首页 > 最新文献

npj Quantum Information最新文献

英文 中文
Hardware-tailored diagonalization circuits 硬件定制对角化电路
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-21 DOI: 10.1038/s41534-024-00901-1
Daniel Miller, Laurin E. Fischer, Kyano Levi, Eric J. Kuehnke, Igor O. Sokolov, Panagiotis Kl. Barkoutsos, Jens Eisert, Ivano Tavernelli

A central building block of many quantum algorithms is the diagonalization of Pauli operators. Although it is always possible to construct a quantum circuit that simultaneously diagonalizes a given set of commuting Pauli operators, only resource-efficient circuits can be executed reliably on near-term quantum computers. Generic diagonalization circuits, in contrast, often lead to an unaffordable SWAP gate overhead on quantum devices with limited hardware connectivity. A common alternative is to exclude two-qubit gates altogether. However, this comes at the severe cost of restricting the class of diagonalizable sets of Pauli operators to tensor product bases (TPBs). In this article, we introduce a theoretical framework for constructing hardware-tailored (HT) diagonalization circuits. Our framework establishes a systematic and highly flexible procedure for tailoring diagonalization circuits with ultra-low gate counts. We highlight promising use cases of our framework and – as a proof-of-principle application – we devise an efficient algorithm for grouping the Pauli operators of a given Hamiltonian into jointly-HT-diagonalizable sets. For several classes of Hamiltonians, we observe that our approach requires fewer measurements than conventional TPB approaches. Finally, we experimentally demonstrate that HT circuits can improve the efficiency of estimating expectation values with cloud-based quantum computers.

许多量子算法的核心组成部分是保利算子的对角化。虽然总是有可能构建一个量子电路,同时对一组给定的共通保利算子进行对角化,但只有资源效率高的电路才能在近期量子计算机上可靠地执行。相比之下,通用对角化电路往往会在硬件连接有限的量子设备上导致难以承受的 SWAP 门开销。一种常见的替代方法是完全排除双量子比特门。然而,这样做的严重代价是将可对角化的保利算子集限制为张量乘基(TPB)。在本文中,我们介绍了构建硬件定制(HT)对角化电路的理论框架。我们的框架为定制具有超低门数的对角化电路建立了一个系统而高度灵活的程序。我们重点介绍了我们的框架有前途的用例,并作为原理性应用的证明,设计了一种高效算法,将给定哈密顿的保利算子分组为联合 HT 对角化集。对于几类哈密顿,我们发现我们的方法比传统的 TPB 方法需要更少的测量。最后,我们通过实验证明,HT 电路可以提高云量子计算机估计期望值的效率。
{"title":"Hardware-tailored diagonalization circuits","authors":"Daniel Miller, Laurin E. Fischer, Kyano Levi, Eric J. Kuehnke, Igor O. Sokolov, Panagiotis Kl. Barkoutsos, Jens Eisert, Ivano Tavernelli","doi":"10.1038/s41534-024-00901-1","DOIUrl":"https://doi.org/10.1038/s41534-024-00901-1","url":null,"abstract":"<p>A central building block of many quantum algorithms is the diagonalization of Pauli operators. Although it is always possible to construct a quantum circuit that simultaneously diagonalizes a given set of commuting Pauli operators, only resource-efficient circuits can be executed reliably on near-term quantum computers. Generic diagonalization circuits, in contrast, often lead to an unaffordable SWAP gate overhead on quantum devices with limited hardware connectivity. A common alternative is to exclude two-qubit gates altogether. However, this comes at the severe cost of restricting the class of diagonalizable sets of Pauli operators to tensor product bases (TPBs). In this article, we introduce a theoretical framework for constructing hardware-tailored (HT) diagonalization circuits. Our framework establishes a systematic and highly flexible procedure for tailoring diagonalization circuits with ultra-low gate counts. We highlight promising use cases of our framework and – as a proof-of-principle application – we devise an efficient algorithm for grouping the Pauli operators of a given Hamiltonian into jointly-HT-diagonalizable sets. For several classes of Hamiltonians, we observe that our approach requires fewer measurements than conventional TPB approaches. Finally, we experimentally demonstrate that HT circuits can improve the efficiency of estimating expectation values with cloud-based quantum computers.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"231 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Many-body entanglement via ‘which-path’ information 通过 "路径 "信息实现多体纠缠
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-21 DOI: 10.1038/s41534-024-00899-6
Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer
We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions with the particles. We show how such interactions can create an interference pattern that vanishes on average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum correlations. Measuring the state of the quantum detector projects the joint-particle wavefunction into highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of many-body quantum correlations in systems not often associated with these phenomena, such as atoms in waveguide QED and free electrons in transmission electron microscopy.
我们提议利用量子探测器进行多粒子 "哪条路径 "格登肯实验。与传统的 "哪条路径 "实验相反,探测器在与粒子相互作用时保持其量子态。我们展示了这种相互作用如何产生一种干扰模式,这种模式与传统的 "哪条路径 "方案一样平均消失,但却包含隐藏的多体量子相关性。测量量子探测器的状态会将粒子联合波函数投射到高度纠缠态,如 GHZ。反之,测量粒子则会将探测器波函数投射到所需的状态,如谐振子探测器(如光子腔)的薛定谔猫或 GKP 状态。因此,我们的工作开辟了一条新路,可以在通常与多体量子关联现象无关的系统中,如波导 QED 中的原子和透射电子显微镜中的自由电子中,创建和探索多体量子关联。
{"title":"Many-body entanglement via ‘which-path’ information","authors":"Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer","doi":"10.1038/s41534-024-00899-6","DOIUrl":"https://doi.org/10.1038/s41534-024-00899-6","url":null,"abstract":"We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions with the particles. We show how such interactions can create an interference pattern that vanishes on average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum correlations. Measuring the state of the quantum detector projects the joint-particle wavefunction into highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of many-body quantum correlations in systems not often associated with these phenomena, such as atoms in waveguide QED and free electrons in transmission electron microscopy.","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"57 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local testability of distance-balanced quantum codes 距离平衡量子密码的局部可测试性
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-20 DOI: 10.1038/s41534-024-00908-8
Adam Wills, Ting-Chun Lin, Min-Hsiu Hsieh

