectivity over prolonged electrolysis. This work demonstrates the critical role of nitrogen species in tuning ECO2RR pathways and establishes a strategy for designing efficient and stable carbon-based catalysts for CO2 utilization and syngas production.

{"title":"Rational Design of Metal-Free Nitrogen-Doped Carbon for Controllable Reduction of CO<sub>2</sub> to Syngas.","authors":"Guangbin An, Kang Wang, Min Yang, Jiye Zhang, Haijian Zhong, Liang Wang, Huazhang Guo","doi":"10.3390/molecules30040953","DOIUrl":"https://doi.org/10.3390/molecules30040953","url":null,"abstract":"<p><p>The electrocatalytic reduction of CO<sub>2</sub> (ECO<sub>2</sub>RR) to syngas with tunable CO/H<sub>2</sub> ratios offers a promising route for sustainable energy conversion and chemical production. Here, we report a series of N-doped carbon black (NCBx) catalysts with tailored nitrogen species that enable precise control over the composition of syngas. Among the catalysts, NCB3 exhibits the optimal performance, achieving high CO selectivity (64.14%) and activity (1.9 mA cm<sup>-2</sup>) in an H-type cell at -0.9 V. Furthermore, NCB3 produces syngas with a wide range of CO/H<sub>2</sub> ratios (0.52 to 4.77) across the applied potentials (-0.5 to -1.0 V). Stability tests confirm the robust durability of NCB3, which maintains consistent activity and selectivity over prolonged electrolysis. This work demonstrates the critical role of nitrogen species in tuning ECO<sub>2</sub>RR pathways and establishes a strategy for designing efficient and stable carbon-based catalysts for CO<sub>2</sub> utilization and syngas production.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nasturtium officinale Microshoot Culture Multiplied in PlantForm Bioreactor-Phytochemical Profiling and Biological Activity.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040936
Marta Klimek-Szczykutowicz, Magdalena Anna Malinowska, Aleksandra Gałka, Ivica Blažević, Azra Ðulović, Paulina Paprocka, Małgorzata Wrzosek, Agnieszka Szopa

Nasturtium officinale R. Br. (watercress) is an endangered species with valuable pharmaceutical, cosmetic, and nutritional properties. The purpose of this work was to evaluate the phytochemical profile and biological activity of extracts from microshoot cultures grown in PlantForm bioreactors and the parent plant material. After 20 days of cultivation, the cultures achieved the best results both in terms of key active ingredient content and biological activity. The glucosinolates (GSL) profile by the UHPLC-DAD-MS/MS method showed that the dominant compounds were glucobrassicin (493.00 mg/100 g DW, 10 days) and gluconasturtiin (268.04 mg/100 g DW, 20 days). The highest total polyphenol content (TPC) was obtained after a 20-day growth period (2690 mg GAE/100 g DW). Among polyphenols, the dominant compounds in the extracts from in vitro cultures were sinapinic acid (114.83 mg/100 g DW, 10 days) and ferulic acid (87.78 mg/100 g DW, 20 days). The highest antioxidant potential assessed by ABTS and DPPH assays was observed for ethanol extracts. The best results for inhibiting hyperpigmentation (18.12%) were obtained for ethanol extracts and anti-elastase activity (79.78%) for aqueous extract from N. officinale microshoot cultures. The extracts from microshoot cultures inhibited the growth of bacteria, including Cutibacterium acnes (MIC = 0.625 mg/mL). Antioxidant tests and the chelating capacity of iron ions Fe2+ of the face emulsion with N. officinale extracts showed higher results than the control.

{"title":"<i>Nasturtium officinale</i> Microshoot Culture Multiplied in PlantForm Bioreactor-Phytochemical Profiling and Biological Activity.","authors":"Marta Klimek-Szczykutowicz, Magdalena Anna Malinowska, Aleksandra Gałka, Ivica Blažević, Azra Ðulović, Paulina Paprocka, Małgorzata Wrzosek, Agnieszka Szopa","doi":"10.3390/molecules30040936","DOIUrl":"https://doi.org/10.3390/molecules30040936","url":null,"abstract":"<p><p><i>Nasturtium officinale</i> R. Br. (watercress) is an endangered species with valuable pharmaceutical, cosmetic, and nutritional properties. The purpose of this work was to evaluate the phytochemical profile and biological activity of extracts from microshoot cultures grown in PlantForm bioreactors and the parent plant material. After 20 days of cultivation, the cultures achieved the best results both in terms of key active ingredient content and biological activity. The glucosinolates (GSL) profile by the UHPLC-DAD-MS/MS method showed that the dominant compounds were glucobrassicin (493.00 mg/100 g DW, 10 days) and gluconasturtiin (268.04 mg/100 g DW, 20 days). The highest total polyphenol content (TPC) was obtained after a 20-day growth period (2690 mg GAE/100 g DW). Among polyphenols, the dominant compounds in the extracts from in vitro cultures were sinapinic acid (114.83 mg/100 g DW, 10 days) and ferulic acid (87.78 mg/100 g DW, 20 days). The highest antioxidant potential assessed by ABTS and DPPH assays was observed for ethanol extracts. The best results for inhibiting hyperpigmentation (18.12%) were obtained for ethanol extracts and anti-elastase activity (79.78%) for aqueous extract from <i>N. officinale</i> microshoot cultures. The extracts from microshoot cultures inhibited the growth of bacteria, including <i>Cutibacterium acnes</i> (MIC = 0.625 mg/mL). Antioxidant tests and the chelating capacity of iron ions Fe<sup>2+</sup> of the face emulsion with <i>N. officinale</i> extracts showed higher results than the control.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Guide to Enzyme Immobilization: All You Need to Know.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040939
Marina Simona Robescu, Teodora Bavaro

