Pub Date : 2024-12-19Epub Date: 2024-11-13DOI: 10.1128/msphere.00265-24
Stephanie V Trefry, Mayanka Awasthi, Christy N Raney, Amy L Cregger, Chase A Gonzales, Brittney L Layton, Robert N Enamorado, Nelson A Martinez, Deborah S Gohegan, Masoudeh Masoud-Bahnamiri, Jennifer Y Cho, Dawn M Myscofski, Tinoush Moulaei, Natasza E Ziółkowska, Scott J Goebel, Seth Lederman, Sina Bavari, Farooq Nasar
Recombinant chimeric horsepox virus (TNX-801) is a preclinical vaccine in development against mpox and smallpox. In this report, we investigated the potential phenotypic differences in in vitro and in vivo models between TNX-801 and older vaccinia virus (VACV)-based vaccine strains (VACV-Lis and VACV-NYCBH) used in the eradication of smallpox as well as VACV-WR, VACV-IHD, and MVA. TNX-801 displayed a small plaque phenotype (~1-2 mm) in BSC-40 and Vero-E6 cells. Multi-step replication kinetics in immortalized nonhuman primate cell lines, and human primary cells from dermal and respiratory tracts yielded >10- to 100-fold lower infectious titers than the VACV strains. In addition, the infectious particle-to-genome copy ratio data suggests that TNX-801 genome packaging is ~10- to 100-fold less efficient than the VACV strains and the potential mechanism of TNX-801 attenuation is at the packaging/egress stage. Lastly, the susceptibility to VACV and TNX-801 infection of three new immunocompromised murine models (C56BL/6 Ifnar-/-, C56BL/6 Ifngr-/-, and C56BL/6 Ifnar-/-/Ifngr-/-) was investigated. VACV strains were able to produce severe disease including decrease in body weight and temperature, as well as lethality in murine models via the intraperitoneal or intranasal routes. In contrast to VACV strains, TNX-801 was unable to produce any disease in murine models. These data demonstrate that TNX-801 is >10- to 1,000-fold more attenuated compared to older VACV-based smallpox vaccine strains in human primary cell lines and immunocompromised mice.
Importance: Variola and monkeypox viruses are medically important pathogens that can cause fatal human disease. The two FDA-approved vaccines, ACAM-2000 and JYNNEOS, have important advantages and disadvantages. ACAM-2000 offers durable immunity; however, it has high adverse event rates. In contrast, JYNNEOS has a safer profile but requires two doses 4-weeks apart to achieve comparable immunity. Consequently, there is a need for vaccines offering durable immunity via single immunization with minimal adverse events. TNX-801 is a preclinical stage vaccine that can stimulate potent immunity via a single dose and provides protection against lethal mpox disease in the nonhuman primate model. Here, we show that TNX-801 is >10- to 1,000-fold attenuated in in vitro and in vivo models including human primary cells and immunocompromised murine models than vaccine strains utilized in smallpox eradication. The natural attenuation of TNX-801 and its ability to induce protective immunity via a single vaccination are promising and warrants further development.
{"title":"Recombinant chimeric horsepox virus (TNX-801) is attenuated relative to vaccinia virus strains in both <i>in vitro</i> and <i>in vivo</i> models.","authors":"Stephanie V Trefry, Mayanka Awasthi, Christy N Raney, Amy L Cregger, Chase A Gonzales, Brittney L Layton, Robert N Enamorado, Nelson A Martinez, Deborah S Gohegan, Masoudeh Masoud-Bahnamiri, Jennifer Y Cho, Dawn M Myscofski, Tinoush Moulaei, Natasza E Ziółkowska, Scott J Goebel, Seth Lederman, Sina Bavari, Farooq Nasar","doi":"10.1128/msphere.00265-24","DOIUrl":"10.1128/msphere.00265-24","url":null,"abstract":"<p><p>Recombinant chimeric horsepox virus (TNX-801) is a preclinical vaccine in development against mpox and smallpox. In this report, we investigated the potential phenotypic differences in <i>in vitro</i> and <i>in vivo</i> models between TNX-801 and older vaccinia virus (VACV)-based vaccine strains (VACV-Lis and VACV-NYCBH) used in the eradication of smallpox as well as VACV-WR, VACV-IHD, and MVA. TNX-801 displayed a small plaque phenotype (~1-2 mm) in BSC-40 and Vero-E6 cells. Multi-step replication kinetics in immortalized nonhuman primate cell lines, and human primary cells from dermal and respiratory tracts yielded >10- to 100-fold lower infectious titers than the VACV strains. In addition, the infectious particle-to-genome copy ratio data suggests that TNX-801 genome packaging is ~10- to 100-fold less efficient than the VACV strains and the potential mechanism of TNX-801 attenuation is at the packaging/egress stage. Lastly, the susceptibility to VACV and TNX-801 infection of three new immunocompromised murine models (C56BL/6 <i>Ifnar</i><sup>-/-</sup>, C56BL/6 <i>Ifngr</i><sup>-/-</sup>, and C56BL/6 <i>Ifnar</i><sup>-/-</sup>/<i>Ifngr</i><sup>-/-</sup>) was investigated. VACV strains were able to produce severe disease including decrease in body weight and temperature, as well as lethality in murine models via the intraperitoneal or intranasal routes. In contrast to VACV strains, TNX-801 was unable to produce any disease in murine models. These data demonstrate that TNX-801 is >10- to 1,000-fold more attenuated compared to older VACV-based smallpox vaccine strains in human primary cell lines and immunocompromised mice.</p><p><strong>Importance: </strong>Variola and monkeypox viruses are medically important pathogens that can cause fatal human disease. The two FDA-approved vaccines, ACAM-2000 and JYNNEOS, have important advantages and disadvantages. ACAM-2000 offers durable immunity; however, it has high adverse event rates. In contrast, JYNNEOS has a safer profile but requires two doses 4-weeks apart to achieve comparable immunity. Consequently, there is a need for vaccines offering durable immunity via single immunization with minimal adverse events. TNX-801 is a preclinical stage vaccine that can stimulate potent immunity via a single dose and provides protection against lethal mpox disease in the nonhuman primate model. Here, we show that TNX-801 is >10- to 1,000-fold attenuated in <i>in vitro</i> and <i>in vivo</i> models including human primary cells and immunocompromised murine models than vaccine strains utilized in smallpox eradication. The natural attenuation of TNX-801 and its ability to induce protective immunity via a single vaccination are promising and warrants further development.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0026524"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-19DOI: 10.1128/msphere.00523-24
