首页 > 最新文献

Neuroimmunomodulation最新文献

英文 中文
Role of Vagus Nerve Stimulation in the Treatment of Chronic Pain. 迷走神经刺激在治疗慢性疼痛中的作用。
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-06-27 DOI: 10.1159/000531626
Peiqi Shao, Huili Li, Jia Jiang, Yun Guan, Xueming Chen, Yun Wang

Vagus nerve stimulation (VNS) can modulate vagal activity and neuro-immune communication. Human and animal studies have provided growing evidence that VNS can produce analgesic effects in addition to alleviating refractory epilepsy and depression. The vagus nerve (VN) projects to many brain regions related to pain processing, which can be affected by VNS. In addition to neural regulation, the anti-inflammatory property of VNS may also contribute to its pain-inhibitory effects. To date, both invasive and noninvasive VNS devices have been developed, with noninvasive devices including transcutaneous stimulation of auricular VN or carotid VN that are undergoing many clinical trials for chronic pain treatment. This review aimed to provide an update on both preclinical and clinical studies of VNS in the management for chronic pain, including fibromyalgia, abdominal pain, and headaches. We further discuss potential underlying mechanisms for VNS to inhibit chronic pain.

迷走神经刺激(VNS)可以调节迷走神经活动和神经免疫通讯。人类和动物研究提供了越来越多的证据,证明VNS除了可以缓解难治性癫痫和抑郁症外,还可以产生镇痛作用。迷走神经(VN)投射到许多与疼痛处理相关的大脑区域,这些区域可能受到VNS的影响。除了神经调节外,VNS的抗炎特性也可能有助于其疼痛抑制作用。到目前为止,已经开发出有创和无创VNS设备,其中包括经皮刺激耳廓VN或颈动脉VN的无创设备正在进行许多慢性疼痛治疗的临床试验。这篇综述旨在提供VNS治疗慢性疼痛(包括纤维肌痛、腹痛和头痛等)的临床前和临床研究的最新进展。我们进一步讨论了VNS抑制慢性疼痛的潜在潜在潜在机制。
{"title":"Role of Vagus Nerve Stimulation in the Treatment of Chronic Pain.","authors":"Peiqi Shao, Huili Li, Jia Jiang, Yun Guan, Xueming Chen, Yun Wang","doi":"10.1159/000531626","DOIUrl":"10.1159/000531626","url":null,"abstract":"<p><p>Vagus nerve stimulation (VNS) can modulate vagal activity and neuro-immune communication. Human and animal studies have provided growing evidence that VNS can produce analgesic effects in addition to alleviating refractory epilepsy and depression. The vagus nerve (VN) projects to many brain regions related to pain processing, which can be affected by VNS. In addition to neural regulation, the anti-inflammatory property of VNS may also contribute to its pain-inhibitory effects. To date, both invasive and noninvasive VNS devices have been developed, with noninvasive devices including transcutaneous stimulation of auricular VN or carotid VN that are undergoing many clinical trials for chronic pain treatment. This review aimed to provide an update on both preclinical and clinical studies of VNS in the management for chronic pain, including fibromyalgia, abdominal pain, and headaches. We further discuss potential underlying mechanisms for VNS to inhibit chronic pain.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9695915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2nd European Psychoneuroimmunology Network Autumn School: The Skin-Brain Axis and the Breaking of Barriers. 第二届欧洲心理神经免疫学网络秋季学校:皮脑轴与障碍的打破。
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-08-21 DOI: 10.1159/000533611
Eva Peters, Adriana Del Rey, Karsten Krüger, Christoph Rummel
aDepartment of Psychosomatic Medicine and Psychotherapy, Psychoneuroimmunology Laboratory, Justus-Liebig University Giessen, Giessen, And Universitätsmedizin-Charité, Berlin, Germany; bCenter for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; cInstitute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany; dDepartment of Exercise Physiology and Sports Therapy, Justus Liebig University Giessen, Giessen, Germany; eInstitute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
{"title":"2nd European Psychoneuroimmunology Network Autumn School: The Skin-Brain Axis and the Breaking of Barriers.","authors":"Eva Peters,&nbsp;Adriana Del Rey,&nbsp;Karsten Krüger,&nbsp;Christoph Rummel","doi":"10.1159/000533611","DOIUrl":"10.1159/000533611","url":null,"abstract":"aDepartment of Psychosomatic Medicine and Psychotherapy, Psychoneuroimmunology Laboratory, Justus-Liebig University Giessen, Giessen, And Universitätsmedizin-Charité, Berlin, Germany; bCenter for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; cInstitute for Physiology and Pathophysiology, University of Marburg, Marburg, Germany; dDepartment of Exercise Physiology and Sports Therapy, Justus Liebig University Giessen, Giessen, Germany; eInstitute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10109350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Erratum. 勘误。
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-09-18 DOI: 10.1159/000531806
{"title":"Erratum.","authors":"","doi":"10.1159/000531806","DOIUrl":"10.1159/000531806","url":null,"abstract":"","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Immune-Endocrine Effects of Vitamin D in SARS-CoV-2 Infection: A Role in Protecting against Neurodamage. 了解维生素D在严重急性呼吸系统综合征冠状病毒2型感染中的免疫内分泌作用:在预防神经损伤中的作用?
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-08-09 DOI: 10.1159/000533286
Emanuele Gotelli, Stefano Soldano, Elvis Hysa, Andrea Casabella, Andrea Cere, Carmen Pizzorni, Sabrina Paolino, Alberto Sulli, Vanessa Smith, Maurizio Cutolo

