首页 > 最新文献

npj Quantum Information最新文献

英文 中文
Simultaneous measurement of multiple incompatible observables and tradeoff in multiparameter quantum estimation 多参数量子估算中多个不兼容观测变量的同时测量与权衡
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-06 DOI: 10.1038/s41534-024-00894-x
Hongzhen Chen, Lingna Wang, Haidong Yuan

How well can multiple incompatible observables be implemented by a single measurement? This is a fundamental problem in quantum mechanics with wide implications for the performance optimization of numerous tasks in quantum information science. While existing studies have been mostly focusing on the approximation of two observables with a single measurement, in practice multiple observables are often encountered, for which the errors of the approximations are little understood. Here we provide a framework to study the implementation of an arbitrary finite number of observables with a single measurement. Our methodology yields novel analytical bounds on the errors of these implementations, significantly advancing our understanding of this fundamental problem. Additionally, we introduce a more stringent bound utilizing semi-definite programming that, in the context of two observables, generates an analytical bound tighter than previously known bounds. The derived bounds have direct applications in assessing the trade-off between the precision of estimating multiple parameters in quantum metrology, an area with crucial theoretical and practical implications. To validate the validity of our findings, we conducted experimental verification using a superconducting quantum processor. This experimental validation not only confirms the theoretical results but also effectively bridges the gap between the derived bounds and empirical data obtained from real-world experiments. Our work paves the way for optimizing various tasks in quantum information science that involve multiple noncommutative observables.

一次测量能在多大程度上实现多个不兼容的观测值?这是量子力学中的一个基本问题,对量子信息科学中众多任务的性能优化具有广泛影响。现有的研究主要集中在用单次测量近似两个观测值,而在实际应用中经常会遇到多个观测值,对于这些观测值的近似误差却知之甚少。在这里,我们提供了一个框架,研究用一次测量实现任意有限数量的观测值。我们的方法对这些实现的误差产生了新的分析界限,极大地推动了我们对这一基本问题的理解。此外,我们还利用半有限编程引入了更严格的约束,在两个观测变量的情况下,产生的分析约束比以前已知的约束更严格。推导出的边界可直接用于评估量子计量学中多个参数估计精度之间的权衡,这是一个具有重要理论和实践意义的领域。为了验证我们研究结果的有效性,我们使用超导量子处理器进行了实验验证。这一实验验证不仅证实了理论结果,还有效地弥合了推导边界与实际实验中获得的经验数据之间的差距。我们的工作为优化量子信息科学中涉及多个非交换观测变量的各种任务铺平了道路。
{"title":"Simultaneous measurement of multiple incompatible observables and tradeoff in multiparameter quantum estimation","authors":"Hongzhen Chen, Lingna Wang, Haidong Yuan","doi":"10.1038/s41534-024-00894-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00894-x","url":null,"abstract":"<p>How well can multiple incompatible observables be implemented by a single measurement? This is a fundamental problem in quantum mechanics with wide implications for the performance optimization of numerous tasks in quantum information science. While existing studies have been mostly focusing on the approximation of two observables with a single measurement, in practice multiple observables are often encountered, for which the errors of the approximations are little understood. Here we provide a framework to study the implementation of an arbitrary finite number of observables with a single measurement. Our methodology yields novel analytical bounds on the errors of these implementations, significantly advancing our understanding of this fundamental problem. Additionally, we introduce a more stringent bound utilizing semi-definite programming that, in the context of two observables, generates an analytical bound tighter than previously known bounds. The derived bounds have direct applications in assessing the trade-off between the precision of estimating multiple parameters in quantum metrology, an area with crucial theoretical and practical implications. To validate the validity of our findings, we conducted experimental verification using a superconducting quantum processor. This experimental validation not only confirms the theoretical results but also effectively bridges the gap between the derived bounds and empirical data obtained from real-world experiments. Our work paves the way for optimizing various tasks in quantum information science that involve multiple noncommutative observables.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"46 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gibbs state sampling via cluster expansions 通过集群扩展进行吉布斯状态采样
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-04 DOI: 10.1038/s41534-024-00887-w
Norhan M. Eassa, Mahmoud M. Moustafa, Arnab Banerjee, Jeffrey Cohn

