首页 > 最新文献

npj Quantum Information最新文献

英文 中文
Modeling of planar germanium hole qubits in electric and magnetic fields 电场和磁场中的平面锗空穴量子比特建模
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-17 DOI: 10.1038/s41534-024-00897-8
Chien-An Wang, H. Ekmel Ercan, Mark F. Gyure, Giordano Scappucci, Menno Veldhorst, Maximilian Rimbach-Russ

Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention due to their favorable properties and remarkable experimental progress. The sizeable spin-orbit interaction in this structure allows for efficient qubit operations with electric fields. However, it also couples the qubit to electrical noise. In this work, we perform simulations of a heterostructure hosting these hole spin qubits. We solve the effective mass equations for a realistic heterostructure, provide a set of analytical basis wavefunctions, and compute the effective g-factor of the heavy-hole ground state. Our investigations reveal a strong impact of highly excited light-hole states located outside the quantum well on the g-factor. We find that sweet spots, points of operations that are least susceptible to charge noise, for out-of-plane magnetic fields are shifted to impractically large electric fields. However, for magnetic fields close to in-plane alignment, partial sweet spots at low electric fields are recovered. Furthermore, sweet spots with respect to multiple fluctuating charge traps can be found under certain circumstances for different magnetic field alignments. This work will be helpful in understanding and improving the coherence of germanium hole spin qubits.

应变平面锗量子阱中的空穴自旋量子比特因其良好的特性和显著的实验进展而备受关注。这种结构中可观的自旋轨道相互作用使其能够在电场作用下进行高效的量子比特运算。然而,它也会使量子比特受到电噪声的影响。在这项研究中,我们对承载这些空穴自旋量子比特的异质结构进行了模拟。我们求解了现实异质结构的有效质量方程,提供了一组分析基础波函数,并计算了重孔基态的有效 g 因子。我们的研究揭示了位于量子阱外的高激发轻洞态对 g 因子的强烈影响。我们发现,平面外磁场的 "甜蜜点"(最不易受电荷噪声影响的操作点)被转移到了不切实际的大电场中。然而,对于接近平面内排列的磁场,低电场下的部分甜点得以恢复。此外,针对不同的磁场排列,在某些情况下还能找到多个波动电荷陷阱的甜点。这项工作将有助于理解和改进锗空穴自旋量子比特的相干性。
{"title":"Modeling of planar germanium hole qubits in electric and magnetic fields","authors":"Chien-An Wang, H. Ekmel Ercan, Mark F. Gyure, Giordano Scappucci, Menno Veldhorst, Maximilian Rimbach-Russ","doi":"10.1038/s41534-024-00897-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00897-8","url":null,"abstract":"<p>Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention due to their favorable properties and remarkable experimental progress. The sizeable spin-orbit interaction in this structure allows for efficient qubit operations with electric fields. However, it also couples the qubit to electrical noise. In this work, we perform simulations of a heterostructure hosting these hole spin qubits. We solve the effective mass equations for a realistic heterostructure, provide a set of analytical basis wavefunctions, and compute the effective g-factor of the heavy-hole ground state. Our investigations reveal a strong impact of highly excited light-hole states located outside the quantum well on the g-factor. We find that sweet spots, points of operations that are least susceptible to charge noise, for out-of-plane magnetic fields are shifted to impractically large electric fields. However, for magnetic fields close to in-plane alignment, partial sweet spots at low electric fields are recovered. Furthermore, sweet spots with respect to multiple fluctuating charge traps can be found under certain circumstances for different magnetic field alignments. This work will be helpful in understanding and improving the coherence of germanium hole spin qubits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"12 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending the computational reach of a superconducting qutrit processor 扩展超导 Qutrit 处理器的计算范围
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-14 DOI: 10.1038/s41534-024-00892-z
Noah Goss, Samuele Ferracin, Akel Hashim, Arnaud Carignan-Dugas, John Mark Kreikebaum, Ravi K. Naik, David I. Santiago, Irfan Siddiqi

Quantum computing with qudits is an emerging approach that exploits a larger, more connected computational space, providing advantages for many applications, including quantum simulation and quantum error correction. Nonetheless, qudits are typically afflicted by more complex errors and suffer greater noise sensitivity which renders their scaling difficult. In this work, we introduce techniques to tailor arbitrary qudit Markovian noise to stochastic Weyl–Heisenberg channels and mitigate noise that commutes with our Clifford and universal two-qudit gate in generic qudit circuits. We experimentally demonstrate these methods on a superconducting transmon qutrit processor, and benchmark their effectiveness for multipartite qutrit entanglement and random circuit sampling, obtaining up to 3× improvement in our results. To the best of our knowledge, this constitutes the first-ever error mitigation experiment performed on qutrits. Our work shows that despite the intrinsic complexity of manipulating higher-dimensional quantum systems, noise tailoring and error mitigation can significantly extend the computational reach of today’s qudit processors.