Calcitriol and hydroxyderivatives of lumisterol and tachisterol are secosteroid hormones with immunomodulatory and anti-inflammatory properties. Since the beginning of the COVID-19 pandemic, several studies have correlated deficient serum concentrations of vitamin D3 (calcifediol) with increased severity of the course of SARS-CoV-2 infection. Among systemic complications, subjective (anosmia, ageusia, depression, dizziness) and objective (ischemic stroke, meningoencephalitis, myelitis, seizures, Guillain-Barré syndrome) neurological symptoms have been reported in up to 80% of severe COVID-19 patients. In this narrative review, we will resume the pathophysiology of SARS-CoV-2 infection and the mechanisms of acute and chronic neurological damage. SARS-CoV-2 can disrupt the integrity of the endothelial cells of the blood-brain barrier (BBB) to enter the nervous central system. Invasion of pro-inflammatory cytokines and polarization of astrocytes and microglia cells always in a pro-inflammatory sense together with the pro-coagulative phenotype of cerebral endothelial cells in response to both SARS-CoV-2 and immune cells invasion (immunothrombosis) are the major drivers of neurodamage. Calcitriol and hydroxyderivatives of lumisterol and tachisterol could play an adjuvant role in neuroprotection through mitigation of neuroinflammation and protection of endothelial integrity of the BBB. Dedicated studies on this topic are currently lacking and are desirable to confirm the link between vitamin D3 and neuroprotection in COVID-19 patients.

钙三醇和羽扇豆醇的羟基衍生物和大环己醇是具有免疫调节和抗炎特性的secosteroid激素。自新冠肺炎大流行开始以来,几项研究将维生素D3(骨化醇)的血清浓度不足与SARS-CoV-2感染过程的严重程度增加联系起来。在系统性并发症中,高达80%的新冠肺炎重症患者出现了主观(嗅觉缺失、老年痴呆、抑郁、眩晕)和客观(缺血性中风、脑膜脑炎、脊髓炎、癫痫发作、格林-巴利综合征)神经症状。在这篇叙述性综述中,我们将回顾严重急性呼吸系统综合征冠状病毒2型感染的病理生理学以及急性和慢性神经损伤的机制。严重急性呼吸系统综合征冠状病毒2型可以破坏血脑屏障内皮细胞进入神经中枢系统的完整性。促炎细胞因子的侵袭、星形胶质细胞和小胶质细胞的极化,以及脑内皮血管对严重急性呼吸系统综合征冠状病毒2型和免疫细胞侵袭(免疫血栓形成)的促凝表型,始终是促炎意义上的神经损伤的主要驱动因素。钙三醇和羽扇豆醇的羟基衍生物和大律师可以通过减轻神经炎症和保护血脑屏障内皮完整性,在神经保护中发挥辅助作用。目前缺乏关于这一主题的专门研究,希望证实维生素D3与新冠肺炎患者神经保护之间的联系。
{"title":"Understanding the Immune-Endocrine Effects of Vitamin D in SARS-CoV-2 Infection: A Role in Protecting against Neurodamage.","authors":"Emanuele Gotelli, Stefano Soldano, Elvis Hysa, Andrea Casabella, Andrea Cere, Carmen Pizzorni, Sabrina Paolino, Alberto Sulli, Vanessa Smith, Maurizio Cutolo","doi":"10.1159/000533286","DOIUrl":"10.1159/000533286","url":null,"abstract":"<p><p>Calcitriol and hydroxyderivatives of lumisterol and tachisterol are secosteroid hormones with immunomodulatory and anti-inflammatory properties. Since the beginning of the COVID-19 pandemic, several studies have correlated deficient serum concentrations of vitamin D3 (calcifediol) with increased severity of the course of SARS-CoV-2 infection. Among systemic complications, subjective (anosmia, ageusia, depression, dizziness) and objective (ischemic stroke, meningoencephalitis, myelitis, seizures, Guillain-Barré syndrome) neurological symptoms have been reported in up to 80% of severe COVID-19 patients. In this narrative review, we will resume the pathophysiology of SARS-CoV-2 infection and the mechanisms of acute and chronic neurological damage. SARS-CoV-2 can disrupt the integrity of the endothelial cells of the blood-brain barrier (BBB) to enter the nervous central system. Invasion of pro-inflammatory cytokines and polarization of astrocytes and microglia cells always in a pro-inflammatory sense together with the pro-coagulative phenotype of cerebral endothelial cells in response to both SARS-CoV-2 and immune cells invasion (immunothrombosis) are the major drivers of neurodamage. Calcitriol and hydroxyderivatives of lumisterol and tachisterol could play an adjuvant role in neuroprotection through mitigation of neuroinflammation and protection of endothelial integrity of the BBB. Dedicated studies on this topic are currently lacking and are desirable to confirm the link between vitamin D3 and neuroprotection in COVID-19 patients.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuropsychiatric Outcomes and Sleep Dysfunction in COVID-19 Patients: Risk Factors and Mechanisms. 新冠肺炎患者的神经精神结果和睡眠功能障碍:危险因素和机制。
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-09-27 DOI: 10.1159/000533722
Aliki Karkala, Asterios Tzinas, Seraphim Kotoulas, Athanasios Zacharias, Evdokia Sourla, Athanasia Pataka