Gibbs states (i.e., thermal states) can be used for several applications such as quantum simulation, quantum machine learning, quantum optimization, and the study of open quantum systems. Moreover, semi-definite programming, combinatorial optimization problems, and training quantum Boltzmann machines can all be addressed by sampling from well-prepared Gibbs states. With that, however, comes the fact that preparing and sampling from Gibbs states on a quantum computer are notoriously difficult tasks. Such tasks can require large overhead in resources and/or calibration even in the simplest of cases, as well as the fact that the implementation might be limited to only a specific set of systems. We propose a method based on sampling from a quasi-distribution consisting of tensor products of mixed states on local clusters, i.e., expanding the full Gibbs state into a sum of products of local “Gibbs-cumulant” type states easier to implement and sample from on quantum hardware. We begin with presenting results for 4-spin linear chains with XY spin interactions, for which we obtain the ZZ dynamical spin-spin correlation functions and dynamical structure factor. We also present the results of measuring the specific heat of the 8-spin chain Gibbs state ρ8.

吉布斯态(即热态)可用于多种应用,如量子模拟、量子机器学习、量子优化和开放量子系统研究。此外,半有限编程、组合优化问题和训练量子玻尔兹曼机都可以通过从准备充分的吉布斯态采样来解决。然而,随之而来的事实是,在量子计算机上准备和从吉布斯态采样是众所周知的困难任务。即使在最简单的情况下,这些任务也需要大量的资源和/或校准开销,而且实施可能仅限于一组特定的系统。我们提出了一种基于准分布采样的方法,这种准分布由局部簇上混合状态的张量乘积组成,即把完整的吉布斯状态扩展为局部 "吉布斯积 "类型状态的乘积之和,更易于在量子硬件上实现和采样。我们首先介绍了具有 XY 自旋相互作用的 4 自旋线性链的结果,并得到了 ZZ 动态自旋-自旋相关函数和动态结构因子。我们还介绍了测量 8 自旋链吉布斯态 ρ8 比热的结果。
{"title":"Gibbs state sampling via cluster expansions","authors":"Norhan M. Eassa, Mahmoud M. Moustafa, Arnab Banerjee, Jeffrey Cohn","doi":"10.1038/s41534-024-00887-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00887-w","url":null,"abstract":"<p>Gibbs states (i.e., thermal states) can be used for several applications such as quantum simulation, quantum machine learning, quantum optimization, and the study of open quantum systems. Moreover, semi-definite programming, combinatorial optimization problems, and training quantum Boltzmann machines can all be addressed by sampling from well-prepared Gibbs states. With that, however, comes the fact that preparing and sampling from Gibbs states on a quantum computer are notoriously difficult tasks. Such tasks can require large overhead in resources and/or calibration even in the simplest of cases, as well as the fact that the implementation might be limited to only a specific set of systems. We propose a method based on sampling from a quasi-distribution consisting of tensor products of mixed states on local clusters, i.e., expanding the full Gibbs state into a sum of products of local “Gibbs-cumulant” type states easier to implement and sample from on quantum hardware. We begin with presenting results for 4-spin linear chains with XY spin interactions, for which we obtain the <i>Z</i><i>Z</i> dynamical spin-spin correlation functions and dynamical structure factor. We also present the results of measuring the specific heat of the 8-spin chain Gibbs state <i>ρ</i><sub>8</sub>.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"5 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-fidelity spin readout via the double latching mechanism 通过双锁扣机制实现高保真自旋读数
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-03 DOI: 10.1038/s41534-024-00882-1
Haruki Kiyama, Danny van Hien, Arne Ludwig, Andreas D. Wieck, Akira Oiwa