Samuel Steiner, Craig R Roy
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates to high numbers in an acidified lysosome-derived vacuole. Intracellular replication requires the Dot/Icm type IVB secretion system, which translocates over 100 different effector proteins into the host cell. Screens employing random transposon mutagenesis have identified several C. burnetii effectors that play an important role in intracellular replication; however, the difficulty in conducting directed mutagenesis has been a barrier to the systematic analysis of effector mutants and to the construction of double mutants to assess epistatic interactions between effectors. Here, two CRISPR-Cas9 technology-based approaches were developed to study C. burnetii phenotypes resulting from targeted gene disruptions. CRISPRi was used to silence gene expression and demonstrated that silencing of effectors or Dot/Icm system components resulted in phenotypes similar to those of transposon insertion mutants. A CRISPR-Cas9-mediated cytosine base editing protocol was developed to generate targeted loss-of-function mutants through the introduction of premature stop codons into C. burnetii genes. Cytosine base editing successfully generated double mutants in a single step. A double mutant deficient in both cig57 and cig2 had a robust and additive intracellular replication defect when compared to either single mutant, which is consistent with Cig57 and Cig2 functioning in independent pathways that both contribute to a vacuole that supports C. burnetii replication. Thus, CRISPR-Cas9-based technologies expand the genetic toolbox for C. burnetii and will facilitate genetic studies aimed at investigating the mechanisms this pathogen uses to replicate inside host cells.
Importance: Understanding the genetic mechanisms that enable C. burnetii to replicate in mammalian host cells has been hampered by the difficulty in making directed mutations. Here, a reliable and efficient system for generating targeted loss-of-function mutations in C. burnetii using a CRISPR-Cas9-assisted base editing approach is described. This technology was applied to make double mutants in C. burnetii that enabled the genetic analysis of two genes that play independent roles in promoting the formation of vacuoles that support intracellular replication. This advance will accelerate the discovery of mechanisms important for C. burnetii host infection and disease.
{"title":"CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in <i>Coxiella burnetii</i>.","authors":"Samuel Steiner, Craig R Roy","doi":"10.1128/msphere.00523-24","DOIUrl":"10.1128/msphere.00523-24","url":null,"abstract":"<p><p><i>Coxiella burnetii</i> is an obligate intracellular bacterial pathogen that replicates to high numbers in an acidified lysosome-derived vacuole. Intracellular replication requires the Dot/Icm type IVB secretion system, which translocates over 100 different effector proteins into the host cell. Screens employing random transposon mutagenesis have identified several <i>C. burnetii</i> effectors that play an important role in intracellular replication; however, the difficulty in conducting directed mutagenesis has been a barrier to the systematic analysis of effector mutants and to the construction of double mutants to assess epistatic interactions between effectors. Here, two CRISPR-Cas9 technology-based approaches were developed to study <i>C. burnetii</i> phenotypes resulting from targeted gene disruptions. CRISPRi was used to silence gene expression and demonstrated that silencing of effectors or Dot/Icm system components resulted in phenotypes similar to those of transposon insertion mutants. A CRISPR-Cas9-mediated cytosine base editing protocol was developed to generate targeted loss-of-function mutants through the introduction of premature stop codons into <i>C. burnetii</i> genes. Cytosine base editing successfully generated double mutants in a single step. A double mutant deficient in both <i>cig57</i> and <i>cig2</i> had a robust and additive intracellular replication defect when compared to either single mutant, which is consistent with Cig57 and Cig2 functioning in independent pathways that both contribute to a vacuole that supports <i>C. burnetii</i> replication. Thus, CRISPR-Cas9-based technologies expand the genetic toolbox for <i>C. burnetii</i> and will facilitate genetic studies aimed at investigating the mechanisms this pathogen uses to replicate inside host cells.</p><p><strong>Importance: </strong>Understanding the genetic mechanisms that enable <i>C. burnetii</i> to replicate in mammalian host cells has been hampered by the difficulty in making directed mutations. Here, a reliable and efficient system for generating targeted loss-of-function mutations in <i>C. burnetii</i> using a CRISPR-Cas9-assisted base editing approach is described. This technology was applied to make double mutants in <i>C. burnetii</i> that enabled the genetic analysis of two genes that play independent roles in promoting the formation of vacuoles that support intracellular replication. This advance will accelerate the discovery of mechanisms important for <i>C. burnetii</i> host infection and disease.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0052324"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-20DOI: 10.1128/msphere.00693-24