The ongoing global health crisis due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of life. While the majority of early research following the coronavirus disease caused by SARS-CoV-2 (COVID-19) has focused on the physiological effects of the virus, a substantial body of subsequent studies has shown that the psychological burden of the infection is also considerable. Patients, even without mental illness history, were at increased susceptibility to developing mental health and sleep disturbances during or after the COVID-19 infection. Viral neurotropism and inflammatory storm damaging the blood-brain barrier have been proposed as possible mechanisms for mental health manifestations, along with stressful psychological factors and indirect consequences such as thrombosis and hypoxia. The virus has been found to infect peripheral olfactory neurons and exploit axonal migration pathways, exhibiting metabolic changes in astrocytes that are detrimental to fueling neurons and building neurotransmitters. Patients with COVID-19 present dysregulated and overactive immune responses, resulting in impaired neuronal function and viability, adversely affecting sleep and emotion regulation. Additionally, several risk factors have been associated with the neuropsychiatric sequelae of the infection, such as female sex, age, preexisting neuropathologies, severity of initial disease and sociological status. This review aimed to provide an overview of mental health symptoms and sleep disturbances developed during COVID-19 and to analyze the underlying mechanisms and risk factors of psychological distress and sleep dysfunction.

新型严重急性呼吸系统综合征冠状病毒2型(SARS-CoV-2)导致的持续全球健康危机严重影响了生活的方方面面。尽管大多数关于SARS-CoV-2(新冠肺炎)引起的冠状病毒疾病的早期研究都集中在病毒的生理影响上,但大量后续研究表明,感染的心理负担也相当大。即使没有精神病史的患者,在新冠肺炎感染期间或之后,也更容易出现精神健康和睡眠障碍。病毒性神经变性和破坏血脑屏障的炎症风暴已被认为是心理健康表现的可能机制,以及应激性心理因素和血栓形成和缺氧的间接后果。该病毒已被发现感染外周嗅觉神经元并利用轴突迁移途径,在星形胶质细胞中表现出代谢变化,不利于为神经元提供能量和构建神经递质。新冠肺炎患者出现免疫反应失调和过度活跃,导致神经元功能和生存能力受损,对睡眠和情绪调节产生不利影响。此外,一些风险因素与感染的神经精神后遗症有关,如女性、年龄、先前存在的神经病理学、初始疾病的严重程度和社会学状况。这篇综述旨在概述2019冠状病毒病期间出现的心理健康症状和睡眠障碍,并分析心理困扰和睡眠功能障碍的潜在机制和风险因素。
{"title":"Neuropsychiatric Outcomes and Sleep Dysfunction in COVID-19 Patients: Risk Factors and Mechanisms.","authors":"Aliki Karkala, Asterios Tzinas, Seraphim Kotoulas, Athanasios Zacharias, Evdokia Sourla, Athanasia Pataka","doi":"10.1159/000533722","DOIUrl":"10.1159/000533722","url":null,"abstract":"<p><p>The ongoing global health crisis due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of life. While the majority of early research following the coronavirus disease caused by SARS-CoV-2 (COVID-19) has focused on the physiological effects of the virus, a substantial body of subsequent studies has shown that the psychological burden of the infection is also considerable. Patients, even without mental illness history, were at increased susceptibility to developing mental health and sleep disturbances during or after the COVID-19 infection. Viral neurotropism and inflammatory storm damaging the blood-brain barrier have been proposed as possible mechanisms for mental health manifestations, along with stressful psychological factors and indirect consequences such as thrombosis and hypoxia. The virus has been found to infect peripheral olfactory neurons and exploit axonal migration pathways, exhibiting metabolic changes in astrocytes that are detrimental to fueling neurons and building neurotransmitters. Patients with COVID-19 present dysregulated and overactive immune responses, resulting in impaired neuronal function and viability, adversely affecting sleep and emotion regulation. Additionally, several risk factors have been associated with the neuropsychiatric sequelae of the infection, such as female sex, age, preexisting neuropathologies, severity of initial disease and sociological status. This review aimed to provide an overview of mental health symptoms and sleep disturbances developed during COVID-19 and to analyze the underlying mechanisms and risk factors of psychological distress and sleep dysfunction.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41105282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