In this paper, we prove a lower bound on the soundness of quantum locally testable codes under the distance balancing construction of Evra et al. Our technical contribution is that the soundness of the quantum code after this procedure is at least its soundness before the procedure divided by the length of the classical code used to perform distance balancing. This allows us to use any classical code when distance balancing, where previously only the repetition code had been considered for these codes. By using a good classical low-density parity check (LDPC) code, we are able to grow the dimension of the hypersphere product codes and the hemicubic codes while maintaining their distance and locality, but at the expense of soundness. From this, and also by distance balancing a chain complex of Cross et al., we obtain quantum locally testable codes of new parameters.

在本文中,我们证明了在埃弗拉等人的距离平衡构造下量子局部可检验码的健全性下限。我们的技术贡献在于,经过这一过程后量子码的健全性至少是其在该过程之前的健全性除以用于执行距离平衡的经典码的长度。这使得我们在进行距离平衡时可以使用任何经典编码,而以前这些编码只考虑重复编码。通过使用优秀的经典低密度奇偶校验(LDPC)码,我们可以在保持距离和位置性的同时,提高超球积码和半立方体码的维度,但这是以牺牲稳健性为代价的。由此,再通过克罗斯等人的链式复码的距离平衡,我们得到了新参数的量子局部可检验码。
{"title":"Local testability of distance-balanced quantum codes","authors":"Adam Wills, Ting-Chun Lin, Min-Hsiu Hsieh","doi":"10.1038/s41534-024-00908-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00908-8","url":null,"abstract":"<p>In this paper, we prove a lower bound on the soundness of quantum locally testable codes under the distance balancing construction of Evra et al. Our technical contribution is that the soundness of the quantum code after this procedure is at least its soundness before the procedure divided by the length of the classical code used to perform distance balancing. This allows us to use any classical code when distance balancing, where previously only the repetition code had been considered for these codes. By using a good classical low-density parity check (LDPC) code, we are able to grow the dimension of the hypersphere product codes and the hemicubic codes while maintaining their distance and locality, but at the expense of soundness. From this, and also by distance balancing a chain complex of Cross et al., we obtain quantum locally testable codes of new parameters.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"77 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon 硅基外延二氧化铈中 Er 自旋量子比特的光学和自旋相干性
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-20 DOI: 10.1038/s41534-024-00903-z
Jiefei Zhang, Gregory D. Grant, Ignas Masiulionis, Michael T. Solomon, Jonathan C. Marcks, Jasleen K. Bindra, Jens Niklas, Alan M. Dibos, Oleg G. Poluektov, F. Joseph Heremans, Supratik Guha, David D. Awschalom