使用量子比特的量子计算是一种新兴方法,它可以利用更大、连接更多的计算空间,为量子模拟和量子纠错等许多应用提供优势。然而,量子比特通常会出现更复杂的错误,对噪声的敏感度也更高,这使得它们难以扩展。在这项工作中,我们介绍了将任意量子马尔可夫噪声定制到随机韦尔-海森堡通道的技术,并减轻了在通用量子电路中与我们的克利福德和通用双量子门相交的噪声。我们在一个超导跨门 Qutrit 处理器上实验演示了这些方法,并对它们在多方 Qutrit 纠缠和随机电路采样方面的有效性进行了基准测试,结果提高了 3 倍。据我们所知,这是在 qutrits 上进行的首次误差缓解实验。我们的工作表明,尽管操纵高维量子系统具有内在复杂性,但噪声裁剪和误差缓解可以显著扩展当今量子处理器的计算范围。
{"title":"Extending the computational reach of a superconducting qutrit processor","authors":"Noah Goss, Samuele Ferracin, Akel Hashim, Arnaud Carignan-Dugas, John Mark Kreikebaum, Ravi K. Naik, David I. Santiago, Irfan Siddiqi","doi":"10.1038/s41534-024-00892-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00892-z","url":null,"abstract":"<p>Quantum computing with qudits is an emerging approach that exploits a larger, more connected computational space, providing advantages for many applications, including quantum simulation and quantum error correction. Nonetheless, qudits are typically afflicted by more complex errors and suffer greater noise sensitivity which renders their scaling difficult. In this work, we introduce techniques to tailor arbitrary qudit Markovian noise to stochastic Weyl–Heisenberg channels and mitigate noise that commutes with our Clifford and universal two-qudit gate in generic qudit circuits. We experimentally demonstrate these methods on a superconducting transmon qutrit processor, and benchmark their effectiveness for multipartite qutrit entanglement and random circuit sampling, obtaining up to 3× improvement in our results. To the best of our knowledge, this constitutes the first-ever error mitigation experiment performed on qutrits. Our work shows that despite the intrinsic complexity of manipulating higher-dimensional quantum systems, noise tailoring and error mitigation can significantly extend the computational reach of today’s qudit processors.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"17 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo twirling mitigation of coherent errors in non-Clifford gates 非克里福德门中相干误差的伪旋转缓解
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-11 DOI: 10.1038/s41534-024-00889-8
Jader P. Santos, Ben Bar, Raam Uzdin

The conventional circuit paradigm, utilizing a small set of gates to construct arbitrary quantum circuits, is hindered by significant noise. In the quantum Fourier transform, for instance, the standard gate paradigm employs two CNOT gates for the partial CPhase. In contrast, some quantum computers can directly implement such operations using their native interaction, resulting in less noisy gates. Unfortunately, coherent errors degrade the performance of these gates. In Clifford gates such as the CNOT, these errors can be addressed through randomized compiling (RC). However, RC does not apply to the non-Clifford multi-qubit native implementations described above. The present work introduces and experimentally demonstrates a technique called ‘Pseudo Twirling’ (PST) to address coherent errors. We demonstrate experimentally that integrating PST with the ‘Adaptive KIK’ quantum error mitigation method enables the simultaneous mitigation of noise and coherent errors in multi-qubit non-Clifford gates.