15th Conference of the German Endocrine-Brain- Immune-Network (GEBIN) Ulm, Germany, September 28 - September 30, 2023. 德国内分泌脑免疫网络第15届会议,德国乌尔姆,2023年9月28日至9月30日。
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-09-19 DOI: 10.1159/000533771
The abstracts included in this supplement were reviewed and selected by the Scientific Programme Committee. The committee has no conflicts of interest in connection with the congress and the selection of abstracts. Neuroimmunomodulation 2023;30(suppl 2):1–60 DOI: 10.1159/000533771 Published online: September 19, 2023 This article is licensed under the Creative Commons AttributionNonCommercial 4.0 International License (CCBY-NC) (http://www. karger.com/Services/OpenAccessLicense).Usage anddistribution for commercial purposes requires written permission.
{"title":"15th Conference of the German Endocrine-Brain- Immune-Network (GEBIN) Ulm, Germany, September 28 - September 30, 2023.","authors":"","doi":"10.1159/000533771","DOIUrl":"10.1159/000533771","url":null,"abstract":"The abstracts included in this supplement were reviewed and selected by the Scientific Programme Committee. The committee has no conflicts of interest in connection with the congress and the selection of abstracts. Neuroimmunomodulation 2023;30(suppl 2):1–60 DOI: 10.1159/000533771 Published online: September 19, 2023 This article is licensed under the Creative Commons AttributionNonCommercial 4.0 International License (CCBY-NC) (http://www. karger.com/Services/OpenAccessLicense).Usage anddistribution for commercial purposes requires written permission.","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41109584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endotoxin-Induced Physiological and Psychological Sickness Responses in Healthy Humans: Insights into the Post-Acute Phase. 健康人内毒素诱导的生理和心理疾病反应:急性期后的见解。
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-10-05 DOI: 10.1159/000534444
Harald Engler, Alexandra Brinkhoff, Benjamin Wilde, Andreas Kribben, Hana Rohn, Oliver Witzke, Manfred Schedlowski, Sven Benson

Introduction: Experimental endotoxemia is a translational model of systemic inflammation that has contributed significantly to our current understanding of sickness behavior and inflammation-associated depression. Previous studies using this model revealed a strong association between cytokine levels, endocrine changes, and psychological sickness symptoms during the acute phase of inflammation. The objective of this randomized, double-blind, placebo-controlled crossover study was to gain insight into potential post-acute physiological and psychological consequences of endotoxin administration that may either persist or newly emerge between 24 and 72 h after injection. The main focus was on associations between serum levels of C-reactive protein (CRP) and affective symptoms as well as alterations in diurnal cortisol profile, the two key features of inflammation-associated depression.

Methods: Healthy male volunteers (N = 18) received an injection of either endotoxin (0.8 ng/kg) or placebo on two separate but otherwise identical study days, 7 days apart. Blood and saliva samples were collected during acute and post-acute phases after injection to measure blood inflammatory markers (interleukin [IL]-6, IL-1 receptor antagonist [ra], CRP) and salivary cortisol levels. In addition, participants completed a comprehensive battery of questionnaires to assess physical and psychological sickness symptoms.

Results: Endotoxin treatment induced a short-time rise in plasma IL-6 and a longer increase in IL-1ra. The increase in serum CRP was delayed compared to cytokines, peaking at 24 h and gradually decreasing until 72 h after injection. The inflammatory response was accompanied by bodily and psychological sickness symptoms which occurred only in the acute phase, whereas none of the symptoms persisted or recurred in the post-acute phase. Salivary cortisol levels were significantly increased during the acute phase and exhibited pronounced circadian changes. However, no significant differences in diurnal cortisol profiles were observed between placebo and endotoxin conditions on the days after treatment.