Projective measurement of single-electron spins, or spin readout, is among the most fundamental technologies for spin-based quantum information processing. Implementing spin readout with both high-fidelity and scalability is indispensable for developing fault-tolerant quantum computers in large-scale spin-qubit arrays. To achieve high fidelity, a latching mechanism is useful. However, the fidelity can be decreased by spin relaxation and charge state leakage, and the scalability is currently challenging. Here, we propose and demonstrate a double-latching high-fidelity spin readout scheme, which suppresses errors via an additional latching process. We experimentally show that the double-latching mechanism provides significantly higher fidelity than the conventional latching mechanism and estimate a potential spin readout fidelity of 99.94% using highly spin-dependent tunnel rates. Due to isolation from error-inducing processes, the double-latching mechanism combined with scalable charge readout is expected to be useful for large-scale spin-qubit arrays while maintaining high fidelity.

单电子自旋的投射测量或自旋读出是基于自旋的量子信息处理的最基本技术之一。要在大规模自旋量子比特阵列中开发容错量子计算机,就必须实现高保真和可扩展的自旋读出。为了实现高保真,锁存机制非常有用。然而,自旋弛豫和电荷态泄漏会降低保真度,可扩展性目前也面临挑战。在这里,我们提出并演示了一种双锁存高保真自旋读出方案,该方案通过额外的锁存过程来抑制误差。我们的实验表明,双闩锁机制的保真度明显高于传统的闩锁机制,利用高度依赖自旋的隧道速率,我们估计自旋读出的潜在保真度可达 99.94%。由于与错误诱导过程隔离,双锁存机制与可扩展的电荷读出相结合,有望在保持高保真的同时适用于大规模自旋量子比特阵列。
{"title":"High-fidelity spin readout via the double latching mechanism","authors":"Haruki Kiyama, Danny van Hien, Arne Ludwig, Andreas D. Wieck, Akira Oiwa","doi":"10.1038/s41534-024-00882-1","DOIUrl":"https://doi.org/10.1038/s41534-024-00882-1","url":null,"abstract":"<p>Projective measurement of single-electron spins, or spin readout, is among the most fundamental technologies for spin-based quantum information processing. Implementing spin readout with both high-fidelity and scalability is indispensable for developing fault-tolerant quantum computers in large-scale spin-qubit arrays. To achieve high fidelity, a latching mechanism is useful. However, the fidelity can be decreased by spin relaxation and charge state leakage, and the scalability is currently challenging. Here, we propose and demonstrate a double-latching high-fidelity spin readout scheme, which suppresses errors via an additional latching process. We experimentally show that the double-latching mechanism provides significantly higher fidelity than the conventional latching mechanism and estimate a potential spin readout fidelity of 99.94% using highly spin-dependent tunnel rates. Due to isolation from error-inducing processes, the double-latching mechanism combined with scalable charge readout is expected to be useful for large-scale spin-qubit arrays while maintaining high fidelity.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"1 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gate-set evaluation metrics for closed-loop optimal control on nitrogen-vacancy center ensembles in diamond 金刚石氮空位中心集合闭环优化控制的门集评估指标
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-10-02 DOI: 10.1038/s41534-024-00893-y
Philipp J. Vetter, Thomas Reisser, Maximilian G. Hirsch, Tommaso Calarco, Felix Motzoi, Fedor Jelezko, Matthias M. Müller

A recurring challenge in quantum science and technology is the precise control of their underlying dynamics that lead to the desired quantum operations, often described by a set of quantum gates. These gates can be subject to application-specific errors, leading to a dependence of their controls on the chosen circuit, the quality measure and the gate-set itself. A natural solution would be to apply quantum optimal control in an application-oriented fashion. In turn, this requires the definition of a meaningful measure of the contextual gate-set performance. Therefore, we explore and compare the applicability of quantum process tomography, linear inversion gate-set tomography, randomized linear gate-set tomography, and randomized benchmarking as measures for closed-loop quantum optimal control experiments, using a macroscopic ensemble of nitrogen-vacancy centers in diamond as a test-bed. Our work demonstrates the relative trade-offs between those measures and how to significantly enhance the gate-set performance, leading to an improvement across all investigated methods.