Anna-Lisa E Lawrence, Ryan P Berger, David R Hill, Sha Huang, Veda K Yadagiri, Brooke Bons, Courtney Fields, Jason S Knight, Christiane E Wobus, Jason R Spence, Vincent B Young, Basel H Abuaita, Mary X O'Riordan
Nontyphoidal strains of Salmonella enterica are a major cause of foodborne illnesses, and infection with these bacteria results in inflammatory gastroenteritis. Polymorphonuclear leukocytes (PMNs), also known as neutrophils, are a dominant immune cell type found at the site of infection in Salmonella-infected individuals, but how they regulate infection outcome is not well understood. Here, we used a co-culture model of primary human PMNs and human intestinal organoids to probe the role of PMNs during infection with two of the most prevalent Salmonella serovars: Salmonella enterica serovar Enteritidis and Typhimurium. Using a transcriptomics approach, we identified a dominant role for PMNs in mounting differential immune responses including production of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. We also identified specific gene sets that were induced by PMNs in response to Enteritidis or Typhimurium infection. By comparing host responses to these serovars, we uncovered differential regulation of host metabolic pathways particularly induction of cholesterol biosynthetic pathways during Typhimurium infection and suppression of RNA metabolism during Enteritidis infection. Together, these findings provide insight into the role of human PMNs in modulating different host responses to pathogens that cause similar disease in humans.IMPORTANCENontyphoidal serovars of Salmonella enterica are known to induce robust recruitment of polymorphonuclear leukocytes (PMNs) in the gut during early stages of infection, but the specific role of PMNs in regulating infection outcome of different serovars is poorly understood. Due to differences in human infection progression compared to small animal models, characterizing the role of PMNs during infection has been challenging. Here, we used a co-culture model of human intestinal organoids with human primary PMNs to study the role of PMNs during infection of human intestinal epithelium. Using a transcriptomics approach, we define PMN-dependent reprogramming of the host response to Salmonella, establishing a clear role in amplifying pro-inflammatory gene expression. Additionally, the host response driven by PMNs differed between two similar nontyphoidal Salmonella serovars. These findings highlight the importance of building more physiological infection models to replicate human infection conditions to study host responses specific to individual pathogens.
{"title":"Neutrophil prime unique transcriptional responses in intestinal organoids during infection with nontyphoidal <i>Salmonella enterica</i> serovars.","authors":"Anna-Lisa E Lawrence, Ryan P Berger, David R Hill, Sha Huang, Veda K Yadagiri, Brooke Bons, Courtney Fields, Jason S Knight, Christiane E Wobus, Jason R Spence, Vincent B Young, Basel H Abuaita, Mary X O'Riordan","doi":"10.1128/msphere.00693-24","DOIUrl":"10.1128/msphere.00693-24","url":null,"abstract":"<p><p>Nontyphoidal strains of <i>Salmonella enterica</i> are a major cause of foodborne illnesses, and infection with these bacteria results in inflammatory gastroenteritis. Polymorphonuclear leukocytes (PMNs), also known as neutrophils, are a dominant immune cell type found at the site of infection in <i>Salmonella-</i>infected individuals, but how they regulate infection outcome is not well understood. Here, we used a co-culture model of primary human PMNs and human intestinal organoids to probe the role of PMNs during infection with two of the most prevalent <i>Salmonella</i> serovars: <i>Salmonella enterica</i> serovar Enteritidis and Typhimurium. Using a transcriptomics approach, we identified a dominant role for PMNs in mounting differential immune responses including production of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. We also identified specific gene sets that were induced by PMNs in response to Enteritidis or Typhimurium infection. By comparing host responses to these serovars, we uncovered differential regulation of host metabolic pathways particularly induction of cholesterol biosynthetic pathways during Typhimurium infection and suppression of RNA metabolism during Enteritidis infection. Together, these findings provide insight into the role of human PMNs in modulating different host responses to pathogens that cause similar disease in humans.IMPORTANCENontyphoidal serovars of <i>Salmonella enterica</i> are known to induce robust recruitment of polymorphonuclear leukocytes (PMNs) in the gut during early stages of infection, but the specific role of PMNs in regulating infection outcome of different serovars is poorly understood. Due to differences in human infection progression compared to small animal models, characterizing the role of PMNs during infection has been challenging. Here, we used a co-culture model of human intestinal organoids with human primary PMNs to study the role of PMNs during infection of human intestinal epithelium. Using a transcriptomics approach, we define PMN-dependent reprogramming of the host response to <i>Salmonella</i>, establishing a clear role in amplifying pro-inflammatory gene expression. Additionally, the host response driven by PMNs differed between two similar nontyphoidal <i>Salmonella</i> serovars. These findings highlight the importance of building more physiological infection models to replicate human infection conditions to study host responses specific to individual pathogens.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0069324"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-29DOI: 10.1128/msphere.00863-24
Anthony E Kincaid, Melissa D Clouse, Shawn M Magrum, Jason C Bartz