Conclusion: Our findings suggest that CRP, which is elevated in patients with inflammation-associated depression, does not appear to be responsible for depressive symptomatology. Moreover, a single inflammatory episode is not sufficient to alter diurnal cortisol profiles, as observed in inflammation-associated depression. In addition, the absence of persistent lipopolysaccharide-induced psychological and physiological changes beyond the acute phase further supports the safety of endotoxin administration in humans.

引言:实验性内毒素血症是一种全身炎症的转化模型,对我们目前对疾病行为和炎症相关抑郁的理解有重要贡献。先前使用该模型的研究揭示了炎症急性期细胞因子水平、内分泌变化和心理疾病症状之间的强烈关联。这项随机、双盲、安慰剂对照的交叉研究的目的是深入了解内毒素给药可能在注射后24至72小时内持续或新出现的急性后潜在生理和心理后果。主要关注的是血清C反应蛋白(CRP)水平与情感症状之间的关系,以及皮质醇昼夜变化,这是炎症相关抑郁症的两个关键特征。方法:健康男性志愿者(N=18)在两个独立但完全相同的研究日接受内毒素(0.8纳克/公斤)或安慰剂注射,间隔7天。在注射后的急性期和急性期后采集血液和唾液样本,以测量血液炎症标志物(白细胞介素[IL]-6、IL-1受体拮抗剂[ra]、CRP)和唾液皮质醇水平。此外,参与者还完成了一系列全面的问卷调查,以评估身体和心理疾病症状。结果:内毒素治疗可诱导血浆IL-6短时间升高,IL-1ra长时间升高。与细胞因子相比,血清CRP的增加是延迟的,在24小时达到峰值,并逐渐降低,直到注射后72小时。炎症反应伴有身体和心理疾病症状,这些症状仅发生在急性期,而在急性期后没有任何症状持续或复发。唾液皮质醇水平在急性期显著升高,并表现出明显的昼夜节律变化。然而,在治疗后几天,安慰剂和内毒素条件下的皮质醇昼夜变化没有显著差异。结论:我们的研究结果表明,炎症相关抑郁症患者的CRP升高,似乎与抑郁症症状无关。此外,正如在炎症相关的抑郁症中观察到的那样,一次炎症发作不足以改变皮质醇的昼夜变化。此外,在急性期之后没有持续的LPS诱导的心理和生理变化,这进一步支持了在人类中给予内毒素的安全性。
{"title":"Endotoxin-Induced Physiological and Psychological Sickness Responses in Healthy Humans: Insights into the Post-Acute Phase.","authors":"Harald Engler, Alexandra Brinkhoff, Benjamin Wilde, Andreas Kribben, Hana Rohn, Oliver Witzke, Manfred Schedlowski, Sven Benson","doi":"10.1159/000534444","DOIUrl":"10.1159/000534444","url":null,"abstract":"<p><strong>Introduction: </strong>Experimental endotoxemia is a translational model of systemic inflammation that has contributed significantly to our current understanding of sickness behavior and inflammation-associated depression. Previous studies using this model revealed a strong association between cytokine levels, endocrine changes, and psychological sickness symptoms during the acute phase of inflammation. The objective of this randomized, double-blind, placebo-controlled crossover study was to gain insight into potential post-acute physiological and psychological consequences of endotoxin administration that may either persist or newly emerge between 24 and 72 h after injection. The main focus was on associations between serum levels of C-reactive protein (CRP) and affective symptoms as well as alterations in diurnal cortisol profile, the two key features of inflammation-associated depression.</p><p><strong>Methods: </strong>Healthy male volunteers (N = 18) received an injection of either endotoxin (0.8 ng/kg) or placebo on two separate but otherwise identical study days, 7 days apart. Blood and saliva samples were collected during acute and post-acute phases after injection to measure blood inflammatory markers (interleukin [IL]-6, IL-1 receptor antagonist [ra], CRP) and salivary cortisol levels. In addition, participants completed a comprehensive battery of questionnaires to assess physical and psychological sickness symptoms.</p><p><strong>Results: </strong>Endotoxin treatment induced a short-time rise in plasma IL-6 and a longer increase in IL-1ra. The increase in serum CRP was delayed compared to cytokines, peaking at 24 h and gradually decreasing until 72 h after injection. The inflammatory response was accompanied by bodily and psychological sickness symptoms which occurred only in the acute phase, whereas none of the symptoms persisted or recurred in the post-acute phase. Salivary cortisol levels were significantly increased during the acute phase and exhibited pronounced circadian changes. However, no significant differences in diurnal cortisol profiles were observed between placebo and endotoxin conditions on the days after treatment.</p><p><strong>Conclusion: </strong>Our findings suggest that CRP, which is elevated in patients with inflammation-associated depression, does not appear to be responsible for depressive symptomatology. Moreover, a single inflammatory episode is not sufficient to alter diurnal cortisol profiles, as observed in inflammation-associated depression. In addition, the absence of persistent lipopolysaccharide-induced psychological and physiological changes beyond the acute phase further supports the safety of endotoxin administration in humans.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41129809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. 交感神经系统对炎症模型的慢性影响
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-05-18 DOI: 10.1159/000530969
Georg Pongratz, Rainer H Straub

The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.