传统的电路范式利用一组小门来构建任意量子电路,但受到严重噪声的阻碍。例如,在量子傅立叶变换中,标准门范式为部分 CPhase 使用了两个 CNOT 门。相比之下,一些量子计算机可以直接使用它们的本机交互来实现此类操作,从而减少了门电路的噪声。不幸的是,相干误差会降低这些门的性能。在克利福德门(如 CNOT)中,这些误差可以通过随机编译(RC)来解决。然而,RC 并不适用于上述非克利福德多量子比特本机实现。本研究介绍并实验演示了一种名为 "伪旋转"(Pseudo Twirling,PST)的技术来解决相干错误。我们通过实验证明,将 PST 与 "自适应 KIK "量子误差缓解方法相结合,可以同时缓解多量子比特非克里福门中的噪声和相干误差。
{"title":"Pseudo twirling mitigation of coherent errors in non-Clifford gates","authors":"Jader P. Santos, Ben Bar, Raam Uzdin","doi":"10.1038/s41534-024-00889-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00889-8","url":null,"abstract":"<p>The conventional circuit paradigm, utilizing a small set of gates to construct arbitrary quantum circuits, is hindered by significant noise. In the quantum Fourier transform, for instance, the standard gate paradigm employs two CNOT gates for the partial CPhase. In contrast, some quantum computers can directly implement such operations using their native interaction, resulting in less noisy gates. Unfortunately, coherent errors degrade the performance of these gates. In Clifford gates such as the CNOT, these errors can be addressed through randomized compiling (RC). However, RC does not apply to the non-Clifford multi-qubit native implementations described above. The present work introduces and experimentally demonstrates a technique called ‘Pseudo Twirling’ (PST) to address coherent errors. We demonstrate experimentally that integrating PST with the ‘Adaptive KIK’ quantum error mitigation method enables the simultaneous mitigation of noise and coherent errors in multi-qubit non-Clifford gates.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"60 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalised Kochen–Specker theorem for finite non-deterministic outcome assignments 有限非确定性结果分配的广义科钦-斯派克定理
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-10 DOI: 10.1038/s41534-024-00895-w
Ravishankar Ramanathan

The Kochen–Specker (KS) theorem is a cornerstone result in quantum foundations, establishing that quantum correlations in Hilbert spaces of dimension d ≥ 3 cannot be explained by (consistent) hidden variable theories that assign a single deterministic outcome to each measurement. Specifically, there exist finite sets of vectors in these dimensions such that no non-contextual deterministic ({0, 1}) outcome assignment is possible obeying the rules of exclusivity and completeness—that the sum of assignments to every set of mutually orthogonal vectors be ≤1 and the sum of value assignments to any d mutually orthogonal vectors be equal to 1. Another central result in quantum foundations is Gleason’s theorem that justifies the Born rule as a mathematical consequence of the quantum formalism. The KS theorem can be seen as a consequence of Gleason’s theorem and the logical compactness theorem. In a similar vein, Gleason’s theorem also indicates the existence of KS-type finite vector constructions to rule out other finite-alphabet outcome assignments beyond the {0, 1} case. Here, we propose a generalisation of the KS theorem that rules out hidden variable theories with outcome assignments in the set {0, p, 1 − p, 1} for p [0, 1/d) (1/d, 1/2]. The case p = 1/2 is especially physically significant. We show that in this case the result rules out (consistent) hidden variable theories that are fundamentally binary, i.e., theories where each measurement has fundamentally at most two outcomes (in contrast to the single deterministic outcome per measurement ruled out by KS). We present a device-independent application of this generalised KS theorem by constructing a two-player non-local game for which a perfect quantum winning strategy exists (a Pseudo-telepathy game) while no perfect classical strategy exists even if the players are provided with additional no-signaling resources of PR-box type (with marginals in {0, 1/2, 1}).