Robust spin-photon interfaces with optical transitions in the telecommunication band are essential for quantum networking technologies. Erbium (Er) ions are the ideal candidate with environmentally protected transitions in telecom-C band. Finding the right technologically compatible host material to enable long-lived spins remains a major hurdle. We introduce a new platform based on Er ions in cerium dioxide (CeO2) as a nearly-zero nuclear spin environment (0.04%) epitaxially grown on silicon, offering silicon compatibility for opto-electrical devices. Our studies focus on Er3+ ions and show a narrow homogeneous linewidth of 440 kHz with an optical coherence time of 0.72 μs at 3.6 K. The reduced nuclear spin noise enables a slow spin-lattice relaxation with a spin relaxation time up to 2.5 ms and an electron spin coherence time of 0.66 μs (in the isolated ion limit) at 3.6 K. These findings highlight the potential of Er3+:CeO2 platform for quantum networks applications.

具有电信波段光学转换的稳健自旋光子接口对于量子网络技术至关重要。铒(Er)离子是理想的候选材料,它在电信波段(C 波段)具有受环境保护的转换。寻找合适的技术兼容的宿主材料以实现长寿命自旋仍然是一个主要障碍。我们介绍了一种基于二氧化铈(CeO2)中铒离子的新平台,它是在硅上外延生长的近零核自旋环境(0.04%),为光电设备提供了硅兼容性。我们的研究重点是 Er3+ 离子,结果表明,在 3.6 K 时,其均匀窄线宽为 440 kHz,光学相干时间为 0.72 μs。核自旋噪声的降低使得自旋晶格弛豫缓慢,在 3.6 K 时,自旋弛豫时间可达 2.5 ms,电子自旋相干时间为 0.66 μs(在孤立离子极限)。
{"title":"Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon","authors":"Jiefei Zhang, Gregory D. Grant, Ignas Masiulionis, Michael T. Solomon, Jonathan C. Marcks, Jasleen K. Bindra, Jens Niklas, Alan M. Dibos, Oleg G. Poluektov, F. Joseph Heremans, Supratik Guha, David D. Awschalom","doi":"10.1038/s41534-024-00903-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00903-z","url":null,"abstract":"<p>Robust spin-photon interfaces with optical transitions in the telecommunication band are essential for quantum networking technologies. Erbium (Er) ions are the ideal candidate with environmentally protected transitions in telecom-C band. Finding the right technologically compatible host material to enable long-lived spins remains a major hurdle. We introduce a new platform based on Er ions in cerium dioxide (CeO<sub>2</sub>) as a nearly-zero nuclear spin environment (0.04%) epitaxially grown on silicon, offering silicon compatibility for opto-electrical devices. Our studies focus on Er<sup>3+</sup> ions and show a narrow homogeneous linewidth of 440 kHz with an optical coherence time of 0.72 μs at 3.6 K. The reduced nuclear spin noise enables a slow spin-lattice relaxation with a spin relaxation time up to 2.5 ms and an electron spin coherence time of 0.66 μs (in the isolated ion limit) at 3.6 K. These findings highlight the potential of Er<sup>3+</sup>:CeO<sub>2</sub> platform for quantum networks applications.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"11 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-end variational quantum sensing 端到端变异量子传感
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-19 DOI: 10.1038/s41534-024-00914-w
Benjamin MacLellan, Piotr Roztocki, Stefanie Czischek, Roger G. Melko

Harnessing quantum correlations can enable sensing beyond classical precision limits, with the realization of such sensors poised for transformative impacts across science and engineering. Real devices, however, face the accumulated impacts of noise and architecture constraints, making the design and success of practical quantum sensors challenging. Numerical and theoretical frameworks to optimize and analyze sensing protocols in their entirety are thus crucial for translating quantum advantage into widespread practice. Here, we present an end-to-end variational framework for quantum sensing protocols, where parameterized quantum circuits and neural networks form trainable, adaptive models for quantum sensor dynamics and estimation, respectively. The framework is general and can be adapted towards arbitrary qubit architectures, as we demonstrate with experimentally-relevant ansätze for trapped-ion and photonic systems, and enables to directly quantify the impacts that noise and finite data sampling. End-to-end variational approaches can thus underpin powerful design and analysis tools for practical quantum sensing advantage.