量子科学与技术领域经常面临的一个挑战是如何精确控制其基本动态,从而实现所需的量子操作,这些操作通常由一组量子门描述。这些量子门可能会受到特定应用误差的影响,从而导致其控制取决于所选电路、质量度量和量子门集本身。一个自然的解决方案是以应用为导向的方式应用量子优化控制。反过来,这就需要定义一种有意义的测量方法来衡量上下文门组的性能。因此,我们探索并比较了量子过程层析成像、线性反转门集层析成像、随机线性门集层析成像和随机基准作为闭环量子优化控制实验测量方法的适用性,并将金刚石中的氮空位中心宏观集合作为测试平台。我们的工作证明了这些测量方法之间的相对权衡,以及如何显著提高门集性能,从而改进所有研究方法。
{"title":"Gate-set evaluation metrics for closed-loop optimal control on nitrogen-vacancy center ensembles in diamond","authors":"Philipp J. Vetter, Thomas Reisser, Maximilian G. Hirsch, Tommaso Calarco, Felix Motzoi, Fedor Jelezko, Matthias M. Müller","doi":"10.1038/s41534-024-00893-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00893-y","url":null,"abstract":"<p>A recurring challenge in quantum science and technology is the precise control of their underlying dynamics that lead to the desired quantum operations, often described by a set of quantum gates. These gates can be subject to application-specific errors, leading to a dependence of their controls on the chosen circuit, the quality measure and the gate-set itself. A natural solution would be to apply quantum optimal control in an application-oriented fashion. In turn, this requires the definition of a meaningful measure of the contextual gate-set performance. Therefore, we explore and compare the applicability of quantum process tomography, linear inversion gate-set tomography, randomized linear gate-set tomography, and randomized benchmarking as measures for closed-loop quantum optimal control experiments, using a macroscopic ensemble of nitrogen-vacancy centers in diamond as a test-bed. Our work demonstrates the relative trade-offs between those measures and how to significantly enhance the gate-set performance, leading to an improvement across all investigated methods.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"25 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure and robust randomness with sequential quantum measurements 利用顺序量子测量实现安全稳健的随机性
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-30 DOI: 10.1038/s41534-024-00879-w
Matteo Padovan, Giulio Foletto, Lorenzo Coccia, Marco Avesani, Paolo Villoresi, Giuseppe Vallone

Quantum correlations between measurements of separated observers are crucial for applications like randomness generation and key distribution. Although device-independent security can be certified with minimal assumptions, current protocols have limited performance. Here, we exploit sequential measurements, defined with a precise temporal order, to enhance performance by reusing quantum states. We provide a geometric perspective and a general mathematical framework, analytically proving a Tsirelson-like boundary for sequential quantum correlations, which represents a trade-off in nonlocality shared by sequential users. This boundary is advantageous for secure quantum randomness generation, certifying maximum bits per state with one remote and two sequential parties, even if one sequential user shares no nonlocality. Our simple qubit protocol reaches this boundary, and numerical analysis shows improved robustness under realistic noise. A photonic implementation confirms feasibility and robustness. This study advances the understanding of sequential quantum correlations and offers insights for efficient device-independent protocols.