科钦-斯派克(KS)定理是量子基础的奠基性成果,它确定了维数 d ≥ 3 的希尔伯特空间中的量子相关性无法用(一致的)隐变量理论来解释,该理论为每次测量分配了一个单一的确定性结果。具体地说,在这些维度中存在着有限的向量集,以至于没有任何非上下文确定性({0, 1})结果赋值能够遵守排他性和完备性规则--即对每一组相互正交向量的赋值之和≤1,以及对任意 d 个相互正交向量的值赋值之和等于 1。量子基础的另一个核心结果是格里森定理,它证明了玻恩法则是量子形式主义的数学结果。KS 定理可视为格里森定理和逻辑紧凑性定理的结果。与此类似,格里森定理也指出了 KS 型有限矢量构造的存在,以排除 {0, 1} 情况之外的其他有限字母结果赋值。在这里,我们提出了KS定理的一般化,即在p∈ [0, 1/d) ∪ (1/d, 1/2] 的情况下,排除结果赋值在集合{0, p, 1 - p, 1}中的隐变量理论。p = 1/2 的情况尤其具有物理意义。我们证明,在这种情况下,结果排除了从根本上说是二元的(一致的)隐变量理论,即每次测量从根本上说最多有两种结果的理论(与 KS 排除的每次测量只有一个确定性结果相反)。我们提出了这个广义 KS 定理的一个独立于设备的应用,构建了一个双人非局域博弈,其中存在完美的量子获胜策略(伪心灵感应博弈),而即使为博弈者提供额外的 PR-box 类型的无信号资源(边际为 {0, 1/2, 1}),也不存在完美的经典策略。
{"title":"Generalised Kochen–Specker theorem for finite non-deterministic outcome assignments","authors":"Ravishankar Ramanathan","doi":"10.1038/s41534-024-00895-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00895-w","url":null,"abstract":"<p>The Kochen–Specker (KS) theorem is a cornerstone result in quantum foundations, establishing that quantum correlations in Hilbert spaces of dimension <i>d</i> ≥ 3 cannot be explained by (consistent) hidden variable theories that assign a single deterministic outcome to each measurement. Specifically, there exist finite sets of vectors in these dimensions such that no non-contextual deterministic ({0, 1}) outcome assignment is possible obeying the rules of exclusivity and completeness—that the sum of assignments to every set of mutually orthogonal vectors be ≤1 and the sum of value assignments to any <i>d</i> mutually orthogonal vectors be equal to 1. Another central result in quantum foundations is Gleason’s theorem that justifies the Born rule as a mathematical consequence of the quantum formalism. The KS theorem can be seen as a consequence of Gleason’s theorem and the logical compactness theorem. In a similar vein, Gleason’s theorem also indicates the existence of KS-type finite vector constructions to rule out other finite-alphabet outcome assignments beyond the {0, 1} case. Here, we propose a generalisation of the KS theorem that rules out hidden variable theories with outcome assignments in the set {0, <i>p</i>, 1 − <i>p</i>, 1} for <i>p</i> <span>∈</span> [0, 1/<i>d</i>) <span>∪</span> (1/<i>d</i>, 1/2]. The case <i>p</i> = 1/2 is especially physically significant. We show that in this case the result rules out (consistent) hidden variable theories that are fundamentally binary, i.e., theories where each measurement has fundamentally at most two outcomes (in contrast to the single deterministic outcome per measurement ruled out by KS). We present a device-independent application of this generalised KS theorem by constructing a two-player non-local game for which a perfect quantum winning strategy exists (a Pseudo-telepathy game) while no perfect classical strategy exists even if the players are provided with additional no-signaling resources of PR-box type (with marginals in {0, 1/2, 1}).</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"27 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous measurement of multiple incompatible observables and tradeoff in multiparameter quantum estimation 多参数量子估算中多个不兼容观测变量的同时测量与权衡
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-06 DOI: 10.1038/s41534-024-00894-x
Hongzhen Chen, Lingna Wang, Haidong Yuan

How well can multiple incompatible observables be implemented by a single measurement? This is a fundamental problem in quantum mechanics with wide implications for the performance optimization of numerous tasks in quantum information science. While existing studies have been mostly focusing on the approximation of two observables with a single measurement, in practice multiple observables are often encountered, for which the errors of the approximations are little understood. Here we provide a framework to study the implementation of an arbitrary finite number of observables with a single measurement. Our methodology yields novel analytical bounds on the errors of these implementations, significantly advancing our understanding of this fundamental problem. Additionally, we introduce a more stringent bound utilizing semi-definite programming that, in the context of two observables, generates an analytical bound tighter than previously known bounds. The derived bounds have direct applications in assessing the trade-off between the precision of estimating multiple parameters in quantum metrology, an area with crucial theoretical and practical implications. To validate the validity of our findings, we conducted experimental verification using a superconducting quantum processor. This experimental validation not only confirms the theoretical results but also effectively bridges the gap between the derived bounds and empirical data obtained from real-world experiments. Our work paves the way for optimizing various tasks in quantum information science that involve multiple noncommutative observables.