利用量子相关性可以实现超越经典精度限制的传感,这种传感器的实现有望对整个科学和工程领域产生变革性影响。然而,实际设备面临着噪声和结构限制的累积影响,使得实用量子传感器的设计和成功具有挑战性。因此,全面优化和分析传感协议的数值和理论框架对于将量子优势转化为广泛实践至关重要。在这里,我们提出了一个用于量子传感协议的端到端变分框架,其中参数化量子电路和神经网络分别构成了量子传感器动态和估计的可训练自适应模型。该框架具有通用性,可适用于任意量子比特架构,正如我们用困离子和光子系统的实验相关答案所证明的那样,并能直接量化噪声和有限数据采样的影响。因此,端到端变分方法可以为实用量子传感优势的强大设计和分析工具提供支持。
{"title":"End-to-end variational quantum sensing","authors":"Benjamin MacLellan, Piotr Roztocki, Stefanie Czischek, Roger G. Melko","doi":"10.1038/s41534-024-00914-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00914-w","url":null,"abstract":"<p>Harnessing quantum correlations can enable sensing beyond classical precision limits, with the realization of such sensors poised for transformative impacts across science and engineering. Real devices, however, face the accumulated impacts of noise and architecture constraints, making the design and success of practical quantum sensors challenging. Numerical and theoretical frameworks to optimize and analyze sensing protocols in their entirety are thus crucial for translating quantum advantage into widespread practice. Here, we present an end-to-end variational framework for quantum sensing protocols, where parameterized quantum circuits and neural networks form trainable, adaptive models for quantum sensor dynamics and estimation, respectively. The framework is general and can be adapted towards arbitrary qubit architectures, as we demonstrate with experimentally-relevant ansätze for trapped-ion and photonic systems, and enables to directly quantify the impacts that noise and finite data sampling. End-to-end variational approaches can thus underpin powerful design and analysis tools for practical quantum sensing advantage.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"14 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guarantees on the structure of experimental quantum networks 实验量子网络结构的保证
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-14 DOI: 10.1038/s41534-024-00911-z
Andrés Ulibarrena, Jonathan W. Webb, Alexander Pickston, Joseph Ho, Alessandro Fedrizzi, Alejandro Pozas-Kerstjens

Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing. As these networks grow in size, certification tools will be required to answer questions regarding their properties. In this work we demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network. We apply quantum inflation methods to data obtained in quantum group encryption experiments, guaranteeing the impossibility of producing the observed results in networks with fewer optical elements. Our results pave the way for scalable methods of obtaining device-independent guarantees on the network structure underlying multipartite quantum protocols.

量子网络将大量节点与多方量子资源连接起来并提供给它们,以实现安全通信、网络量子计算和分布式传感。随着这些网络规模的扩大,需要认证工具来回答有关其特性的问题。在这项工作中,我们展示了一种通用方法,可以保证在给定的量子网络中不会产生某些相关性。我们将量子膨胀方法应用于量子组加密实验中获得的数据,保证在光学元件较少的网络中不可能产生观察到的结果。我们的研究成果为获得与设备无关的多方量子协议基础网络结构保证的可扩展方法铺平了道路。
{"title":"Guarantees on the structure of experimental quantum networks","authors":"Andrés Ulibarrena, Jonathan W. Webb, Alexander Pickston, Joseph Ho, Alessandro Fedrizzi, Alejandro Pozas-Kerstjens","doi":"10.1038/s41534-024-00911-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00911-z","url":null,"abstract":"<p>Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing. As these networks grow in size, certification tools will be required to answer questions regarding their properties. In this work we demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network. We apply quantum inflation methods to data obtained in quantum group encryption experiments, guaranteeing the impossibility of producing the observed results in networks with fewer optical elements. Our results pave the way for scalable methods of obtaining device-independent guarantees on the network structure underlying multipartite quantum protocols.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"82 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trainability barriers and opportunities in quantum generative modeling 量子生成模型的可训练性障碍与机遇
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-13 DOI: 10.1038/s41534-024-00902-0
Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa, Michele Grossi, Zoë Holmes

