Pub Date : 2024-07-05DOI: 10.1016/j.neucli.2024.102991
H.Evren Boran , Halil Can Alaydin , Ilker Arslan , Ozlem Kurtkaya Kocak , Hasan Kılınc , Bulent Cengiz
Objective
MScanFit motor unit number estimation (MUNE) is a sensitive method for detecting motor unit loss and has demonstrated high reproducibility in various settings. In this study, our aim was to assess the outputs of this method when the nerve conduction distance is increased.
Methods
MScanFit recordings were obtained from the abductor digiti minimi muscle of 20 healthy volunteers. To evaluate the effect of nerve conduction distance, the ulnar nerve was stimulated from the wrist and elbow respectively. Reproducibility of MUNE, compound muscle action potential (CMAP), and other motor unit parameters were assessed using intraclass correlation coefficients (ICCs).
Results
Motor unit numbers obtained from stimulation at the wrist and elbow did not significantly differ and exhibited strong consistency in the ICC test (120.3 ± 23.7 vs. 118.5 ± 27.9, p > 0.05, ICC: 0.88). Similar repeatability values were noted for other parameters. However, the Largest Unit (%) displayed notable variability between the two regions and exhibited a negative correlation with nerve conduction distance.
Conclusion
Our findings indicate that MScanFit can consistently calculate motor unit numbers and most of its outputs without substantial influence from nerve conduction distance. Exploring MScanFit's capabilities in various settings could enhance our understanding of its strengths and limitations for extensive use in clinical practice.
{"title":"Exploring the effect of the nerve conduction distance on the MScanFit method ofmotor unit number estimation (MUNE)","authors":"H.Evren Boran , Halil Can Alaydin , Ilker Arslan , Ozlem Kurtkaya Kocak , Hasan Kılınc , Bulent Cengiz","doi":"10.1016/j.neucli.2024.102991","DOIUrl":"10.1016/j.neucli.2024.102991","url":null,"abstract":"<div><h3>Objective</h3><p>MScanFit motor unit number estimation (MUNE) is a sensitive method for detecting motor unit loss and has demonstrated high reproducibility in various settings. In this study, our aim was to assess the outputs of this method when the nerve conduction distance is increased.</p></div><div><h3>Methods</h3><p>MScanFit recordings were obtained from the abductor digiti minimi muscle of 20 healthy volunteers. To evaluate the effect of nerve conduction distance, the ulnar nerve was stimulated from the wrist and elbow respectively. Reproducibility of MUNE, compound muscle action potential (CMAP), and other motor unit parameters were assessed using intraclass correlation coefficients (ICCs).</p></div><div><h3>Results</h3><p>Motor unit numbers obtained from stimulation at the wrist and elbow did not significantly differ and exhibited strong consistency in the ICC test (120.3 ± 23.7 vs. 118.5 ± 27.9, <em>p</em> > 0.05, ICC: 0.88). Similar repeatability values were noted for other parameters. However, the Largest Unit (%) displayed notable variability between the two regions and exhibited a negative correlation with nerve conduction distance.</p></div><div><h3>Conclusion</h3><p>Our findings indicate that MScanFit can consistently calculate motor unit numbers and most of its outputs without substantial influence from nerve conduction distance. Exploring MScanFit's capabilities in various settings could enhance our understanding of its strengths and limitations for extensive use in clinical practice.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 5","pages":"Article 102991"},"PeriodicalIF":2.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1016/j.neucli.2024.102985
Guilherme JM Lacerda , Kevin Pacheco-Barrios , Sara Pinto Barbosa , Lucas M Marques , Linamara Battistella , Felipe Fregni
Objective
This study aimed to explore the relationships between potential neurophysiological biomarkers and upper limb motor function recovery in stroke patients, specifically focusing on combining two neurophysiological markers: electroencephalography (EEG) and transcranial magnetic stimulation (TMS).