免疫系统被嵌入一个调节系统网络中,以在面临免疫挑战时保持平衡。过去几十年来,神经内分泌免疫学研究揭示了这些相互作用的多个方面,例如自律神经系统与免疫系统之间的相互作用。本综述将侧重于揭示交感神经系统(SNS)在慢性炎症(如结肠炎、多发性硬化症、系统性硬化症、红斑狼疮和关节炎)中所起作用的证据,重点是有人类数据支持的动物模型。届时将介绍 SNS 在慢性炎症中的作用理论,该理论横跨这些疾病实体。一个主要发现是交感神经对炎症的作用具有双相性,在疾病爆发前具有促炎作用,而在疾病爆发后则主要具有抗炎作用。由于交感神经纤维在炎症期间会从炎症部位消失,因此局部细胞和免疫细胞能够内源性地产生儿茶酚胺,对炎症反应进行微调,而不受大脑控制。在全身层面上,各种模型都表明,与副交感神经系统相比,自律神经系统在炎症中被激活。自律神经系统长期过度活跃会导致许多已知的疾病后遗症。神经内分泌免疫研究的目标之一是确定新的治疗目标。在这方面,将讨论至少在关节炎中,除了恢复自律神经平衡外,支持β肾上腺素能和抑制α肾上腺素能活动可能是有益的。总之,在临床环境中,我们现在需要进行对照干预研究,以便成功地将理论知识转化为对患者的益处。
{"title":"Chronic Effects of the Sympathetic Nervous System in Inflammatory Models.","authors":"Georg Pongratz, Rainer H Straub","doi":"10.1159/000530969","DOIUrl":"10.1159/000530969","url":null,"abstract":"<p><p>The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9893291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Integrated Proteomic and Phosphoproteomic Analysis of the Hippocampus in a Mouse Model of Early Life Inflammation. 生命早期炎症小鼠模型海马体的蛋白质组和磷酸蛋白组综合分析
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-01-04 DOI: 10.1159/000527975
Xin-Miao Wu, Yu-Zhu Gao, Ting-Ting Zhu, Han-Wen Gu, Jian-Hua Tong, Jie Sun, Jian-Jun Yang, Mu-Huo Ji

Introduction: Inflammation in early life is a risk factor for the development of neuropsychiatric diseases later in adolescence and adulthood, yet the underlying mechanism remains elusive. In the present study, we performed an integrated proteomic and phosphoproteomic analysis of the hippocampus to identify potential molecular mechanisms of early life inflammation-induced cognitive impairment.

Methods: Both female and male mice received a single intraperitoneal injection of 100 μg/kg lipopolysaccharide (LPS) on postnatal day 10 (P10). Behavioral tests, including open field, elevated plus-maze, and Y-maze tests, were performed on P39, P40, and P41, respectively. After behavioral tests, male mice were sacrificed. The whole brain tissues and the hippocampi were harvested on P42 for proteomic, phosphoproteomic, Western blot, and Golgi staining.

Results: Early life LPS exposure induced cognitive impairment in male mice but not in female mice, as assessed by the Y-maze test. Therefore, following biochemical tests were conducted on male mice. By proteomic analysis, 13 proteins in LPS group exhibited differential expression. Among these, 9 proteins were upregulated and 4 proteins were downregulated. For phosphoproteomic analysis, a total of 518 phosphopeptides were identified, of which 316 phosphopeptides were upregulated and 202 phosphopeptides were downregulated in the LPS group compared with the control group. Furthermore, KEGG analysis indicated that early life LPS exposure affected the glutamatergic synapse and neuroactive ligand-receptor interaction, which were associated with synaptic function and energy metabolism. Increased level of brain protein i3 (Bri3), decreased levels of PSD-95 and mGLUR5, and dendritic spine loss after early life LPS exposure further confirmed the findings of proteomic and phosphoproteomic analysis.

Conclusions: Our findings demonstrated that neuroinflammation and impaired synapse may be involved in early life inflammation-induced cognitive impairment. Future studies are required to confirm our preliminary results.