Inhalation of prions into the nasal cavity is an efficient route of infection. Following inhalation of infectious prions, animals develop disease with a similar incubation period compared with per os exposure, but with greater efficiency. To identify the reason for this increased efficiency, we identified neural structures that uniquely innervate the nasal cavity and neural structures known to mediate neuroinvasion following oral infection and used immunohistochemistry to determine the temporal and spatial accumulation of prions from hamster tissue sections containing cell bodies and axons at 2-week intervals following prion exposure. Prions were identified in the trigeminal ganglion, the spinal trigeminal tract in the brainstem, the intermediolateral cell column of the thoracic spinal cord, and the dorsal motor nucleus of the vagus/solitary nucleus complex months prior to detection of prions in the olfactory bulb or superior cervical ganglion. These results indicate that the trigeminal nerve, but not the olfactory nerve or sympathetic nerves, are involved in neuroinvasion following inhalation of prions into the nasal cavity. The detection of prions in the intermediolateral cell column of the thoracic spinal cord and dorsal motor nucleus of the vagus nerve 14 weeks following inhalation is consistent with inoculum crossing the alimentary wall and infecting the enteric nervous system via this route of infection. Neuroinvasion via the trigeminal nerve, in combination with entry into the central nervous system via autonomic innervation of the enteric nervous system, may contribute to increased efficiency of nasal cavity exposure to prions compared with per os exposure in hamsters.IMPORTANCEInhalation of prions into the nasal cavity is thought to be a route of infection in naturally acquired prion diseases. Experimental studies indicate that inhalation of prions is up to two orders of magnitude more efficient compared with ingestion. The mechanisms underlying this observation are poorly understood. We found a previously unreported direct route of neuroinvasion from the nasal cavity to the nervous system. Importantly, the peripheral ganglia involved may be a useful tissue to sample for prion diagnostics. Overall, identification of a new route of neuroinvasion following prion infection may provide an anatomical basis to explain the increased efficiency of infection following prion inhalation.
{"title":"Direct prion neuroinvasion following inhalation into the nasal cavity.","authors":"Anthony E Kincaid, Melissa D Clouse, Shawn M Magrum, Jason C Bartz","doi":"10.1128/msphere.00863-24","DOIUrl":"10.1128/msphere.00863-24","url":null,"abstract":"<p><p>Inhalation of prions into the nasal cavity is an efficient route of infection. Following inhalation of infectious prions, animals develop disease with a similar incubation period compared with per os exposure, but with greater efficiency. To identify the reason for this increased efficiency, we identified neural structures that uniquely innervate the nasal cavity and neural structures known to mediate neuroinvasion following oral infection and used immunohistochemistry to determine the temporal and spatial accumulation of prions from hamster tissue sections containing cell bodies and axons at 2-week intervals following prion exposure. Prions were identified in the trigeminal ganglion, the spinal trigeminal tract in the brainstem, the intermediolateral cell column of the thoracic spinal cord, and the dorsal motor nucleus of the vagus/solitary nucleus complex months prior to detection of prions in the olfactory bulb or superior cervical ganglion. These results indicate that the trigeminal nerve, but not the olfactory nerve or sympathetic nerves, are involved in neuroinvasion following inhalation of prions into the nasal cavity. The detection of prions in the intermediolateral cell column of the thoracic spinal cord and dorsal motor nucleus of the vagus nerve 14 weeks following inhalation is consistent with inoculum crossing the alimentary wall and infecting the enteric nervous system via this route of infection. Neuroinvasion via the trigeminal nerve, in combination with entry into the central nervous system via autonomic innervation of the enteric nervous system, may contribute to increased efficiency of nasal cavity exposure to prions compared with per os exposure in hamsters.IMPORTANCEInhalation of prions into the nasal cavity is thought to be a route of infection in naturally acquired prion diseases. Experimental studies indicate that inhalation of prions is up to two orders of magnitude more efficient compared with ingestion. The mechanisms underlying this observation are poorly understood. We found a previously unreported direct route of neuroinvasion from the nasal cavity to the nervous system. Importantly, the peripheral ganglia involved may be a useful tissue to sample for prion diagnostics. Overall, identification of a new route of neuroinvasion following prion infection may provide an anatomical basis to explain the increased efficiency of infection following prion inhalation.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0086324"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-29DOI: 10.1128/msphere.00731-24
Anna Schumann, Ahmed Gaballa, Hyojik Yang, Di Yu, Robert K Ernst, Martin Wiedmann
Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (mcr) alleles (mcr-1, -3, -9), one intrinsic pet (eptA), and two mcr-like genes (petB, petC) in Escherichia coli. Using an isogenic expression system, we show that mcr-1 and mcr-3 confer similar phenotypes of decreased colistin susceptibility with low fitness costs. mcr-9, which is phylogenetically closely related to mcr-3, and eptA only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far.
Importance: Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of mcr genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in Escherichia coli and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria.