Methods
This cross-sectional study analyzed neurophysiological, clinical, and demographical data from 102 stroke patients from the DEFINE cohort. We searched for correlations of EEG and TMS measurements combined to build a prediction model for upper limb motor functionality, assessed by five outcomes, across five assessments: Fugl-Meyer Assessment (FMA), Handgrip Strength Test (HST), Finger Tapping Test (FTT), Nine-Hole Peg Test (9HPT), and Pinch Strength Test (PST).
Results
Our multivariate models agreed on a specific neural signature: higher EEG Theta/Alpha ratio in the frontal region of the lesioned hemisphere is associated with poorer motor outcomes, while increased MEP amplitude in the non-lesioned hemisphere correlates with improved motor function. These relationships are held across all five motor assessments, suggesting the potential of these neurophysiological measures as recovery biomarkers.
Conclusion
Our findings indicate a potential neural signature of brain compensation in which lower frequencies of EEG power are increased in the lesioned hemisphere, and lower corticospinal excitability is also increased in the non-lesioned hemisphere. We discuss the meaning of these findings in the context of motor recovery in stroke.
{"title":"A neural signature for brain compensation in stroke with EEG and TMS: Insights from the DEFINE cohort study","authors":"Guilherme JM Lacerda , Kevin Pacheco-Barrios , Sara Pinto Barbosa , Lucas M Marques , Linamara Battistella , Felipe Fregni","doi":"10.1016/j.neucli.2024.102985","DOIUrl":"https://doi.org/10.1016/j.neucli.2024.102985","url":null,"abstract":"<div><h3>Objective</h3><p>This study aimed to explore the relationships between potential neurophysiological biomarkers and upper limb motor function recovery in stroke patients, specifically focusing on combining two neurophysiological markers: electroencephalography (EEG) and transcranial magnetic stimulation (TMS).</p></div><div><h3>Methods</h3><p>This cross-sectional study analyzed neurophysiological, clinical, and demographical data from 102 stroke patients from the DEFINE cohort. We searched for correlations of EEG and TMS measurements combined to build a prediction model for upper limb motor functionality, assessed by five outcomes, across five assessments: Fugl-Meyer Assessment (FMA), Handgrip Strength Test (HST), Finger Tapping Test (FTT), Nine-Hole Peg Test (9HPT), and Pinch Strength Test (PST).</p></div><div><h3>Results</h3><p>Our multivariate models agreed on a specific neural signature: higher EEG Theta/Alpha ratio in the frontal region of the lesioned hemisphere is associated with poorer motor outcomes, while increased MEP amplitude in the non-lesioned hemisphere correlates with improved motor function. These relationships are held across all five motor assessments, suggesting the potential of these neurophysiological measures as recovery biomarkers.</p></div><div><h3>Conclusion</h3><p>Our findings indicate a potential neural signature of brain compensation in which lower frequencies of EEG power are increased in the lesioned hemisphere, and lower corticospinal excitability is also increased in the non-lesioned hemisphere. We discuss the meaning of these findings in the context of motor recovery in stroke.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 5","pages":"Article 102985"},"PeriodicalIF":2.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1016/j.neucli.2024.102995
Jordan Labidi , Aude Warniez , Philippe Derambure , Thibaud Lebouvier , Florence Pasquier , Arnaud Delval , Nacim Betrouni
This study aimed to compare the diagnostic performance of visual assessment of electroencephalography (EEG) using the Grand Total EEG (GTE) score and quantitative EEG (QEEG) using spectral analysis in the context of cognitive impairment.
This was a retrospective study of patients with mild cognitive impairment, with (MCI+V) or without (MCI) vascular dysfunction, and patients with dementia including Alzheimer's disease, Lewy Body Dementia and vascular dementia.
The results showed that the GTE is a simple scoring system with some potential applications, but limited ability to distinguish between dementia subtypes, while spectral analysis appeared to be a powerful tool, but its clinical development requires the use of artificial intelligence tools.
