Pub Date : 2024-09-13DOI: 10.1038/s41573-024-01045-9
Jair L. Siqueira-Neto, Kathryn J. Wicht, Kelly Chibale, Jeremy N. Burrows, David A. Fidock, Elizabeth A. Winzeler
{"title":"Author Correction: Antimalarial drug discovery: progress and approaches","authors":"Jair L. Siqueira-Neto, Kathryn J. Wicht, Kelly Chibale, Jeremy N. Burrows, David A. Fidock, Elizabeth A. Winzeler","doi":"10.1038/s41573-024-01045-9","DOIUrl":"10.1038/s41573-024-01045-9","url":null,"abstract":"","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"23 11","pages":"880-880"},"PeriodicalIF":122.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41573-024-01045-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1038/s41573-024-01026-y
Burkhard Becher, Tobias Derfuss, Roland Liblau
In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of ‘sterile’ neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses. Dysregulated cytokine networks are important in the pathogenesis of neuroinflammation. This Review discusses targeting cytokines and their receptors in non-infectious central nervous system inflammatory diseases such as multiple sclerosis and neurosarcoidosis, as well as in the neurotoxic adverse events that can be triggered by cancer immunotherapy.
{"title":"Targeting cytokine networks in neuroinflammatory diseases","authors":"Burkhard Becher, Tobias Derfuss, Roland Liblau","doi":"10.1038/s41573-024-01026-y","DOIUrl":"10.1038/s41573-024-01026-y","url":null,"abstract":"In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of ‘sterile’ neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses. Dysregulated cytokine networks are important in the pathogenesis of neuroinflammation. This Review discusses targeting cytokines and their receptors in non-infectious central nervous system inflammatory diseases such as multiple sclerosis and neurosarcoidosis, as well as in the neurotoxic adverse events that can be triggered by cancer immunotherapy.","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"23 11","pages":"862-879"},"PeriodicalIF":122.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1038/d41573-024-00144-x
M. Teresa Villanueva
{"title":"Neurons give metastatic cells a push","authors":"M. Teresa Villanueva","doi":"10.1038/d41573-024-00144-x","DOIUrl":"10.1038/d41573-024-00144-x","url":null,"abstract":"","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"23 10","pages":"739-739"},"PeriodicalIF":122.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1038/d41573-024-00145-w
Asher Mullard
{"title":"PPAR agonists provide new treatment options for inflammatory liver disease","authors":"Asher Mullard","doi":"10.1038/d41573-024-00145-w","DOIUrl":"10.1038/d41573-024-00145-w","url":null,"abstract":"","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"23 10","pages":"732-732"},"PeriodicalIF":122.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1038/d41573-024-00143-y
Yvonne Bordon
{"title":"Organoids identify a role for IL-7 in coeliac disease","authors":"Yvonne Bordon","doi":"10.1038/d41573-024-00143-y","DOIUrl":"10.1038/d41573-024-00143-y","url":null,"abstract":"","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"23 10","pages":"741-741"},"PeriodicalIF":122.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41573-024-01017-z
Dan Yaniv, Brandi Mattson, Sebastien Talbot, Frederico O. Gleber-Netto, Moran Amit
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration. Targeting the interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment. This Review article provides an overview of the dynamics of the nerve–cancer cell interplay as well as a discussion of current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer.
{"title":"Targeting the peripheral neural-tumour microenvironment for cancer therapy","authors":"Dan Yaniv, Brandi Mattson, Sebastien Talbot, Frederico O. Gleber-Netto, Moran Amit","doi":"10.1038/s41573-024-01017-z","DOIUrl":"10.1038/s41573-024-01017-z","url":null,"abstract":"As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration. Targeting the interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment. This Review article provides an overview of the dynamics of the nerve–cancer cell interplay as well as a discussion of current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer.","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"23 10","pages":"780-796"},"PeriodicalIF":122.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}