{"title":"Site-selective modifications by lipid A phosphoethanolamine transferases linked to colistin resistance and bacterial fitness.","authors":"Anna Schumann, Ahmed Gaballa, Hyojik Yang, Di Yu, Robert K Ernst, Martin Wiedmann","doi":"10.1128/msphere.00731-24","DOIUrl":"10.1128/msphere.00731-24","url":null,"abstract":"<p><p>Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (<i>mcr</i>) alleles (<i>mcr-1</i>, <i>-3</i>, <i>-9</i>), one intrinsic <i>pet</i> (<i>eptA</i>), and two <i>mcr</i>-like genes (<i>petB</i>, <i>petC</i>) in <i>Escherichia coli</i>. Using an isogenic expression system, we show that <i>mcr-1</i> and <i>mcr-3</i> confer similar phenotypes of decreased colistin susceptibility with low fitness costs. <i>mcr-9</i>, which is phylogenetically closely related to <i>mcr-3</i>, and <i>eptA</i> only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far.</p><p><strong>Importance: </strong>Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of <i>mcr</i> genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in <i>Escherichia coli</i> and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0073124"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-27DOI: 10.1128/msphere.00910-24
Yaling Zhang, Shengwei Gong, Kang Xiong, Xiangtai Yu, Xinreng Mo, Chang Su, Yang Lu
Candida glabrata is an opportunistic human fungal pathogen that causes superficial mucosal and life-threatening bloodstream infections in immunocompromised individuals. Remodeling in cell wall components has been extensively exploited by fungal pathogens to adapt to host-derived stresses, as well as immune evasion. How this process contributes to C. glabrata pathogenicity is less understood. Here, we applied RNA sequencing and an in vivo invasive infection model to elucidate the prompt response of C. glabrata during infection. Fungal transcriptomes show a dramatic alteration in the expression of Srp1/Tip1-family cell wall structural proteins during systemic infection. Deletion of all six genes in this family (TIR2-5 and AWP6-7) that are upregulated during infection leads to a significantly lower fungal burden in organs, as well as an attenuated virulence in the dextran sulfate sodium-induced colitis model. The tir2-5 awp6-7 sextuple mutant does not display any defect in response to host-derived stresses. Rather, deletion of all these six genes results in a lower cell surface exposure of an adhesin Epa1, which could contribute to its reduced adhesion to epithelial cells and cytotoxicity, as well as attenuated virulence. Our study reveals that cell wall remodeling triggered by the alteration in the expression of structural proteins is a key virulence attribute in C. glabrata that facilitates this fungus adhering to host cells and persisting in organs.IMPORTANCECandida glabrata is one of the most frequent causes of candidiasis after Candida albicans. While C. albicans has been extensively studied, the mechanisms of infection and invasion of C. glabrata have not been fully elucidated. Using an infection model of systemic candidiasis and RNA sequencing, we show that there is a dramatic change in the expression of Srp1/Tip1-family genes during infection. Deletion of all six Srp1/Tip1-family genes that are upregulated during infection decreases the amount of cell wall-localized Epa1, probably reflecting the reduced adherence to epithelial cells and attenuated virulence in the sextuple mutant. These data suggest that alterations in the expression of Srp1/Tip1-family structural proteins trigger cell wall remodeling that increases the cell surface exposure of adhesins, such as Epa1, to promote virulence. Our study provides a pathogenic mechanism associated with C. glabrata in ensuring its sustenance and survival during infection.
{"title":"An alteration in the expression of cell wall structural proteins increases cell surface exposure of adhesins to promote virulence in <i>Candida glabrata</i>.","authors":"Yaling Zhang, Shengwei Gong, Kang Xiong, Xiangtai Yu, Xinreng Mo, Chang Su, Yang Lu","doi":"10.1128/msphere.00910-24","DOIUrl":"10.1128/msphere.00910-24","url":null,"abstract":"<p><p><i>Candida glabrata</i> is an opportunistic human fungal pathogen that causes superficial mucosal and life-threatening bloodstream infections in immunocompromised individuals. Remodeling in cell wall components has been extensively exploited by fungal pathogens to adapt to host-derived stresses, as well as immune evasion. How this process contributes to <i>C. glabrata</i> pathogenicity is less understood. Here, we applied RNA sequencing and an <i>in vivo</i> invasive infection model to elucidate the prompt response of <i>C. glabrata</i> during infection. Fungal transcriptomes show a dramatic alteration in the expression of Srp1/Tip1-family cell wall structural proteins during systemic infection. Deletion of all six genes in this family (<i>TIR2-5</i> and <i>AWP6-7</i>) that are upregulated during infection leads to a significantly lower fungal burden in organs, as well as an attenuated virulence in the dextran sulfate sodium-induced colitis model. The <i>tir2-5 awp6-7</i> sextuple mutant does not display any defect in response to host-derived stresses. Rather, deletion of all these six genes results in a lower cell surface