一次测量能在多大程度上实现多个不兼容的观测值?这是量子力学中的一个基本问题,对量子信息科学中众多任务的性能优化具有广泛影响。现有的研究主要集中在用单次测量近似两个观测值,而在实际应用中经常会遇到多个观测值,对于这些观测值的近似误差却知之甚少。在这里,我们提供了一个框架,研究用一次测量实现任意有限数量的观测值。我们的方法对这些实现的误差产生了新的分析界限,极大地推动了我们对这一基本问题的理解。此外,我们还利用半有限编程引入了更严格的约束,在两个观测变量的情况下,产生的分析约束比以前已知的约束更严格。推导出的边界可直接用于评估量子计量学中多个参数估计精度之间的权衡,这是一个具有重要理论和实践意义的领域。为了验证我们研究结果的有效性,我们使用超导量子处理器进行了实验验证。这一实验验证不仅证实了理论结果,还有效地弥合了推导边界与实际实验中获得的经验数据之间的差距。我们的工作为优化量子信息科学中涉及多个非交换观测变量的各种任务铺平了道路。
{"title":"Simultaneous measurement of multiple incompatible observables and tradeoff in multiparameter quantum estimation","authors":"Hongzhen Chen, Lingna Wang, Haidong Yuan","doi":"10.1038/s41534-024-00894-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00894-x","url":null,"abstract":"<p>How well can multiple incompatible observables be implemented by a single measurement? This is a fundamental problem in quantum mechanics with wide implications for the performance optimization of numerous tasks in quantum information science. While existing studies have been mostly focusing on the approximation of two observables with a single measurement, in practice multiple observables are often encountered, for which the errors of the approximations are little understood. Here we provide a framework to study the implementation of an arbitrary finite number of observables with a single measurement. Our methodology yields novel analytical bounds on the errors of these implementations, significantly advancing our understanding of this fundamental problem. Additionally, we introduce a more stringent bound utilizing semi-definite programming that, in the context of two observables, generates an analytical bound tighter than previously known bounds. The derived bounds have direct applications in assessing the trade-off between the precision of estimating multiple parameters in quantum metrology, an area with crucial theoretical and practical implications. To validate the validity of our findings, we conducted experimental verification using a superconducting quantum processor. This experimental validation not only confirms the theoretical results but also effectively bridges the gap between the derived bounds and empirical data obtained from real-world experiments. Our work paves the way for optimizing various tasks in quantum information science that involve multiple noncommutative observables.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"46 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gibbs state sampling via cluster expansions 通过集群扩展进行吉布斯状态采样
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-04 DOI: 10.1038/s41534-024-00887-w
Norhan M. Eassa, Mahmoud M. Moustafa, Arnab Banerjee, Jeffrey Cohn

Gibbs states (i.e., thermal states) can be used for several applications such as quantum simulation, quantum machine learning, quantum optimization, and the study of open quantum systems. Moreover, semi-definite programming, combinatorial optimization problems, and training quantum Boltzmann machines can all be addressed by sampling from well-prepared Gibbs states. With that, however, comes the fact that preparing and sampling from Gibbs states on a quantum computer are notoriously difficult tasks. Such tasks can require large overhead in resources and/or calibration even in the simplest of cases, as well as the fact that the implementation might be limited to only a specific set of systems. We propose a method based on sampling from a quasi-distribution consisting of tensor products of mixed states on local clusters, i.e., expanding the full Gibbs state into a sum of products of local “Gibbs-cumulant” type states easier to implement and sample from on quantum hardware. We begin with presenting results for 4-spin linear chains with XY spin interactions, for which we obtain the ZZ dynamical spin-spin correlation functions and dynamical structure factor. We also present the results of measuring the specific heat of the 8-spin chain Gibbs state ρ8.

吉布斯态(即热态)可用于多种应用,如量子模拟、量子机器学习、量子优化和开放量子系统研究。此外,半有限编程、组合优化问题和训练量子玻尔兹曼机都可以通过从准备充分的吉布斯态采样来解决。然而,随之而来的事实是,在量子计算机上准备和从吉布斯态采样是众所周知的困难任务。即使在最简单的情况下,这些任务也需要大量的资源和/或校准开销,而且实施可能仅限于一组特定的系统。我们提出了一种基于准分布采样的方法,这种准分布由局部簇上混合状态的张量乘积组成,即把完整的吉布斯状态扩展为局部 "吉布斯积 "类型状态的乘积之和,更易于在量子硬件上实现和采样。我们首先介绍了具有 XY 自旋相互作用的 4 自旋线性链的结果,并得到了 ZZ 动态自旋-自旋相关函数和动态结构因子。我们还介绍了测量 8 自旋链吉布斯态 ρ8 比热的结果。
{"title":"Gibbs state sampling via cluster expansions","authors":"Norhan M. Eassa, Mahmoud M. Moustafa, Arnab Banerjee, Jeffrey Cohn","doi":"10.1038/s41534-024-00887-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00887-w","url":null,"abstract":"<p>Gibbs states (i.e., thermal states) can be used for several applications such as quantum simulation, quantum machine learning, quantum optimization, and the study of open quantum systems. Moreover, semi-definite programming, combinatorial optimization problems, and training quantum Boltzmann machines can all be addressed by sampling from well-prepared Gibbs states. With that, however, comes the fact that preparing and sampling from Gibbs states on a quantum computer are notoriously difficult tasks. Such tasks can require large overhead in resources and/or calibration even in the simplest of cases, as well as the fact that the implementation might be limited to only a specific set of systems. We propose a method based on sampling from a quasi-distribution consisting of tensor products of mixed states on local clusters, i.e., expanding the full Gibbs state into a sum of products of local “Gibbs-cumulant” type states easier to implement and sample from on quantum hardware. We begin with presenting results for 4-spin linear chains with XY spin interactions, for which we obtain the <i>Z</i><i>Z</i> dynamical spin-spin correlation functions and dynamical structure factor. We also present the results of measuring the specific heat of the 8-spin chain Gibbs state <i>ρ</i><sub>8</sub>.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"5 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-fidelity spin readout via the double latching mechanism 通过双锁扣机制实现高保真自旋读数
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-03 DOI: 10.1038/s41534-024-00882-1
Haruki Kiyama, Danny van Hien, Arne Ludwig, Andreas D. Wieck, Akira Oiwa