在随机性生成和密钥分配等应用中,不同观察者测量值之间的量子相关性至关重要。虽然独立于设备的安全性可以通过最少的假设得到认证,但目前的协议性能有限。在这里,我们利用以精确时间顺序定义的顺序测量,通过重复使用量子态来提高性能。我们提供了一个几何视角和通用数学框架,分析证明了顺序量子相关性的齐列尔松边界,它代表了顺序用户共享的非位置性的权衡。这一边界有利于安全量子随机性的生成,即使一个顺序用户不共享非位置性,也能通过一个远程和两个顺序方认证每个状态的最大比特数。我们的简单量子比特协议达到了这一界限,数值分析表明在现实噪声下的鲁棒性有所提高。光子实现证实了其可行性和稳健性。这项研究加深了人们对顺序量子相关性的理解,并为独立于设备的高效协议提供了启示。
{"title":"Secure and robust randomness with sequential quantum measurements","authors":"Matteo Padovan, Giulio Foletto, Lorenzo Coccia, Marco Avesani, Paolo Villoresi, Giuseppe Vallone","doi":"10.1038/s41534-024-00879-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00879-w","url":null,"abstract":"<p>Quantum correlations between measurements of separated observers are crucial for applications like randomness generation and key distribution. Although device-independent security can be certified with minimal assumptions, current protocols have limited performance. Here, we exploit sequential measurements, defined with a precise temporal order, to enhance performance by reusing quantum states. We provide a geometric perspective and a general mathematical framework, analytically proving a Tsirelson-like boundary for sequential quantum correlations, which represents a trade-off in nonlocality shared by sequential users. This boundary is advantageous for secure quantum randomness generation, certifying maximum bits per state with one remote and two sequential parties, even if one sequential user shares no nonlocality. Our simple qubit protocol reaches this boundary, and numerical analysis shows improved robustness under realistic noise. A photonic implementation confirms feasibility and robustness. This study advances the understanding of sequential quantum correlations and offers insights for efficient device-independent protocols.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"23 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Randomized semi-quantum matrix processing 随机半量子矩阵处理
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-30 DOI: 10.1038/s41534-024-00883-0
Allan Tosta, Thais de Lima Silva, Giancarlo Camilo, Leandro Aolita

We present a hybrid quantum-classical framework for simulating generic matrix functions more amenable to early fault-tolerant quantum hardware than standard quantum singular-value transformations. The method is based on randomization over the Chebyshev approximation of the target function while keeping the matrix oracle quantum, and is assisted by a variant of the Hadamard test that removes the need for post-selection. The resulting statistical overhead is similar to the fully quantum case and does not incur any circuit depth degradation. On the contrary, the average circuit depth is shown to get smaller, yielding equivalent reductions in noise sensitivity, as explicitly shown for depolarizing noise and coherent errors. We apply our technique to partition-function estimation, linear system solvers, and ground-state energy estimation. For these cases, we prove advantages on average depths, including quadratic speed-ups on costly parameters and even the removal of the approximation-error dependence.

与标准量子奇异值变换相比,我们提出的量子-经典混合框架更适合早期容错量子硬件模拟通用矩阵函数。该方法基于目标函数的切比雪夫近似的随机化,同时保持矩阵甲骨文的量子化,并通过哈达玛检验的变体辅助,消除了后选择的需要。由此产生的统计开销与全量子情况类似,不会造成任何电路深度下降。相反,平均电路深度会变小,噪声灵敏度也会相应降低,这一点在去极化噪声和相干误差中得到了明确体现。我们将我们的技术应用于分区函数估计、线性系统求解器和基态能量估计。在这些情况下,我们证明了平均深度的优势,包括对昂贵参数的二次加速,甚至消除了对近似误差的依赖。
{"title":"Randomized semi-quantum matrix processing","authors":"Allan Tosta, Thais de Lima Silva, Giancarlo Camilo, Leandro Aolita","doi":"10.1038/s41534-024-00883-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00883-0","url":null,"abstract":"<p>We present a hybrid quantum-classical framework for simulating generic matrix functions more amenable to early fault-tolerant quantum hardware than standard quantum singular-value transformations. The method is based on randomization over the Chebyshev approximation of the target function while keeping the matrix oracle quantum, and is assisted by a variant of the Hadamard test that removes the need for post-selection. The resulting statistical overhead is similar to the fully quantum case and does not incur any circuit depth degradation. On the contrary, the average circuit depth is shown to get smaller, yielding equivalent reductions in noise sensitivity, as explicitly shown for depolarizing noise and coherent errors. We apply our technique to partition-function estimation, linear system solvers, and ground-state energy estimation. For these cases, we prove advantages on average depths, including quadratic speed-ups on costly parameters and even the removal of the approximation-error dependence.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"115 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protocol for certifying entanglement in surface spin systems using a scanning tunneling microscope 利用扫描隧道显微镜认证表面自旋系统纠缠的协议
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-28 DOI: 10.1038/s41534-024-00888-9
Rik Broekhoven, Curie Lee, Soo-hyon Phark, Sander Otte, Christoph Wolf