{"title":"Qualitative versus quantitative assessment of electroencephalography in cognitive decline: Comparison in a clinical population","authors":"Jordan Labidi , Aude Warniez , Philippe Derambure , Thibaud Lebouvier , Florence Pasquier , Arnaud Delval , Nacim Betrouni","doi":"10.1016/j.neucli.2024.102995","DOIUrl":"https://doi.org/10.1016/j.neucli.2024.102995","url":null,"abstract":"<div><p>This study aimed to compare the diagnostic performance of visual assessment of electroencephalography (EEG) using the Grand Total EEG (GTE) score and quantitative EEG (QEEG) using spectral analysis in the context of cognitive impairment.</p><p>This was a retrospective study of patients with mild cognitive impairment, with (MCI+V) or without (MCI) vascular dysfunction, and patients with dementia including Alzheimer's disease, Lewy Body Dementia and vascular dementia.</p><p>The results showed that the GTE is a simple scoring system with some potential applications, but limited ability to distinguish between dementia subtypes, while spectral analysis appeared to be a powerful tool, but its clinical development requires the use of artificial intelligence tools.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 5","pages":"Article 102995"},"PeriodicalIF":3.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.1016/j.neucli.2024.102982
Yun-Ru Lai , Wen-Chan Chiu , Chih-Cheng Huang , Ben-Chung Cheng , Chia-Te Kung , Ting Yin Lin , Hui Ching Chiang , Chia-Jung Tsai , Chien-Feng Kung , Cheng-Hsien Lu
Objective
The objective of this study was to develop artificial intelligence-based deep learning models and assess their potential utility and accuracy in diagnosing and predicting the future occurrence of diabetic distal sensorimotor polyneuropathy (DSPN) among individuals with type 2 diabetes mellitus (T2DM) and prediabetes.
Methods
In 394 patients (T2DM=300, Prediabetes=94), we developed a DSPN diagnostic and predictive model using Random Forest (RF)-based variable selection techniques, specifically incorporating the combined capabilities of the Clinical Toronto Neuropathy Score (TCNS) and nerve conduction study (NCS) to identify relevant variables. These important variables were then integrated into a deep learning framework comprising Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. To evaluate temporal predictive efficacy, patients were assessed at enrollment and one-year follow-up.
Results
RF-based variable selection identified key factors for diagnosing DSPN. Numbness scores, sensory test results (vibration), reflexes (knee, ankle), sural nerve attributes (sensory nerve action potential [SNAP] amplitude, nerve conduction velocity [NCV], latency), and peroneal/tibial motor NCV were candidate variables at baseline and over one year. Tibial compound motor action potential amplitudes were used for initial diagnosis, and ulnar SNAP amplitude for subsequent diagnoses. CNNs and LSTMs achieved impressive AUC values of 0.98 for DSPN diagnosis prediction, and 0.93 and 0.89 respectively for predicting the future occurrence of DSPN. RF techniques combined with two deep learning algorithms exhibited outstanding performance in diagnosing and predicting the future occurrence of DSPN. These algorithms have the potential to serve as surrogate measures, aiding clinicians in accurate diagnosis and future prediction of DSPN.