Enzyme immobilization plays a critical role in enhancing the efficiency and sustainability of biocatalysis, addressing key challenges such as limited enzyme stability, short shelf life, and difficulties in recovery and recycling, which are pivotal for green chemistry and industrial applications. Classical approaches, including adsorption, entrapment, encapsulation, and covalent bonding, as well as advanced site-specific methods that integrate enzyme engineering and bio-orthogonal chemistry, were discussed. These techniques enable precise control over enzyme orientation and interaction with carriers, optimizing catalytic activity and reusability. Key findings highlight the impact of immobilization on improving enzyme performance under various operational conditions and its role in reducing process costs through enhanced stability and recyclability. The review presents numerous practical applications of immobilized enzymes, including their use in the pharmaceutical industry for drug synthesis, in the food sector for dairy processing, and in environmental biotechnology for wastewater treatment and dye degradation. Despite the significant advantages, challenges such as activity loss due to conformational changes and mass transfer limitations remain, necessitating tailored immobilization protocols for specific applications. The integration of immobilization with modern biotechnological advancements, such as site-directed mutagenesis and recombinant DNA technology, offers a promising pathway for developing robust, efficient, and sustainable biocatalytic systems. This comprehensive guide aims to support researchers and industries in selecting and optimizing immobilization techniques for diverse applications in pharmaceuticals, food processing, and fine chemicals.

{"title":"A Comprehensive Guide to Enzyme Immobilization: All You Need to Know.","authors":"Marina Simona Robescu, Teodora Bavaro","doi":"10.3390/molecules30040939","DOIUrl":"https://doi.org/10.3390/molecules30040939","url":null,"abstract":"<p><p>Enzyme immobilization plays a critical role in enhancing the efficiency and sustainability of biocatalysis, addressing key challenges such as limited enzyme stability, short shelf life, and difficulties in recovery and recycling, which are pivotal for green chemistry and industrial applications. Classical approaches, including adsorption, entrapment, encapsulation, and covalent bonding, as well as advanced site-specific methods that integrate enzyme engineering and bio-orthogonal chemistry, were discussed. These techniques enable precise control over enzyme orientation and interaction with carriers, optimizing catalytic activity and reusability. Key findings highlight the impact of immobilization on improving enzyme performance under various operational conditions and its role in reducing process costs through enhanced stability and recyclability. The review presents numerous practical applications of immobilized enzymes, including their use in the pharmaceutical industry for drug synthesis, in the food sector for dairy processing, and in environmental biotechnology for wastewater treatment and dye degradation. Despite the significant advantages, challenges such as activity loss due to conformational changes and mass transfer limitations remain, necessitating tailored immobilization protocols for specific applications. The integration of immobilization with modern biotechnological advancements, such as site-directed mutagenesis and recombinant DNA technology, offers a promising pathway for developing robust, efficient, and sustainable biocatalytic systems. This comprehensive guide aims to support researchers and industries in selecting and optimizing immobilization techniques for diverse applications in pharmaceuticals, food processing, and fine chemicals.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040954
Mingxiu Jiang, Yuanyuan Yang, Jiawei Feng, Zhaopan Wang, Wei Deng

Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core-shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol-gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol-gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol-gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol-gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures.