Quantum generative models provide inherently efficient sampling strategies and thus show promise for achieving an advantage using quantum hardware. In this work, we investigate the barriers to the trainability of quantum generative models posed by barren plateaus and exponential loss concentration. We explore the interplay between explicit and implicit models and losses, and show that using quantum generative models with explicit losses such as the KL divergence leads to a new flavor of barren plateaus. In contrast, the implicit Maximum Mean Discrepancy loss can be viewed as the expectation value of an observable that is either low-bodied and provably trainable, or global and untrainable depending on the choice of kernel. In parallel, we find that solely low-bodied implicit losses cannot in general distinguish high-order correlations in the target data, while some quantum loss estimation strategies can. We validate our findings by comparing different loss functions for modeling data from High-Energy-Physics.

量子生成模型提供固有的高效采样策略,因此有望利用量子硬件实现优势。在这项工作中,我们研究了贫瘠高原和指数损失集中对量子生成模型可训练性造成的障碍。我们探索了显式和隐式模型与损失之间的相互作用,结果表明,使用具有显式损失(如 KL 发散)的量子生成模型会导致新的贫瘠高原。与此相反,隐式最大均差损失可被视为观测值的期望值,根据内核的选择,该观测值要么是低体的且可证明是可训练的,要么是全局的且不可训练的。与此同时,我们还发现,一般情况下,单纯的低体隐式损失无法区分目标数据中的高阶相关性,而一些量子损失估计策略则可以。我们通过比较不同的损失函数对高能物理数据建模,验证了我们的发现。
{"title":"Trainability barriers and opportunities in quantum generative modeling","authors":"Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa, Michele Grossi, Zoë Holmes","doi":"10.1038/s41534-024-00902-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00902-0","url":null,"abstract":"<p>Quantum generative models provide inherently efficient sampling strategies and thus show promise for achieving an advantage using quantum hardware. In this work, we investigate the barriers to the trainability of quantum generative models posed by barren plateaus and exponential loss concentration. We explore the interplay between explicit and implicit models and losses, and show that using quantum generative models with explicit losses such as the KL divergence leads to a new flavor of barren plateaus. In contrast, the implicit Maximum Mean Discrepancy loss can be viewed as the expectation value of an observable that is either low-bodied and provably trainable, or global and untrainable depending on the choice of kernel. In parallel, we find that solely low-bodied implicit losses cannot in general distinguish high-order correlations in the target data, while some quantum loss estimation strategies can. We validate our findings by comparing different loss functions for modeling data from High-Energy-Physics.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"9 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interferometry of quantum correlation functions to access quasiprobability distribution of work 量子相关函数干涉测量法获取工作的准概率分布
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-11 DOI: 10.1038/s41534-024-00913-x
Santiago Hernández-Gómez, Takuya Isogawa, Alessio Belenchia, Amikam Levy, Nicole Fabbri, Stefano Gherardini, Paola Cappellaro

The Kirkwood-Dirac quasiprobability distribution, intimately connected with the quantum correlation function of two observables measured at distinct times, is becoming increasingly relevant for fundamental physics and quantum technologies. This quasiprobability distribution can take non-positive values, and its experimental reconstruction becomes challenging when expectation values of incompatible observables are involved. Here, we use an interferometric scheme aided by an auxiliary system to reconstruct the Kirkwood-Dirac quasiprobability distribution. We experimentally demonstrate this scheme in an electron-nuclear spin system associated with a nitrogen-vacancy center in diamond. By measuring the characteristic function, we reconstruct the quasiprobability distribution of work and analyze the behavior of its first and second moments. Our results clarify the physical meaning of the work quasiprobability distribution in the context of quantum thermodynamics. Finally, we study the uncertainty of measuring the Hamiltonian of the system at two times, via the Robertson-Schrödinger uncertainty relation, for different initial states.