Projective measurement of single-electron spins, or spin readout, is among the most fundamental technologies for spin-based quantum information processing. Implementing spin readout with both high-fidelity and scalability is indispensable for developing fault-tolerant quantum computers in large-scale spin-qubit arrays. To achieve high fidelity, a latching mechanism is useful. However, the fidelity can be decreased by spin relaxation and charge state leakage, and the scalability is currently challenging. Here, we propose and demonstrate a double-latching high-fidelity spin readout scheme, which suppresses errors via an additional latching process. We experimentally show that the double-latching mechanism provides significantly higher fidelity than the conventional latching mechanism and estimate a potential spin readout fidelity of 99.94% using highly spin-dependent tunnel rates. Due to isolation from error-inducing processes, the double-latching mechanism combined with scalable charge readout is expected to be useful for large-scale spin-qubit arrays while maintaining high fidelity.

单电子自旋的投射测量或自旋读出是基于自旋的量子信息处理的最基本技术之一。要在大规模自旋量子比特阵列中开发容错量子计算机,就必须实现高保真和可扩展的自旋读出。为了实现高保真,锁存机制非常有用。然而,自旋弛豫和电荷态泄漏会降低保真度,可扩展性目前也面临挑战。在这里,我们提出并演示了一种双锁存高保真自旋读出方案,该方案通过额外的锁存过程来抑制误差。我们的实验表明,双闩锁机制的保真度明显高于传统的闩锁机制,利用高度依赖自旋的隧道速率,我们估计自旋读出的潜在保真度可达 99.94%。由于与错误诱导过程隔离,双锁存机制与可扩展的电荷读出相结合,有望在保持高保真的同时适用于大规模自旋量子比特阵列。
{"title":"High-fidelity spin readout via the double latching mechanism","authors":"Haruki Kiyama, Danny van Hien, Arne Ludwig, Andreas D. Wieck, Akira Oiwa","doi":"10.1038/s41534-024-00882-1","DOIUrl":"https://doi.org/10.1038/s41534-024-00882-1","url":null,"abstract":"<p>Projective measurement of single-electron spins, or spin readout, is among the most fundamental technologies for spin-based quantum information processing. Implementing spin readout with both high-fidelity and scalability is indispensable for developing fault-tolerant quantum computers in large-scale spin-qubit arrays. To achieve high fidelity, a latching mechanism is useful. However, the fidelity can be decreased by spin relaxation and charge state leakage, and the scalability is currently challenging. Here, we propose and demonstrate a double-latching high-fidelity spin readout scheme, which suppresses errors via an additional latching process. We experimentally show that the double-latching mechanism provides significantly higher fidelity than the conventional latching mechanism and estimate a potential spin readout fidelity of 99.94% using highly spin-dependent tunnel rates. Due to isolation from error-inducing processes, the double-latching mechanism combined with scalable charge readout is expected to be useful for large-scale spin-qubit arrays while maintaining high fidelity.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"1 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gate-set evaluation metrics for closed-loop optimal control on nitrogen-vacancy center ensembles in diamond 金刚石氮空位中心集合闭环优化控制的门集评估指标
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-02 DOI: 10.1038/s41534-024-00893-y
Philipp J. Vetter, Thomas Reisser, Maximilian G. Hirsch, Tommaso Calarco, Felix Motzoi, Fedor Jelezko, Matthias M. Müller