{"title":"Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures.","authors":"Mingxiu Jiang, Yuanyuan Yang, Jiawei Feng, Zhaopan Wang, Wei Deng","doi":"10.3390/molecules30040954","DOIUrl":"https://doi.org/10.3390/molecules30040954","url":null,"abstract":"<p><p>Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core-shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol-gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol-gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol-gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol-gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Identification of Physalis alkekengi L. Polysaccharides.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040949
Yun Zhang, Xuan Wen, Neng Xu, Hongyan Fu, Ge Lv, Wenjie Yu, Lina Wei, Lin Zhao

Physalis alkekengi L. fruit polysaccharides can reduce blood sugar, regulate blood lipids, and improve intestinal flora structure. However, the specific polysaccharide components exerting these effects are unclear. In this study, we extracted, separated, purified, and characterized the P. alkekengi polysaccharides Phy-1a, Phy-1b, and Phy-1c. Ion chromatography showed that Phy-1b was mainly composed of rhamnose, arabinose, galactose, glucose, and xylose at a molar ratio of 3.0:19.8:47.5:20.9:8.8, and Phy-1c was composed of rhamnose, arabinose, galactose, glucose, xylose, mannose, ribose Galactosamine hydrochloride and Glucosamine hydrochloride at a molar ratio of 10.4:7.9:22.8:30.5:4.6:4.4:19.4:3.9:5.8. Neither of these polysaccharides contained uronic acid, indicating their neutral property. Methylation analysis and nuclear magnetic resonance spectroscopy showed that Phy-1b was mainly composed of terminal sugars (1-Araf); 1,5-Araf; 1,4-Xylp; 1-Glcp; 2,4-Rhap; 1,3-Glcp; 1,4-Galp; 1,4-Glcp; 1,3-Galp; 1,6-Glcp; 1,3,6-Glcp; and 1,4,6-Galp at a molar ratio of 5.2:7.1:7.8:13.7:6.3:11.2:7.0:16.3:7.4:6.0:6.8:5.3, with the main chain being →2)-α-L-Rhap-(1→4)-β-d-Galp-(1→4)-β-d-Galp-(1→[3)-β-d-Glcp-(1]2→3)-β-d-Glcp-(1→[4)-β-d-Glcp-(1]2→ and the branched chains being β-L-Araf-(1→5)-β-L-Araf-(1→, β-d-Glcp-(1→4)-β-d-Xylp-(1→ 3)-β-d-Galp-(1→, and β-d-Glcp-(1→6)-β-d-Glcp-(1→. The three fragments, respectively, pass through the O-4 key of →2,4)-α-l-Rhap-(1→, O-6 key of →4,6)-β-d-Galp-(1→, and O-6 of →3,6)-β-d-Glcp-(1→ connected to the main chain. These results provide a reference for enhancing the utilization value of P. alkekengi resources to promote its high-value and efficient processing.

{"title":"Structural Identification of <i>Physalis alkekengi</i> L. Polysaccharides.","authors":"Yun Zhang, Xuan Wen, Neng Xu, Hongyan Fu, Ge Lv, Wenjie Yu, Lina Wei, Lin Zhao","doi":"10.3390/molecules30040949","DOIUrl":"https://doi.org/10.3390/molecules30040949","url":null,"abstract":"<p><p><i>Physalis alkekengi</i> L. fruit polysaccharides can reduce blood sugar, regulate blood lipids, and improve intestinal flora structure. However, the specific polysaccharide components exerting these effects are unclear. In this study, we extracted, separated, purified, and characterized the <i>P. alkekengi</i> polysaccharides Phy-1a, Phy-1b, and Phy-1c. Ion chromatography showed that Phy-1b was mainly composed of rhamnose, arabinose, galactose, glucose, and xylose at a molar ratio of 3.0:19.8:47.5:20.9:8.8, and Phy-1c was composed of rhamnose, arabinose, galactose, glucose, xylose, mannose, ribose Galactosamine hydrochloride and Glucosamine hydrochloride at a molar ratio of 10.4:7.9:22.8:30.5:4.6:4.4:19.4:3.9:5.8. Neither of these polysaccharides contained uronic acid, indicating their neutral property. Methylation analysis and nuclear magnetic resonance spectroscopy showed that Phy-1b was mainly composed of terminal sugars (1-Araf); 1,5-Araf; 1,4-Xylp; 1-Glcp; 2,4-Rhap; 1,3-Glcp; 1,4-Galp; 1,4-Glcp; 1,3-Galp; 1,6-Glcp; 1,3,6-Glcp; and 1,4,6-Galp at a molar ratio of 5.2:7.1:7.8:13.7:6.3:11.2:7.0:16.3:7.4:6.0:6.8:5.3, with the main chain being →2)-α-L-Rhap-(1→4)-β-d-Galp-(1→4)-β-d-Galp-(1→[3)-β-d-Glcp-(1]2→3)-β-d-Glcp-(1→[4)-β-d-Glcp-(1]2→ and the branched chains being β-L-Araf-(1→5)-β-L-Araf-(1→, β-d-Glcp-(1→4)-β-d-Xylp-(1→ 3)-β-d-Galp-(1→, and β-d-Glcp-(1→6)-β-d-Glcp-(1→. The three fragments, respectively, pass through the O-4 key of →2,4)-α-l-Rhap-(1→, O-6 key of →4,6)-β-d-Galp-(1→, and O-6 of →3,6)-β-d-Glcp-(1→ connected to the main chain. These results provide a reference for enhancing the utilization value of <i>P. alkekengi</i> resources to promote its high-value and efficient processing.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Environmental Interactions Shape the Volatile Compounds of Agarwood Oils Extracted from Aquilaria sinensis Using Supercritical Carbon Dioxide.
IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.3390/molecules30040945
Wenxian Zhang, Sizhu Qian, Dehuai Wu, Qiaoling Yan, Jen-Ping Chung, Yongmei Jiang