柯克伍德-狄拉克准概率分布与在不同时间测量的两个观测值的量子相关函数密切相关,它与基础物理学和量子技术的关系日益密切。这种准概率分布可以取非正值,当涉及不相容观测值的期望值时,其实验重建就变得具有挑战性。在这里,我们使用一种由辅助系统辅助的干涉测量方案来重建柯克伍德-狄拉克准概率分布。我们在一个与金刚石中的氮空位中心相关的电子核自旋系统中实验演示了这一方案。通过测量特征函数,我们重建了功的准概率分布,并分析了其第一和第二矩的行为。我们的研究结果阐明了量子热力学背景下功的准概率分布的物理意义。最后,我们通过罗伯逊-薛定谔不确定性关系,研究了不同初始状态下两次测量系统哈密顿的不确定性。
{"title":"Interferometry of quantum correlation functions to access quasiprobability distribution of work","authors":"Santiago Hernández-Gómez, Takuya Isogawa, Alessio Belenchia, Amikam Levy, Nicole Fabbri, Stefano Gherardini, Paola Cappellaro","doi":"10.1038/s41534-024-00913-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00913-x","url":null,"abstract":"<p>The Kirkwood-Dirac quasiprobability distribution, intimately connected with the quantum correlation function of two observables measured at distinct times, is becoming increasingly relevant for fundamental physics and quantum technologies. This quasiprobability distribution can take non-positive values, and its experimental reconstruction becomes challenging when expectation values of incompatible observables are involved. Here, we use an interferometric scheme aided by an auxiliary system to reconstruct the Kirkwood-Dirac quasiprobability distribution. We experimentally demonstrate this scheme in an electron-nuclear spin system associated with a nitrogen-vacancy center in diamond. By measuring the characteristic function, we reconstruct the quasiprobability distribution of work and analyze the behavior of its first and second moments. Our results clarify the physical meaning of the work quasiprobability distribution in the context of quantum thermodynamics. Finally, we study the uncertainty of measuring the Hamiltonian of the system at two times, via the Robertson-Schrödinger uncertainty relation, for different initial states.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"71 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightcone bounds for quantum circuit mapping via uncomplexity 通过非复杂性实现量子电路映射的光锥边界
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-09 DOI: 10.1038/s41534-024-00909-7
Matthew Steinberg, Medina Bandić, Sacha Szkudlarek, Carmen G. Almudever, Aritra Sarkar, Sebastian Feld

Efficiently mapping quantum circuits onto hardware is integral for the quantum compilation process, wherein a circuit is modified in accordance with a quantum processor’s connectivity. Many techniques currently exist for solving this problem, wherein SWAP-gate overhead is usually prioritized as a cost metric. We reconstitute quantum circuit mapping using tools from quantum information theory, showing that a lower bound, which we dub the lightcone bound, emerges for a circuit executed on hardware. We also develop an initial placement algorithm based on graph similarity search, aiding us in optimally placing circuit qubits onto a device. 600 realistic benchmarks using the IBM Qiskit compiler and a brute-force method are then tested against the lightcone bound, with results unambiguously verifying the veracity of the bound, while permitting trustworthy estimations of minimal overhead in near-term realizations of quantum algorithms. This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.