{"title":"Longitudinal artificial intelligence-based deep learning models for diagnosis and prediction of the future occurrence of polyneuropathy in diabetes and prediabetes","authors":"Yun-Ru Lai , Wen-Chan Chiu , Chih-Cheng Huang , Ben-Chung Cheng , Chia-Te Kung , Ting Yin Lin , Hui Ching Chiang , Chia-Jung Tsai , Chien-Feng Kung , Cheng-Hsien Lu","doi":"10.1016/j.neucli.2024.102982","DOIUrl":"10.1016/j.neucli.2024.102982","url":null,"abstract":"<div><h3>Objective</h3><p>The objective of this study was to develop artificial intelligence-based deep learning models and assess their potential utility and accuracy in diagnosing and predicting the future occurrence of diabetic distal sensorimotor polyneuropathy (DSPN) among individuals with type 2 diabetes mellitus (T2DM) and prediabetes.</p></div><div><h3>Methods</h3><p>In 394 patients (T2DM=300, Prediabetes=94), we developed a DSPN diagnostic and predictive model using Random Forest (RF)-based variable selection techniques, specifically incorporating the combined capabilities of the Clinical Toronto Neuropathy Score (TCNS) and nerve conduction study (NCS) to identify relevant variables. These important variables were then integrated into a deep learning framework comprising Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. To evaluate temporal predictive efficacy, patients were assessed at enrollment and one-year follow-up.</p></div><div><h3>Results</h3><p>RF-based variable selection identified key factors for diagnosing DSPN. Numbness scores, sensory test results (vibration), reflexes (knee, ankle), sural nerve attributes (sensory nerve action potential [SNAP] amplitude, nerve conduction velocity [NCV], latency), and peroneal/tibial motor NCV were candidate variables at baseline and over one year. Tibial compound motor action potential amplitudes were used for initial diagnosis, and ulnar SNAP amplitude for subsequent diagnoses. CNNs and LSTMs achieved impressive AUC values of 0.98 for DSPN diagnosis prediction, and 0.93 and 0.89 respectively for predicting the future occurrence of DSPN. RF techniques combined with two deep learning algorithms exhibited outstanding performance in diagnosing and predicting the future occurrence of DSPN. These algorithms have the potential to serve as surrogate measures, aiding clinicians in accurate diagnosis and future prediction of DSPN.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 4","pages":"Article 102982"},"PeriodicalIF":3.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.neucli.2024.102984
Julian Theuriet , Laure Huchon , Jacques Luaute , Anne-Evelyne Vallet , Françoise Bouhour , Antoine Pegat
Botulinum neurotoxin serotype A (BoNT-A) has several therapeutic indications such as spasticity and dystonia. Although its use is generally considered safe, a systemic diffusion can lead to systemic complications, and a botulism-like syndrome can occur after intramuscular injections. Herein, two adult cases who developed general muscle weakness after a BoNT-A intramuscular injection are reported. Both presented with a progressive decrement on low-frequency (LF) repetitive nerve stimulation (RNS). It is suggested that a progressive decrement on LF-RNS in muscles distant from the injection site strongly supports the diagnosis of iatrogenic botulism.
血清 A 型肉毒杆菌神经毒素(BoNT-A)具有多种治疗适应症,如痉挛和肌张力障碍。尽管人们普遍认为其使用是安全的,但全身扩散可能导致全身并发症,肌肉注射后可能出现肉毒中毒样综合征。本文报告了两例在肌肉注射 BoNT-A 后出现全身肌无力的成人病例。两人在接受低频(LF)重复神经刺激(RNS)后均出现进行性肌力下降。研究认为,远离注射部位的肌肉在接受低频重复神经刺激(LF-RNS)时出现进行性减弱,可有力地支持先天性肉毒中毒的诊断。
{"title":"Electrophysiological abnormalities of the neuromuscular transmission in two patients with botulism-like syndrome following Botulinum-A muscle injections","authors":"Julian Theuriet , Laure Huchon , Jacques Luaute , Anne-Evelyne Vallet , Françoise Bouhour , Antoine Pegat","doi":"10.1016/j.neucli.2024.102984","DOIUrl":"https://doi.org/10.1016/j.neucli.2024.102984","url":null,"abstract":"<div><p>Botulinum neurotoxin serotype A (BoNT-A) has several therapeutic indications such as spasticity and dystonia. Although its use is generally considered safe, a systemic diffusion can lead to systemic complications, and a botulism-like syndrome can occur after intramuscular injections. Herein, two adult cases who developed general muscle weakness after a BoNT-A intramuscular injection are reported. Both presented with a progressive decrement on low-frequency (LF) repetitive nerve stimulation (RNS). It is suggested that a progressive decrement on LF-RNS in muscles distant from the injection site strongly supports the diagnosis of iatrogenic botulism.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 4","pages":"Article 102984"},"PeriodicalIF":3.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S098770532400042X/pdfft?md5=e10f627d148fa9d107b542b40cf1cdce&pid=1-s2.0-S098770532400042X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.neucli.2024.102981
J. Guillou , J. Duprez , R. Nabbout , A. Kaminska , S. Napuri , C. Gomes , M. Kuchenbuch , P. Sauleau
Objectives
To evaluate the evolution of interhemispheric coherences (ICo) in background and spindle frequency bands during childhood and use it to identify individuals with corpus callosum dysgenesis (CCd).