导言:生命早期的炎症是青春期和成年后患神经精神疾病的一个风险因素,但其潜在机制仍然难以捉摸。在本研究中,我们对海马进行了蛋白质组和磷酸化蛋白质组的综合分析,以确定生命早期炎症诱发认知障碍的潜在分子机制:雌性和雄性小鼠在出生后第10天(P10)腹腔注射100 μg/kg脂多糖(LPS)。行为测试包括开阔地、高架迷宫和Y迷宫测试,分别在出生后第39天、第40天和第41天进行。行为测试结束后,雄性小鼠被处死。在P42收获全脑组织和海马,进行蛋白质组、磷酸蛋白组、Western印迹和高尔基体染色:结果:根据Y-迷宫试验的评估,早期LPS暴露会诱发雄性小鼠的认知障碍,但不会诱发雌性小鼠的认知障碍。因此,对雄性小鼠进行了以下生化测试。通过蛋白质组分析,LPS 组有 13 种蛋白质表现出不同的表达。其中,9 种蛋白质上调,4 种蛋白质下调。磷酸蛋白组分析共鉴定出 518 个磷酸肽,与对照组相比,LPS 组有 316 个磷酸肽上调,202 个磷酸肽下调。此外,KEGG分析表明,生命早期暴露于LPS会影响谷氨酸能突触和神经活性配体与受体的相互作用,而这与突触功能和能量代谢有关。早期LPS暴露后,脑蛋白i3(Bri3)水平升高、PSD-95和mGLUR5水平降低以及树突棘丢失进一步证实了蛋白质组学和磷酸化蛋白质组学分析的结果:我们的研究结果表明,神经炎症和突触受损可能与早期炎症诱导的认知障碍有关。我们的研究结果表明,神经炎症和突触受损可能与生命早期炎症诱导的认知障碍有关。
{"title":"Integrated Proteomic and Phosphoproteomic Analysis of the Hippocampus in a Mouse Model of Early Life Inflammation.","authors":"Xin-Miao Wu, Yu-Zhu Gao, Ting-Ting Zhu, Han-Wen Gu, Jian-Hua Tong, Jie Sun, Jian-Jun Yang, Mu-Huo Ji","doi":"10.1159/000527975","DOIUrl":"10.1159/000527975","url":null,"abstract":"<p><strong>Introduction: </strong>Inflammation in early life is a risk factor for the development of neuropsychiatric diseases later in adolescence and adulthood, yet the underlying mechanism remains elusive. In the present study, we performed an integrated proteomic and phosphoproteomic analysis of the hippocampus to identify potential molecular mechanisms of early life inflammation-induced cognitive impairment.</p><p><strong>Methods: </strong>Both female and male mice received a single intraperitoneal injection of 100 μg/kg lipopolysaccharide (LPS) on postnatal day 10 (P10). Behavioral tests, including open field, elevated plus-maze, and Y-maze tests, were performed on P39, P40, and P41, respectively. After behavioral tests, male mice were sacrificed. The whole brain tissues and the hippocampi were harvested on P42 for proteomic, phosphoproteomic, Western blot, and Golgi staining.</p><p><strong>Results: </strong>Early life LPS exposure induced cognitive impairment in male mice but not in female mice, as assessed by the Y-maze test. Therefore, following biochemical tests were conducted on male mice. By proteomic analysis, 13 proteins in LPS group exhibited differential expression. Among these, 9 proteins were upregulated and 4 proteins were downregulated. For phosphoproteomic analysis, a total of 518 phosphopeptides were identified, of which 316 phosphopeptides were upregulated and 202 phosphopeptides were downregulated in the LPS group compared with the control group. Furthermore, KEGG analysis indicated that early life LPS exposure affected the glutamatergic synapse and neuroactive ligand-receptor interaction, which were associated with synaptic function and energy metabolism. Increased level of brain protein i3 (Bri3), decreased levels of PSD-95 and mGLUR5, and dendritic spine loss after early life LPS exposure further confirmed the findings of proteomic and phosphoproteomic analysis.</p><p><strong>Conclusions: </strong>Our findings demonstrated that neuroinflammation and impaired synapse may be involved in early life inflammation-induced cognitive impairment. Future studies are required to confirm our preliminary results.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10480675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Leuprolide Acetate, a GnRH Agonist, on Neuroinflammation and Anxiety-Like Behavior after Mild Hypoxic-Ischemic Encephalopathy in Rat Model. GnRH激动剂醋酸亮丙瑞林对大鼠轻度缺氧缺血性脑病后神经炎症和焦虑样行为的影响。
IF 2.4 4区 医学 Q2 Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-08-22 DOI: 10.1159/000533388
Karina Alejandra Pedroza-García, Denisse Calderón-Vallejo, Daniel Cervantes-García, Andrés Quintanar-Stephano, Eva Salinas, J Luis Quintanar

Background: Mild hypoxic-ischemic encephalopathy (HIE) is a condition that predisposes to negative outcomes such as neuroanatomical injury, mood disorders, and motor or cognitive disabilities. The neuroinflammation plays an important role in the neurological damage; therefore, reducing it could provide neuroprotection. The leuprolide acetate (LA) has shown to have neuroregenerative and immunomodulator properties in other nervous system injuries.