exposure of an adhesin Epa1, which could contribute to its reduced adhesion to epithelial cells and cytotoxicity, as well as attenuated virulence. Our study reveals that cell wall remodeling triggered by the alteration in the expression of structural proteins is a key virulence attribute in <i>C. glabrata</i> that facilitates this fungus adhering to host cells and persisting in organs.IMPORTANCE<i>Candida glabrata</i> is one of the most frequent causes of candidiasis after <i>Candida albicans</i>. While <i>C. albicans</i> has been extensively studied, the mechanisms of infection and invasion of <i>C. glabrata</i> have not been fully elucidated. Using an infection model of systemic candidiasis and RNA sequencing, we show that there is a dramatic change in the expression of Srp1/Tip1-family genes during infection. Deletion of all six Srp1/Tip1-family genes that are upregulated during infection decreases the amount of cell wall-localized Epa1, probably reflecting the reduced adherence to epithelial cells and attenuated virulence in the sextuple mutant. These data suggest that alterations in the expression of Srp1/Tip1-family structural proteins trigger cell wall remodeling that increases the cell surface exposure of adhesins, such as Epa1, to promote virulence. Our study provides a pathogenic mechanism associated with <i>C. glabrata</i> in ensuring its sustenance and survival during infection.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0091024"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-06DOI: 10.1128/msphere.00868-24
Allen Choi, Kevin Dong, Emily Williams, Lindsey Pia, Jordan Batagower, Paige Bending, Iris Shin, Daniel I Peters, Justin R Kaspar
{"title":"Erratum for Choi et al., \"Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci\".","authors":"Allen Choi, Kevin Dong, Emily Williams, Lindsey Pia, Jordan Batagower, Paige Bending, Iris Shin, Daniel I Peters, Justin R Kaspar","doi":"10.1128/msphere.00868-24","DOIUrl":"10.1128/msphere.00868-24","url":null,"abstract":"","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0086824"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-14DOI: 10.1128/msphere.00777-24
Jianli Tang, Shuaiyong Wang, Jianmei Tang, Jinming Li
Porcine epidemic diarrhea virus (PEDV), the major causative pathogen of porcine epidemic diarrhea, poses a severe threat to the swine industry, particularly affecting neonatal piglets. Maternal milk-derived IgA antibody is crucial for protecting piglets from PEDV infection. Despite the effectiveness of current intramuscularly administered PEDV vaccines in inducing strong systemic immune responses, their ability to generate high levels of maternal milk IgA is limited. This study explores the potential of Astragalus polysaccharide (APS) to enhance PEDV vaccine efficacy, specifically focusing on maternal milk IgA levels. We first evaluated anti-PEDV antibody levels in the blood and colostrum of sows vaccinated with PEDV or subjected to feedback feeding. Our results indicated that while vaccination induced robust serum PEDV-specific IgG and IgA, milk IgA levels were lower compared to the feedback group. To address this limitation, APS was administered orally to sows before PEDV vaccination. APS supplementation significantly increased both serum and milk PEDV-specific IgA levels and enhanced cellular immune responses, as evidenced by elevated cytokine levels. Further analysis demonstrated that APS improved intestinal immune function and homeostasis in piglets. Overall, APS supplementation proved to be an effective immune booster, enhancing PEDV vaccine-induced mucosal immunity and providing a promising strategy for improving maternal immunity and piglet protection against PEDV.
Importance: This study highlights the limitations of current porcine epidemic diarrhea virus (PEDV) vaccines in inducing sufficient maternal milk IgA, which is crucial for protecting neonatal piglets. By supplementing Astragalus polysaccharide (APS) into the vaccination regimen, we demonstrated a significant enhancement in milk PEDV-specific IgA levels, as well as improved cellular immune responses. APS also bolstered intestinal immune function and homeostasis in piglets. These findings suggest that APS supplementation could serve as an immune booster to enhance maternal immunity, offering a promising approach to better protect piglets against PEDV.
猪流行性腹泻病毒(PEDV)是猪流行性腹泻的主要病原体,对养猪业构成严重威胁,尤其影响新生仔猪。母乳中的 IgA 抗体对保护仔猪免受 PEDV 感染至关重要。尽管目前肌肉注射的 PEDV 疫苗能有效诱导强烈的全身免疫反应,但它们产生高水平母乳 IgA 的能力有限。本研究探讨了黄芪多糖(APS)提高 PEDV 疫苗疗效的潜力,尤其关注母体乳汁 IgA 水平。我们首先评估了接种 PEDV 疫苗或进行反馈饲喂的母猪血液和初乳中的抗 PEDV 抗体水平。我们的结果表明,虽然接种疫苗可诱导强效的血清 PEDV 特异性 IgG 和 IgA,但与反馈组相比,母乳中的 IgA 水平较低。为了解决这个问题,我们在注射 PEDV 疫苗前给母猪口服了 APS。补充 APS 后,血清和乳汁中的 PEDV 特异性 IgA 水平均明显提高,细胞因子水平升高也证明了这一点。进一步的分析表明,APS 改善了仔猪的肠道免疫功能和平衡。总之,补充 APS 被证明是一种有效的免疫增强剂,可增强 PEDV 疫苗诱导的粘膜免疫,为提高母体免疫力和仔猪对 PEDV 的保护提供了一种有前途的策略:本研究强调了当前猪流行性腹泻病毒(PEDV)疫苗在诱导足够的母乳 IgA 方面的局限性,而母乳 IgA 对保护新生仔猪至关重要。通过在疫苗接种方案中添加黄芪多糖(APS),我们证明了乳汁中 PEDV 特异性 IgA 水平的显著提高以及细胞免疫反应的改善。APS 还能增强仔猪的肠道免疫功能和平衡。这些研究结果表明,补充 APS 可作为增强母体免疫力的免疫增强剂,为更好地保护仔猪免受 PEDV 感染提供了一种可行的方法。