Aquilaria spp. are a highly valuable plant species found in the Chinese herbal medicine and agarwood fragrance supplement industries for fumigation, combustion and perfume. The phytochemical composition of agarwood oils (extracts) was derived from Aquilaria sinensis and its subspecies 'Qi-Nan' using supercritical CO2 extraction technology. Gas chromatography connected with a mass spectrometry apparatus was employed for qualitative and quantitative analyses. Comparing the agarwood oils from six planting areas, 12 common components were obtained, among which sesquiterpenes and chromones had the highest relative content. Genetic and environmental factors had the greatest impact on the three chromones, especially on 2-phenyl-4H-chromen-4-one. According to the PCA and PLS-DA models, the 'Qi-Nan' was derived from a variety selected from the native A. sinensis, and the difference in the volatile components was able to indirectly prove that it was genetically heterogeneous with the native A. sinensis. Using the 73 components obtained from GC-MS analysis, the VIP values and S-plots were generated using the OPLS-DA model. Seven components with VIP values > 1.0 were selected from two groups of agarwood oils of the native A. sinensis and 'Qi-Nan' subspecies. In addition, by analyzing 12 common components, the differential components with VIP values > 1 were 2-phenyl-4H-chromen-4-one and 2-(4-methoxyphenethyl)-4H-chromen-4-one. Chromones were the main component of agarwood oils extracted by supercritical CO2, and 2-phenyl-4H-chromen-4-one could be used as a volatile marker, especially in the 'Qi-Nan' subspecies, where this marker exhibited more prominent characteristics.

{"title":"Dynamic Environmental Interactions Shape the Volatile Compounds of Agarwood Oils Extracted from <i>Aquilaria sinensis</i> Using Supercritical Carbon Dioxide.","authors":"Wenxian Zhang, Sizhu Qian, Dehuai Wu, Qiaoling Yan, Jen-Ping Chung, Yongmei Jiang","doi":"10.3390/molecules30040945","DOIUrl":"https://doi.org/10.3390/molecules30040945","url":null,"abstract":"<p><p><i>Aquilaria</i> spp. are a highly valuable plant species found in the Chinese herbal medicine and agarwood fragrance supplement industries for fumigation, combustion and perfume. The phytochemical composition of agarwood oils (extracts) was derived from <i>Aquilaria sinensis</i> and its subspecies 'Qi-Nan' using supercritical CO<sub>2</sub> extraction technology. Gas chromatography connected with a mass spectrometry apparatus was employed for qualitative and quantitative analyses. Comparing the agarwood oils from six planting areas, 12 common components were obtained, among which sesquiterpenes and chromones had the highest relative content. Genetic and environmental factors had the greatest impact on the three chromones, especially on 2-phenyl-4<i>H</i>-chromen-4-one. According to the PCA and PLS-DA models, the 'Qi-Nan' was derived from a variety selected from the native <i>A. sinensis</i>, and the difference in the volatile components was able to indirectly prove that it was genetically heterogeneous with the native <i>A. sinensis</i>. Using the 73 components obtained from GC-MS analysis, the VIP values and S-plots were generated using the OPLS-DA model. Seven components with VIP values > 1.0 were selected from two groups of agarwood oils of the native <i>A. sinensis</i> and 'Qi-Nan' subspecies. In addition, by analyzing 12 common components, the differential components with VIP values > 1 were 2-phenyl-4<i>H</i>-chromen-4-one and 2-(4-methoxyphenethyl)-4<i>H</i>-chromen-4-one. Chromones were the main component of agarwood oils extracted by supercritical CO<sub>2</sub>, and 2-phenyl-4<i>H</i>-chromen-4-one could be used as a volatile marker, especially in the 'Qi-Nan' subspecies, where this marker exhibited more prominent characteristics.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecules
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1