高效地将量子电路映射到硬件上是量子编译过程不可或缺的一部分,在这一过程中,电路会根据量子处理器的连接性进行修改。目前有许多解决这一问题的技术,其中 SWAP 门开销通常作为成本指标优先考虑。我们利用量子信息论的工具重构了量子电路映射,证明在硬件上执行的电路会出现一个下限,我们称之为光锥下限。我们还开发了一种基于图相似性搜索的初始放置算法,帮助我们以最佳方式将电路量子比特放置到设备上。然后,我们使用 IBM Qiskit 编译器和蛮力方法对 600 个现实基准进行了光锥约束测试,结果明确验证了约束的真实性,同时允许对量子算法近期实现的最小开销进行可信的估计。这项工作首次将量子电路不复杂性应用于实际相关的量子计算。
{"title":"Lightcone bounds for quantum circuit mapping via uncomplexity","authors":"Matthew Steinberg, Medina Bandić, Sacha Szkudlarek, Carmen G. Almudever, Aritra Sarkar, Sebastian Feld","doi":"10.1038/s41534-024-00909-7","DOIUrl":"https://doi.org/10.1038/s41534-024-00909-7","url":null,"abstract":"<p>Efficiently mapping quantum circuits onto hardware is integral for the quantum compilation process, wherein a circuit is modified in accordance with a quantum processor’s connectivity. Many techniques currently exist for solving this problem, wherein SWAP-gate overhead is usually prioritized as a cost metric. We reconstitute quantum circuit mapping using tools from quantum information theory, showing that a lower bound, which we dub the lightcone bound, emerges for a circuit executed on hardware. We also develop an initial placement algorithm based on graph similarity search, aiding us in optimally placing circuit qubits onto a device. 600 realistic benchmarks using the IBM Qiskit compiler and a brute-force method are then tested against the lightcone bound, with results unambiguously verifying the veracity of the bound, while permitting trustworthy estimations of minimal overhead in near-term realizations of quantum algorithms. This work constitutes the first use of quantum circuit uncomplexity to practically-relevant quantum computing.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"80 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unified linear response theory of quantum electronic circuits 量子电子电路的统一线性响应理论
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-11-09 DOI: 10.1038/s41534-024-00907-9
L. Peri, M. Benito, C. J. B. Ford, M. F. Gonzalez-Zalba

Modeling the electrical response of multi-level quantum systems at finite frequency has been typically performed in the context of two incomplete paradigms: (i) input-output theory, which is valid at any frequency but neglects dynamic losses, and (ii) semiclassical theory, which captures dynamic dissipation effects well but is only accurate at low frequencies. Here, we develop a unifying theory, valid for arbitrary frequencies, that captures both the small-signal quantum behavior and the non-unitary effects introduced by relaxation and dephasing. The theory allows a multi-level system to be described by a universal small-signal equivalent-circuit model, a resonant RLC circuit, whose topology only depends on the number of energy levels. We apply our model to a double-quantum-dot charge qubit and a Majorana qubit, showing the capability to continuously describe the systems from adiabatic to resonant and from coherent to incoherent, suggesting new and realistic experiments for improved quantum state readout. Our model will facilitate the design of hybrid quantum–classical circuits and the simulation of qubit control and quantum state readout.

对有限频率下多级量子系统的电响应建模通常在两种不完整的范式下进行:(i) 输入-输出理论,该理论在任何频率下都有效,但忽略了动态损耗;(ii) 半经典理论,该理论能很好地捕捉动态耗散效应,但只在低频下准确。在这里,我们提出了一种适用于任意频率的统一理论,它既能捕捉小信号量子行为,又能捕捉弛豫和去相引入的非单元效应。该理论允许用一个通用的小信号等效电路模型(谐振 RLC 电路)来描述多级系统,其拓扑结构只取决于能级的数量。我们将模型应用于双量子点电荷量子比特和马约拉纳量子比特,展示了从绝热到共振、从相干到非相干连续描述系统的能力,为改进量子态读出提出了新的现实实验建议。我们的模型将促进量子-经典混合电路的设计以及量子比特控制和量子态读出的模拟。
{"title":"Unified linear response theory of quantum electronic circuits","authors":"L. Peri, M. Benito, C. J. B. Ford, M. F. Gonzalez-Zalba","doi":"10.1038/s41534-024-00907-9","DOIUrl":"https://doi.org/10.1038/s41534-024-00907-9","url":null,"abstract":"<p>Modeling the electrical response of multi-level quantum systems at finite frequency has been typically performed in the context of two incomplete paradigms: (i) input-output theory, which is valid at any frequency but neglects dynamic losses, and (ii) semiclassical theory, which captures dynamic dissipation effects well but is only accurate at low frequencies. Here, we develop a unifying theory, valid for arbitrary frequencies, that captures both the small-signal quantum behavior and the non-unitary effects introduced by relaxation and dephasing. The theory allows a multi-level system to be described by a universal small-signal equivalent-circuit model, a resonant RLC circuit, whose topology only depends on the number of energy levels. We apply our model to a double-quantum-dot charge qubit and a Majorana qubit, showing the capability to continuously describe the systems from adiabatic to resonant and from coherent to incoherent, suggesting new and realistic experiments for improved quantum state readout. Our model will facilitate the design of hybrid quantum–classical circuits and the simulation of qubit control and quantum state readout.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"95 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Quantum Information
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1