Certifying quantum entanglement is a critical step toward realizing quantum-coherent applications. In this work, we show that entanglement of spins can be unambiguously evidenced in a scanning tunneling microscope with electron spin resonance by exploiting the fact that entangled states undergo a free time evolution with a distinct characteristic time constant that clearly distinguishes it from the time evolution of non-entangled states. By implementing a phase control scheme, the phase of this time evolution can be mapped back onto the population of one entangled spin, which can then be read out reliably using a weakly coupled sensor spin in the junction of the scanning tunneling microscope. We demonstrate through open quantum system simulations with currently available spin coherence times of T2 ≈ 300 ns, that a signal directly correlated with the degree of entanglement can be measured at temperatures of 100–400 mK accessible in sub-Kelvin scanning tunneling microscopes.

认证量子纠缠是实现量子相干应用的关键一步。在这项工作中,我们展示了利用电子自旋共振的扫描隧道显微镜可以明确地证明自旋的纠缠,其方法是利用纠缠态经历自由时间演化的事实,该演化具有明显的特征时间常数,与非纠缠态的时间演化截然不同。通过实施相位控制方案,可以将这种时间演化的相位映射到一个纠缠自旋的群体上,然后就可以利用扫描隧道显微镜结点中的弱耦合传感器自旋可靠地读出这个群体。我们通过开放式量子系统模拟,利用目前可用的自旋相干时间 T2 ≈ 300 毫微秒来证明,在亚开尔文扫描隧道显微镜可达到的 100-400 毫开氏度温度下,可以测量与纠缠程度直接相关的信号。
{"title":"Protocol for certifying entanglement in surface spin systems using a scanning tunneling microscope","authors":"Rik Broekhoven, Curie Lee, Soo-hyon Phark, Sander Otte, Christoph Wolf","doi":"10.1038/s41534-024-00888-9","DOIUrl":"https://doi.org/10.1038/s41534-024-00888-9","url":null,"abstract":"<p>Certifying quantum entanglement is a critical step toward realizing quantum-coherent applications. In this work, we show that entanglement of spins can be unambiguously evidenced in a scanning tunneling microscope with electron spin resonance by exploiting the fact that entangled states undergo a free time evolution with a distinct characteristic time constant that clearly distinguishes it from the time evolution of non-entangled states. By implementing a phase control scheme, the phase of this time evolution can be mapped back onto the population of one entangled spin, which can then be read out reliably using a weakly coupled sensor spin in the junction of the scanning tunneling microscope. We demonstrate through open quantum system simulations with currently available spin coherence times of <i>T</i><sub>2</sub> ≈ 300 ns, that a signal directly correlated with the degree of entanglement can be measured at temperatures of 100–400 mK accessible in sub-Kelvin scanning tunneling microscopes.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"25 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superdiffusive to ballistic transport in nonintegrable Rydberg simulator 非积分雷德贝格模拟器中的超扩散到弹道输运
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1038/s41534-024-00884-z
Chun Chen, Yan Chen, Xiaoqun Wang

A common wisdom posits that transport of conserved quantities across clean nonintegrable quantum systems at high temperatures is diffusive when probed from the emergent hydrodynamic regime. We show that this empirical paradigm may alter if the strong interaction limit is taken. Using Krylov-typicality and purification matrix-product-state methods, we establish in short-to-intermediate time scales the following observations for the nonintegrable lattice model imitating the experimental Rydberg blockade simulator. Given the strict projection owing to the infinite density-density repulsion V, the Rydberg chain’s energy transport in the presence of a transverse field g is tentatively superdiffusive at infinite temperature featured by an anomalous scaling exponent (frac{3}{4}), indicating the potential existence of a novel dynamical universality class. Imposing, in addition, a growing longitudinal field h causes a putative superdiffusion-to-ballistic transport transition at hg. Interestingly, all the above results persist for large but finite interactions and temperatures, provided that the strongly interacting condition g, h kBT V is fulfilled. Our predictions are testable by current Rydberg quantum simulation facilities.