Methods
A monocentric cohort of children aged from 0.25 to 15 years old, consisting of 13 children with CCd and 164 without, was analyzed. The ICo of background activity (ICOBckgrdA), sleep spindles (ICOspindles), and their sum (sICO) were calculated. The impact of age, gender, and CC status on the ICo was evaluated, and the sICO was used to discriminate children with or without CCd.
Results
ICOBckgrdA, ICOspindles and sICO increased significantly with age without any effect of gender (p < 10−4), in both groups. The regression equations of the different ICo were stronger, with adjusted R2 values of 0.54, 0.35, and 0.57, respectively. The ICo was lower in children with CCd compared to those without CCd (p < 10−4 for all comparisons). The area under the precision recall curves for predicting CCd using sICO was 0.992 with 98.9 % sensitivity and 87.5 % specificity.
Discussion
ICo of spindles and background activity evolve in parallel to brain maturation and depends on the integrity of the corpus callosum. sICO could be an effective diagnostic biomarker for screening children with interhemispheric dysfunction.
{"title":"Interhemispheric coherence of EEG rhythms in children: Maturation and differentiation in corpus callosum dysgenesis","authors":"J. Guillou , J. Duprez , R. Nabbout , A. Kaminska , S. Napuri , C. Gomes , M. Kuchenbuch , P. Sauleau","doi":"10.1016/j.neucli.2024.102981","DOIUrl":"https://doi.org/10.1016/j.neucli.2024.102981","url":null,"abstract":"<div><h3>Objectives</h3><p>To evaluate the evolution of interhemispheric coherences (ICo) in background and spindle frequency bands during childhood and use it to identify individuals with corpus callosum dysgenesis (CCd).</p></div><div><h3>Methods</h3><p>A monocentric cohort of children aged from 0.25 to 15 years old, consisting of 13 children with CCd and 164 without, was analyzed. The ICo of background activity (ICO<sub>BckgrdA</sub>), sleep spindles (ICO<sub>spindles</sub>), and their sum (<sub>s</sub>ICO) were calculated. The impact of age, gender, and CC status on the ICo was evaluated, and the <sub>s</sub>ICO was used to discriminate children with or without CCd.</p></div><div><h3>Results</h3><p>ICO<sub>BckgrdA</sub>, ICO<sub>spindles</sub> and sICO increased significantly with age without any effect of gender (<em>p</em> < 10<sup>−4</sup>), in both groups. The regression equations of the different ICo were stronger, with adjusted R2 values of 0.54, 0.35, and 0.57, respectively. The ICo was lower in children with CCd compared to those without CCd (<em>p</em> < 10<sup>−4</sup> for all comparisons). The area under the precision recall curves for predicting CCd using <sub>s</sub>ICO was 0.992 with 98.9 % sensitivity and 87.5 % specificity.</p></div><div><h3>Discussion</h3><p>ICo of spindles and background activity evolve in parallel to brain maturation and depends on the integrity of the corpus callosum. sICO could be an effective diagnostic biomarker for screening children with interhemispheric dysfunction.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 3","pages":"Article 102981"},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1016/j.neucli.2024.102976
Vandana Esht , Mohammed M Alshehri , Karthick Balasubramanian , Ramya R Sanjeevi , Mohammed A Shaphe , Ahmed Alhowimel , Aqeel M Alenazi , Bader A Alqahtani , Norah Alhwoaimel
Objectives
The primary goal of the current proposal is to fill the gaps in the literature by studying the effectiveness of transcranial direct current stimulation (tDCS) on lifestyle parameters, and physical, behavioral, and cognitive functions among stroke survivors, and understanding the factors that mediate the effects of various domains related to Health-related Quality of life (HRQoL) improvements.