Objective: The aim of this study was to evaluate the immunomodulatory effect of LA in the acute phase of mild HIE and its effects in motor activity and behavior in a subacute phase.

Method: Forty-five Wistar rats on postnatal day 7 were divided into Sham, HIE treated with saline solution (HIE-SS), and HIE-LA. The HIE was performed cutting of the right carotid artery followed by 60 min of hypoxia. The expression of the inflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and the chemokine CXCL-1 were evaluated 72 h after HIE by RT-qPCR and the motor activity and behavior were evaluated by open field test at postnatal day 33.

Results: HIE-SS animals showed increased expression of IL-1β, TNF-α, IFN-γ, and CXCL-1 genes in injured tissue. However, the HIE-LA group exhibited similar expression levels of IL-1β and TNF-α to the Sham group, while IFN-γ and CXCL-1 mRNA expression were attenuated with LA treatment. LA treatment also prevented anxiety-like behavior in the open field test.

Conclusion: Treatment with LA partially reverses HIE-induced neuroinflammation and prevents anxiety-like behavior in neonatal rats.

背景:轻度缺氧缺血性脑病(HIE)是一种容易产生负面后果的疾病,如神经解剖学损伤、情绪障碍、运动或认知障碍。神经炎症在神经损伤中起着重要作用,因此减少炎症可以提供神经保护。醋酸亮丙瑞林(LA)已被证明在其他神经系统损伤中具有神经再生和免疫调节特性。目的:本研究旨在评估LA在轻度HIE急性期的免疫调节作用及其在亚急性期对运动活动和行为的影响。方法:45只Wistar大鼠于出生后第7天分为Sham组、HIE盐水组和HIE-LA组。HIE是在缺氧60分钟后切割右颈动脉。用RT-qPCR检测HIE后72 h炎症细胞因子白细胞介素(IL)-1β、肿瘤坏死因子(TNF)-α、干扰素(IFN)-γ和趋化因子CXCL-1的表达,并在出生后第33天用开放式场地试验检测运动活性和行为。然而,HIE-LA组的IL-1β和TNF-α的表达水平与Sham组相似,而IFN-γ和CXCL-1 mRNA的表达在LA治疗后减弱。LA治疗也防止了开放场地测试中的焦虑样行为。结论:LA治疗可部分逆转HIE诱导的新生大鼠神经炎症,并可预防其焦虑样行为。
{"title":"Effect of Leuprolide Acetate, a GnRH Agonist, on Neuroinflammation and Anxiety-Like Behavior after Mild Hypoxic-Ischemic Encephalopathy in Rat Model.","authors":"Karina Alejandra Pedroza-García, Denisse Calderón-Vallejo, Daniel Cervantes-García, Andrés Quintanar-Stephano, Eva Salinas, J Luis Quintanar","doi":"10.1159/000533388","DOIUrl":"10.1159/000533388","url":null,"abstract":"<p><strong>Background: </strong>Mild hypoxic-ischemic encephalopathy (HIE) is a condition that predisposes to negative outcomes such as neuroanatomical injury, mood disorders, and motor or cognitive disabilities. The neuroinflammation plays an important role in the neurological damage; therefore, reducing it could provide neuroprotection. The leuprolide acetate (LA) has shown to have neuroregenerative and immunomodulator properties in other nervous system injuries.</p><p><strong>Objective: </strong>The aim of this study was to evaluate the immunomodulatory effect of LA in the acute phase of mild HIE and its effects in motor activity and behavior in a subacute phase.</p><p><strong>Method: </strong>Forty-five Wistar rats on postnatal day 7 were divided into Sham, HIE treated with saline solution (HIE-SS), and HIE-LA. The HIE was performed cutting of the right carotid artery followed by 60 min of hypoxia. The expression of the inflammatory cytokines interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and the chemokine CXCL-1 were evaluated 72 h after HIE by RT-qPCR and the motor activity and behavior were evaluated by open field test at postnatal day 33.</p><p><strong>Results: </strong>HIE-SS animals showed increased expression of IL-1β, TNF-α, IFN-γ, and CXCL-1 genes in injured tissue. However, the HIE-LA group exhibited similar expression levels of IL-1β and TNF-α to the Sham group, while IFN-γ and CXCL-1 mRNA expression were attenuated with LA treatment. LA treatment also prevented anxiety-like behavior in the open field test.</p><p><strong>Conclusion: </strong>Treatment with LA partially reverses HIE-induced neuroinflammation and prevents anxiety-like behavior in neonatal rats.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10048200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuroimmunomodulation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1