一种普遍的观点认为,在高温条件下,当从新兴流体力学体系进行探测时,守恒量在清洁的不可整合量子系统中的传输是扩散的。我们的研究表明,如果采用强相互作用极限,这一经验范式可能会发生改变。利用克雷洛夫-典型性和纯化矩阵-积态方法,我们在中短时间尺度上建立了模仿雷德贝格实验封锁模拟器的不可解晶格模型的以下观察结果。考虑到无限密度-密度斥力 V 导致的严格投影,雷德贝格链在横向场 g 存在下的能量传输在无限温度下具有超扩散性(frac{3}{4}),这表明可能存在一个新的动力学普遍性类别。有趣的是,在满足强相互作用条件 g, h ≪ kBT ≪ V 的前提下,所有上述结果在大但有限的相互作用和温度下都会持续存在。我们的预测可以通过目前的雷德堡量子模拟设施进行检验。
{"title":"Superdiffusive to ballistic transport in nonintegrable Rydberg simulator","authors":"Chun Chen, Yan Chen, Xiaoqun Wang","doi":"10.1038/s41534-024-00884-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00884-z","url":null,"abstract":"<p>A common wisdom posits that transport of conserved quantities across clean nonintegrable quantum systems at high temperatures is diffusive when probed from the emergent hydrodynamic regime. We show that this empirical paradigm may alter if the strong interaction limit is taken. Using Krylov-typicality and purification matrix-product-state methods, we establish in short-to-intermediate time scales the following observations for the nonintegrable lattice model imitating the experimental Rydberg blockade simulator. Given the strict projection owing to the infinite density-density repulsion <i>V</i>, the Rydberg chain’s energy transport in the presence of a transverse field <i>g</i> is tentatively superdiffusive at infinite temperature featured by an anomalous scaling exponent <span>(frac{3}{4})</span>, indicating the potential existence of a novel dynamical universality class. Imposing, in addition, a growing longitudinal field <i>h</i> causes a putative superdiffusion-to-ballistic transport transition at <i>h</i> ≈ <i>g</i>. Interestingly, all the above results persist for large but finite interactions and temperatures, provided that the strongly interacting condition <i>g</i>, <i>h</i> <span>≪</span> <i>k</i><sub>B</sub><i>T</i> <span>≪</span> <i>V</i> is fulfilled. Our predictions are testable by current Rydberg quantum simulation facilities.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"14 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstration of quantum network protocols over a 14-km urban fiber link 通过 14 千米城市光纤链路演示量子网络协议
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-14 DOI: 10.1038/s41534-024-00886-x
Stephan Kucera, Christian Haen, Elena Arenskötter, Tobias Bauer, Jonas Meiers, Marlon Schäfer, Ross Boland, Milad Yahyapour, Maurice Lessing, Ronald Holzwarth, Christoph Becher, Jürgen Eschner

We report on the implementation of quantum entanglement distribution and quantum state teleportation over a 14.4 km urban dark-fiber link, which is partially underground, partially overhead, and patched in several stations. We characterize the link for its use as a quantum channel and realize its active polarization stabilization. Using a type-II cavity-enhanced SPDC photon pair source, a 40Ca+ single-ion quantum memory, and quantum frequency conversion to the telecom C-band, we demonstrate photon-photon entanglement, ion-photon entanglement, and teleportation of a qubit state from the ion onto a remote telecom photon, all realized over the urban fiber link.