A recurring challenge in quantum science and technology is the precise control of their underlying dynamics that lead to the desired quantum operations, often described by a set of quantum gates. These gates can be subject to application-specific errors, leading to a dependence of their controls on the chosen circuit, the quality measure and the gate-set itself. A natural solution would be to apply quantum optimal control in an application-oriented fashion. In turn, this requires the definition of a meaningful measure of the contextual gate-set performance. Therefore, we explore and compare the applicability of quantum process tomography, linear inversion gate-set tomography, randomized linear gate-set tomography, and randomized benchmarking as measures for closed-loop quantum optimal control experiments, using a macroscopic ensemble of nitrogen-vacancy centers in diamond as a test-bed. Our work demonstrates the relative trade-offs between those measures and how to significantly enhance the gate-set performance, leading to an improvement across all investigated methods.

量子科学与技术领域经常面临的一个挑战是如何精确控制其基本动态,从而实现所需的量子操作,这些操作通常由一组量子门描述。这些量子门可能会受到特定应用误差的影响,从而导致其控制取决于所选电路、质量度量和量子门集本身。一个自然的解决方案是以应用为导向的方式应用量子优化控制。反过来,这就需要定义一种有意义的测量方法来衡量上下文门组的性能。因此,我们探索并比较了量子过程层析成像、线性反转门集层析成像、随机线性门集层析成像和随机基准作为闭环量子优化控制实验测量方法的适用性,并将金刚石中的氮空位中心宏观集合作为测试平台。我们的工作证明了这些测量方法之间的相对权衡,以及如何显著提高门集性能,从而改进所有研究方法。
{"title":"Gate-set evaluation metrics for closed-loop optimal control on nitrogen-vacancy center ensembles in diamond","authors":"Philipp J. Vetter, Thomas Reisser, Maximilian G. Hirsch, Tommaso Calarco, Felix Motzoi, Fedor Jelezko, Matthias M. Müller","doi":"10.1038/s41534-024-00893-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00893-y","url":null,"abstract":"<p>A recurring challenge in quantum science and technology is the precise control of their underlying dynamics that lead to the desired quantum operations, often described by a set of quantum gates. These gates can be subject to application-specific errors, leading to a dependence of their controls on the chosen circuit, the quality measure and the gate-set itself. A natural solution would be to apply quantum optimal control in an application-oriented fashion. In turn, this requires the definition of a meaningful measure of the contextual gate-set performance. Therefore, we explore and compare the applicability of quantum process tomography, linear inversion gate-set tomography, randomized linear gate-set tomography, and randomized benchmarking as measures for closed-loop quantum optimal control experiments, using a macroscopic ensemble of nitrogen-vacancy centers in diamond as a test-bed. Our work demonstrates the relative trade-offs between those measures and how to significantly enhance the gate-set performance, leading to an improvement across all investigated methods.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"25 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure and robust randomness with sequential quantum measurements 利用顺序量子测量实现安全稳健的随机性
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-30 DOI: 10.1038/s41534-024-00879-w
Matteo Padovan, Giulio Foletto, Lorenzo Coccia, Marco Avesani, Paolo Villoresi, Giuseppe Vallone

Quantum correlations between measurements of separated observers are crucial for applications like randomness generation and key distribution. Although device-independent security can be certified with minimal assumptions, current protocols have limited performance. Here, we exploit sequential measurements, defined with a precise temporal order, to enhance performance by reusing quantum states. We provide a geometric perspective and a general mathematical framework, analytically proving a Tsirelson-like boundary for sequential quantum correlations, which represents a trade-off in nonlocality shared by sequential users. This boundary is advantageous for secure quantum randomness generation, certifying maximum bits per state with one remote and two sequential parties, even if one sequential user shares no nonlocality. Our simple qubit protocol reaches this boundary, and numerical analysis shows improved robustness under realistic noise. A photonic implementation confirms feasibility and robustness. This study advances the understanding of sequential quantum correlations and offers insights for efficient device-independent protocols.