Methods
Anticipated 64 volunteer subacute stroke survivors (>7 days to 3 months post stroke) aged 40–75 years with National Institutes of Health stroke scale (NIHSS) score of >10 and Mini-Mental State Examination (MMSE) score between 18 and 23 will be randomly assigned at a ratio of 1:1 to receive either: (1) 20 sessions of anodal tDCS or (2) sham tDCS in addition to conventional rehabilitation. Battery driven tDCS will be applied at 2 mA intensity to the dorsolateral prefrontal cortex and primary motor cortex for 20 minutes. The primary endpoints of study will be 36-Item Short Form Survey (SF-36) post intervention at 4 weeks. The secondary outcomes will include Stroke Specific Quality of Life Scale (SS_QOL), Montreal cognitive assessment (MCA), Beck Anxiety Inventory (BAI), Fugl-Meyer Assessment (FMA), 10 m walk test and Modified Barthel Activities of daily living (ADL) Index. At 0.05 level of significance, data normality, within group and between group actual differences will be analyzed with a moderate scope software.
Discussion
Our knowledge of this technique and its use is expanding daily as tDCS motor recovery studies—mostly single-center studies—in either single session or many sessions have been completed and shown positive results. The field is prepared for a multi-center, carefully planned, sham-controlled, double-blinded tDCS study to comprehensively examine its feasibility and effectiveness in enhancing outcomes in stroke population.
Conclusion
The function of Transcranial Direct Current Stimulation in aiding stroke recuperation will be ascertained.
{"title":"Transcranial direct current stimulation (tDCS) for neurological disability among subacute stroke survivors to improve multiple domains in health-related quality of life: Randomized controlled trial protocol","authors":"Vandana Esht , Mohammed M Alshehri , Karthick Balasubramanian , Ramya R Sanjeevi , Mohammed A Shaphe , Ahmed Alhowimel , Aqeel M Alenazi , Bader A Alqahtani , Norah Alhwoaimel","doi":"10.1016/j.neucli.2024.102976","DOIUrl":"https://doi.org/10.1016/j.neucli.2024.102976","url":null,"abstract":"<div><h3>Objectives</h3><p>The primary goal of the current proposal is to fill the gaps in the literature by studying the effectiveness of transcranial direct current stimulation (tDCS) on lifestyle parameters, and physical, behavioral, and cognitive functions among stroke survivors, and understanding the factors that mediate the effects of various domains related to Health-related Quality of life (HRQoL) improvements.</p></div><div><h3>Methods</h3><p>Anticipated 64 volunteer subacute stroke survivors (>7 days to 3 months post stroke) aged 40–75 years with National Institutes of Health stroke scale (NIHSS) score of >10 and Mini-Mental State Examination (MMSE) score between 18 and 23 will be randomly assigned at a ratio of 1:1 to receive either: (1) 20 sessions of anodal tDCS or (2) sham tDCS in addition to conventional rehabilitation. Battery driven tDCS will be applied at 2 mA intensity to the dorsolateral prefrontal cortex and primary motor cortex for 20 minutes. The primary endpoints of study will be 36-Item Short Form Survey (SF-36) post intervention at 4 weeks. The secondary outcomes will include Stroke Specific Quality of Life Scale (SS_QOL), Montreal cognitive assessment (MCA), Beck Anxiety Inventory (BAI), Fugl-Meyer Assessment (FMA), 10 m walk test and Modified Barthel Activities of daily living (ADL) Index. At 0.05 level of significance, data normality, within group and between group actual differences will be analyzed with a moderate scope software.</p></div><div><h3>Discussion</h3><p>Our knowledge of this technique and its use is expanding daily as tDCS motor recovery studies—mostly single-center studies—in either single session or many sessions have been completed and shown positive results. The field is prepared for a multi-center, carefully planned, sham-controlled, double-blinded tDCS study to comprehensively examine its feasibility and effectiveness in enhancing outcomes in stroke population.</p></div><div><h3>Conclusion</h3><p>The function of Transcranial Direct Current Stimulation in aiding stroke recuperation will be ascertained.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"54 3","pages":"Article 102976"},"PeriodicalIF":3.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}