{"title":"Astragalus polysaccharide enhances maternal mucosal immunity against PEDV.","authors":"Jianli Tang, Shuaiyong Wang, Jianmei Tang, Jinming Li","doi":"10.1128/msphere.00777-24","DOIUrl":"10.1128/msphere.00777-24","url":null,"abstract":"<p><p>Porcine epidemic diarrhea virus (PEDV), the major causative pathogen of porcine epidemic diarrhea, poses a severe threat to the swine industry, particularly affecting neonatal piglets. Maternal milk-derived IgA antibody is crucial for protecting piglets from PEDV infection. Despite the effectiveness of current intramuscularly administered PEDV vaccines in inducing strong systemic immune responses, their ability to generate high levels of maternal milk IgA is limited. This study explores the potential of Astragalus polysaccharide (APS) to enhance PEDV vaccine efficacy, specifically focusing on maternal milk IgA levels. We first evaluated anti-PEDV antibody levels in the blood and colostrum of sows vaccinated with PEDV or subjected to feedback feeding. Our results indicated that while vaccination induced robust serum PEDV-specific IgG and IgA, milk IgA levels were lower compared to the feedback group. To address this limitation, APS was administered orally to sows before PEDV vaccination. APS supplementation significantly increased both serum and milk PEDV-specific IgA levels and enhanced cellular immune responses, as evidenced by elevated cytokine levels. Further analysis demonstrated that APS improved intestinal immune function and homeostasis in piglets. Overall, APS supplementation proved to be an effective immune booster, enhancing PEDV vaccine-induced mucosal immunity and providing a promising strategy for improving maternal immunity and piglet protection against PEDV.</p><p><strong>Importance: </strong>This study highlights the limitations of current porcine epidemic diarrhea virus (PEDV) vaccines in inducing sufficient maternal milk IgA, which is crucial for protecting neonatal piglets. By supplementing Astragalus polysaccharide (APS) into the vaccination regimen, we demonstrated a significant enhancement in milk PEDV-specific IgA levels, as well as improved cellular immune responses. APS also bolstered intestinal immune function and homeostasis in piglets. These findings suggest that APS supplementation could serve as an immune booster to enhance maternal immunity, offering a promising approach to better protect piglets against PEDV.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0077724"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-13DOI: 10.1128/msphere.00680-24
Sidney C Davis, Joseph Cerra, Laura E Williams
Comparative genomics of predatory bacteria is important to understand their ecology and evolution and explore their potential to treat drug-resistant infections. We compared chromosomes of 18 obligate predators from phylum Bdellovibrionota (16 intraperiplasmic, two epibiotic) and 15 non-predatory bacteria. Phylogenetics of conserved single-copy genes and analysis of genome-wide average amino acid identity provide evidence for at least five Bdellovibrio species and support recent reclassifications of predatory taxa. To define shared and differential genome content, we grouped predicted protein sequences into gene clusters based on sequence similarity. Few gene clusters are shared by all 33 bacteria or all 18 predatory bacteria; however, we identified gene clusters conserved within lineages, such as intraperiplasmic Bdellovibrio, and not found in other bacteria. Many of these are predicted to function in cell envelope biogenesis, signal transduction, and other roles important for predatory lifestyles. Among intraperiplasmic Bdellovibrio, we detected high abundance of gene clusters predicted to encode transglycosylases, endopeptidases, and lysozymes, and we identified six gene clusters (amidase, L,D-transpeptidase, four transglycosylases) with evidence of recent gene duplication and gene family expansion. Focusing on peptidoglycan metabolism, we defined a suite of gene clusters that include peptidoglycan-degrading and -modifying enzymes and occur only in predatory bacteria, suggesting these proteins may have evolved activities specific to predation. Our analyses highlight key genome content differences between obligate predatory bacteria and non-predatory relatives and identify gene clusters that may encode enzymes adapted to predatory lifestyles. These lineage-specific proteins are strong candidates for functional characterization to clarify their role in predation.IMPORTANCEEvolution of predation as a bacterial lifestyle involves selective pressure on and adaptation of enzymes that contribute to killing and digestion of prey bacteria, in some cases from within the prey itself. Such enzymes are a hallmark of obligate predatory bacteria belonging to phylum Bdellovibrionota, which includes the well-studied predator Bdellovibrio. By comparing protein sequences of obligate predatory bacteria and their non-predatory relatives, we define key genome content differences that distinguish bacterial predators and identify lineage-specific enzymes that may have evolved unique activities due to selective pressures related to a predatory lifestyle. In addition to providing insights into the ecology and evolution of predatory bacteria, comparative genomics studies, like this, can inform efforts to develop predatory bacteria and/or their enzymes as potential biocontrol agents to combat drug-resistant bacterial infections.