在随机性生成和密钥分配等应用中,不同观察者测量值之间的量子相关性至关重要。虽然独立于设备的安全性可以通过最少的假设得到认证,但目前的协议性能有限。在这里,我们利用以精确时间顺序定义的顺序测量,通过重复使用量子态来提高性能。我们提供了一个几何视角和通用数学框架,分析证明了顺序量子相关性的齐列尔松边界,它代表了顺序用户共享的非位置性的权衡。这一边界有利于安全量子随机性的生成,即使一个顺序用户不共享非位置性,也能通过一个远程和两个顺序方认证每个状态的最大比特数。我们的简单量子比特协议达到了这一界限,数值分析表明在现实噪声下的鲁棒性有所提高。光子实现证实了其可行性和稳健性。这项研究加深了人们对顺序量子相关性的理解,并为独立于设备的高效协议提供了启示。
{"title":"Secure and robust randomness with sequential quantum measurements","authors":"Matteo Padovan, Giulio Foletto, Lorenzo Coccia, Marco Avesani, Paolo Villoresi, Giuseppe Vallone","doi":"10.1038/s41534-024-00879-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00879-w","url":null,"abstract":"<p>Quantum correlations between measurements of separated observers are crucial for applications like randomness generation and key distribution. Although device-independent security can be certified with minimal assumptions, current protocols have limited performance. Here, we exploit sequential measurements, defined with a precise temporal order, to enhance performance by reusing quantum states. We provide a geometric perspective and a general mathematical framework, analytically proving a Tsirelson-like boundary for sequential quantum correlations, which represents a trade-off in nonlocality shared by sequential users. This boundary is advantageous for secure quantum randomness generation, certifying maximum bits per state with one remote and two sequential parties, even if one sequential user shares no nonlocality. Our simple qubit protocol reaches this boundary, and numerical analysis shows improved robustness under realistic noise. A photonic implementation confirms feasibility and robustness. This study advances the understanding of sequential quantum correlations and offers insights for efficient device-independent protocols.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"23 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Randomized semi-quantum matrix processing 随机半量子矩阵处理
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-30 DOI: 10.1038/s41534-024-00883-0
Allan Tosta, Thais de Lima Silva, Giancarlo Camilo, Leandro Aolita

We present a hybrid quantum-classical framework for simulating generic matrix functions more amenable to early fault-tolerant quantum hardware than standard quantum singular-value transformations. The method is based on randomization over the Chebyshev approximation of the target function while keeping the matrix oracle quantum, and is assisted by a variant of the Hadamard test that removes the need for post-selection. The resulting statistical overhead is similar to the fully quantum case and does not incur any circuit depth degradation. On the contrary, the average circuit depth is shown to get smaller, yielding equivalent reductions in noise sensitivity, as explicitly shown for depolarizing noise and coherent errors. We apply our technique to partition-function estimation, linear system solvers, and ground-state energy estimation. For these cases, we prove advantages on average depths, including quadratic speed-ups on costly parameters and even the removal of the approximation-error dependence.

与标准量子奇异值变换相比,我们提出的量子-经典混合框架更适合早期容错量子硬件模拟通用矩阵函数。该方法基于目标函数的切比雪夫近似的随机化,同时保持矩阵甲骨文的量子化,并通过哈达玛检验的变体辅助,消除了后选择的需要。由此产生的统计开销与全量子情况类似,不会造成任何电路深度下降。相反,平均电路深度会变小,噪声灵敏度也会相应降低,这一点在去极化噪声和相干误差中得到了明确体现。我们将我们的技术应用于分区函数估计、线性系统求解器和基态能量估计。在这些情况下,我们证明了平均深度的优势,包括对昂贵参数的二次加速,甚至消除了对近似误差的依赖。
{"title":"Randomized semi-quantum matrix processing","authors":"Allan Tosta, Thais de Lima Silva, Giancarlo Camilo, Leandro Aolita","doi":"10.1038/s41534-024-00883-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00883-0","url":null,"abstract":"<p>We present a hybrid quantum-classical framework for simulating generic matrix functions more amenable to early fault-tolerant quantum hardware than standard quantum singular-value transformations. The method is based on randomization over the Chebyshev approximation of the target function while keeping the matrix oracle quantum, and is assisted by a variant of the Hadamard test that removes the need for post-selection. The resulting statistical overhead is similar to the fully quantum case and does not incur any circuit depth degradation. On the contrary, the average circuit depth is shown to get smaller, yielding equivalent reductions in noise sensitivity, as explicitly shown for depolarizing noise and coherent errors. We apply our technique to partition-function estimation, linear system solvers, and ground-state energy estimation. For these cases, we prove advantages on average depths, including quadratic speed-ups on costly parameters and even the removal of the approximation-error dependence.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"115 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Quantum Information
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1