我们报告了在一条 14.4 千米长的城市暗光纤链路上实现量子纠缠分发和量子态远距传输的情况。我们分析了该链路作为量子信道使用的特性,并实现了其主动极化稳定。通过使用 II 型空腔增强 SPDC 光子对源、40Ca+ 单离子量子存储器和电信 C 波段量子频率转换,我们演示了光子-光子纠缠、离子-光子纠缠以及从离子到远程电信光子的量子比特态远距离传输,所有这些都是通过城市光纤链路实现的。
{"title":"Demonstration of quantum network protocols over a 14-km urban fiber link","authors":"Stephan Kucera, Christian Haen, Elena Arenskötter, Tobias Bauer, Jonas Meiers, Marlon Schäfer, Ross Boland, Milad Yahyapour, Maurice Lessing, Ronald Holzwarth, Christoph Becher, Jürgen Eschner","doi":"10.1038/s41534-024-00886-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00886-x","url":null,"abstract":"<p>We report on the implementation of quantum entanglement distribution and quantum state teleportation over a 14.4 km urban dark-fiber link, which is partially underground, partially overhead, and patched in several stations. We characterize the link for its use as a quantum channel and realize its active polarization stabilization. Using a type-II cavity-enhanced SPDC photon pair source, a <sup>40</sup>Ca<sup>+</sup> single-ion quantum memory, and quantum frequency conversion to the telecom C-band, we demonstrate photon-photon entanglement, ion-photon entanglement, and teleportation of a qubit state from the ion onto a remote telecom photon, all realized over the urban fiber link.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"44 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental preparation of multiphoton-added coherent states of light 光的多光子相干态的实验制备
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2024-09-14 DOI: 10.1038/s41534-024-00885-y
Jiří Fadrný, Michal Neset, Martin Bielak, Miroslav Ježek, Jan Bílek, Jaromír Fiurášek

Conditional addition of photons represents a crucial tool for optical quantum state engineering and it forms a fundamental building block of advanced quantum photonic devices. Here we report on experimental implementation of the conditional addition of several photons. We demonstrate the addition of one, two, and three photons to input coherent states with various amplitudes. The resulting highly nonclassical photon-added states are completely characterized with time-domain homodyne tomography, and the nonclassicality of the prepared states is witnessed by the negativity of their Wigner functions. We experimentally demonstrate that the conditional addition of photons realizes approximate noiseless quantum amplification of coherent states with sufficiently large amplitude. We also investigate certification of the stellar rank of the generated multiphoton-added coherent states, which quantifies the non-Gaussian resources required for their preparation. Our results pave the way towards the experimental realization of complex optical quantum operations based on combination of multiple photon additions and subtractions.

光子的条件相加是光量子态工程的重要工具,也是先进量子光子设备的基本组成部分。在此,我们报告了多个光子条件相加的实验实现情况。我们演示了在不同振幅的输入相干态上添加一个、两个和三个光子。我们用时域同源层析成像技术完全表征了由此产生的高度非经典光子相加态,其维格纳函数的负性证明了所制备态的非经典性。我们通过实验证明,光子的有条件添加实现了具有足够大振幅的相干态近似无噪声量子放大。我们还研究了所产生的多光子相干态的恒星等级认证,它量化了制备这些相干态所需的非高斯资源。我们的研究成果为实验实现基于多光子加减组合的复杂光量子操作铺平了道路。
{"title":"Experimental preparation of multiphoton-added coherent states of light","authors":"Jiří Fadrný, Michal Neset, Martin Bielak, Miroslav Ježek, Jan Bílek, Jaromír Fiurášek","doi":"10.1038/s41534-024-00885-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00885-y","url":null,"abstract":"<p>Conditional addition of photons represents a crucial tool for optical quantum state engineering and it forms a fundamental building block of advanced quantum photonic devices. Here we report on experimental implementation of the conditional addition of several photons. We demonstrate the addition of one, two, and three photons to input coherent states with various amplitudes. The resulting highly nonclassical photon-added states are completely characterized with time-domain homodyne tomography, and the nonclassicality of the prepared states is witnessed by the negativity of their Wigner functions. We experimentally demonstrate that the conditional addition of photons realizes approximate noiseless quantum amplification of coherent states with sufficiently large amplitude. We also investigate certification of the stellar rank of the generated multiphoton-added coherent states, which quantifies the non-Gaussian resources required for their preparation. Our results pave the way towards the experimental realization of complex optical quantum operations based on combination of multiple photon additions and subtractions.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"4 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Quantum Information
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1