{"title":"Comparative genomics of obligate predatory bacteria belonging to phylum <i>Bdellovibrionota</i> highlights distribution and predicted functions of lineage-specific protein families.","authors":"Sidney C Davis, Joseph Cerra, Laura E Williams","doi":"10.1128/msphere.00680-24","DOIUrl":"10.1128/msphere.00680-24","url":null,"abstract":"<p><p>Comparative genomics of predatory bacteria is important to understand their ecology and evolution and explore their potential to treat drug-resistant infections. We compared chromosomes of 18 obligate predators from phylum <i>Bdellovibrionota</i> (16 intraperiplasmic, two epibiotic) and 15 non-predatory bacteria. Phylogenetics of conserved single-copy genes and analysis of genome-wide average amino acid identity provide evidence for at least five <i>Bdellovibrio</i> species and support recent reclassifications of predatory taxa. To define shared and differential genome content, we grouped predicted protein sequences into gene clusters based on sequence similarity. Few gene clusters are shared by all 33 bacteria or all 18 predatory bacteria; however, we identified gene clusters conserved within lineages, such as intraperiplasmic <i>Bdellovibrio</i>, and not found in other bacteria. Many of these are predicted to function in cell envelope biogenesis, signal transduction, and other roles important for predatory lifestyles. Among intraperiplasmic <i>Bdellovibrio</i>, we detected high abundance of gene clusters predicted to encode transglycosylases, endopeptidases, and lysozymes, and we identified six gene clusters (amidase, L,D-transpeptidase, four transglycosylases) with evidence of recent gene duplication and gene family expansion. Focusing on peptidoglycan metabolism, we defined a suite of gene clusters that include peptidoglycan-degrading and -modifying enzymes and occur only in predatory bacteria, suggesting these proteins may have evolved activities specific to predation. Our analyses highlight key genome content differences between obligate predatory bacteria and non-predatory relatives and identify gene clusters that may encode enzymes adapted to predatory lifestyles. These lineage-specific proteins are strong candidates for functional characterization to clarify their role in predation.IMPORTANCEEvolution of predation as a bacterial lifestyle involves selective pressure on and adaptation of enzymes that contribute to killing and digestion of prey bacteria, in some cases from within the prey itself. Such enzymes are a hallmark of obligate predatory bacteria belonging to phylum <i>Bdellovibrionota</i>, which includes the well-studied predator <i>Bdellovibrio</i>. By comparing protein sequences of obligate predatory bacteria and their non-predatory relatives, we define key genome content differences that distinguish bacterial predators and identify lineage-specific enzymes that may have evolved unique activities due to selective pressures related to a predatory lifestyle. In addition to providing insights into the ecology and evolution of predatory bacteria, comparative genomics studies, like this, can inform efforts to develop predatory bacteria and/or their enzymes as potential biocontrol agents to combat drug-resistant bacterial infections.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0068024"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19Epub Date: 2024-11-11DOI: 10.1128/msphere.00750-24
James Blauwkamp, Sushma V Ambekar, Tahir Hussain, Gunnar R Mair, Josh R Beck, Sabrina Absalon
Plasmodium parasites, the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike closed mitosis in yeast, Plasmodium berghei parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm. This results in a multinucleated organism prior to the formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here, we utilize ultrastructure expansion microscopy to investigate P. berghei nucleoporins at the single nucleus level throughout the 24-hour blood-stage replication cycle. Our findings reveal that these nucleoporins are distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, responsible for intranuclear microtubule nucleation during mitosis. By adapting the recombination-induced tag exchange system to P. berghei through a single plasmid tagging system, which includes the tagging plasmid as well as the Cre recombinase, we provide evidence of NPC formation dynamics, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of P. berghei parasites.
Importance: Malaria, caused by Plasmodium species, remains a critical global health challenge, with an estimated 249 million cases and over 600,000 deaths in 2022, primarily affecting children under five. Understanding the nuclear dynamics of Plasmodium parasites, particularly during their unique mitotic processes, is crucial for developing novel therapeutic strategies. Our study leverages advanced microscopy techniques, such as ultrastructure expansion microscopy, to reveal the organization and turnover of nuclear pore complexes (NPCs) during the parasite's asexual replication. By elucidating these previously unknown aspects of NPC distribution and homeostasis, we provide valuable insights into the molecular mechanisms governing parasite mitosis. These findings deepen our understanding of parasite biology and may inform future research aimed at identifying new targets for anti-malarial drug development.
{"title":"Nuclear pore complexes undergo Nup221 exchange during blood-stage asexual replication of <i>Plasmodium</i> parasites.","authors":"James Blauwkamp, Sushma V Ambekar, Tahir Hussain, Gunnar R Mair, Josh R Beck, Sabrina Absalon","doi":"10.1128/msphere.00750-24","DOIUrl":"10.1128/msphere.00750-24","url":null,"abstract":"<p><p><i>Plasmodium</i> parasites, the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike closed mitosis in yeast, <i>Plasmodium berghei</i> parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm. This results in a multinucleated organism prior to the formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here, we utilize ultrastructure expansion microscopy to investigate <i>P. berghei</i> nucleoporins at the single nucleus level throughout the 24-hour blood-stage replication cycle. Our findings reveal that these nucleoporins are distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, responsible for intranuclear microtubule nucleation during mitosis. By adapting the recombination-induced tag exchange system to <i>P. berghei</i> through a single plasmid tagging system, which includes the tagging plasmid as well as the Cre recombinase, we provide evidence of NPC formation dynamics, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of <i>P. berghei</i> parasites.</p><p><strong>Importance: </strong>Malaria, caused by <i>Plasmodium</i> species, remains a critical global health challenge, with an estimated 249 million cases and over 600,000 deaths in 2022, primarily affecting children under five. Understanding the nuclear dynamics of <i>Plasmodium</i> parasites, particularly during their unique mitotic processes, is crucial for developing novel therapeutic strategies. Our study leverages advanced microscopy techniques, such as ultrastructure expansion microscopy, to reveal the organization and turnover of nuclear pore complexes (NPCs) during the parasite's asexual replication. By elucidating these previously unknown aspects of NPC distribution and homeostasis, we provide valuable insights into the molecular mechanisms governing parasite mitosis. These findings deepen our understanding of parasite biology and may inform future research aimed at identifying new targets for anti-malarial drug development.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0075024"},"PeriodicalIF":3.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}