Pub Date : 2024-03-01DOI: 10.1038/s41525-024-00398-9
Jil D Stegmann, Jeshurun C Kalanithy, Gabriel C Dworschak, Nina Ishorst, Enrico Mingardo, Filipa M Lopes, Yee Mang Ho, Phillip Grote, Tobias T Lindenberg, Öznur Yilmaz, Khadija Channab, Steve Seltzsam, Shirlee Shril, Friedhelm Hildebrandt, Felix Boschann, André Heinen, Angad Jolly, Katherine Myers, Kim McBride, Mir Reza Bekheirnia, Nasim Bekheirnia, Marcello Scala, Manuela Morleo, Vincenzo Nigro, Annalaura Torella, Michele Pinelli, Valeria Capra, Andrea Accogli, Silvia Maitz, Alice Spano, Rory J Olson, Eric W Klee, Brendan C Lanpher, Se Song Jang, Jong-Hee Chae, Philipp Steinbauer, Dietmar Rieder, Andreas R Janecke, Julia Vodopiutz, Ida Vogel, Jenny Blechingberg, Jennifer L Cohen, Kacie Riley, Victoria Klee, Laurence E Walsh, Matthias Begemann, Miriam Elbracht, Thomas Eggermann, Arzu Stoppe, Kyra Stuurman, Marjon van Slegtenhorst, Tahsin Stefan Barakat, Maureen S Mulhern, Tristan T Sands, Cheryl Cytrynbaum, Rosanna Weksberg, Federica Isidori, Tommaso Pippucci, Giulia Severi, Francesca Montanari, Michael C Kruer, Somayeh Bakhtiari, Hossein Darvish, Heiko Reutter, Gregor Hagelueken, Matthias Geyer, Adrian S Woolf, Jennifer E Posey, James R Lupski, Benjamin Odermatt, Alina C Hilger
CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.
{"title":"Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies.","authors":"Jil D Stegmann, Jeshurun C Kalanithy, Gabriel C Dworschak, Nina Ishorst, Enrico Mingardo, Filipa M Lopes, Yee Mang Ho, Phillip Grote, Tobias T Lindenberg, Öznur Yilmaz, Khadija Channab, Steve Seltzsam, Shirlee Shril, Friedhelm Hildebrandt, Felix Boschann, André Heinen, Angad Jolly, Katherine Myers, Kim McBride, Mir Reza Bekheirnia, Nasim Bekheirnia, Marcello Scala, Manuela Morleo, Vincenzo Nigro, Annalaura Torella, Michele Pinelli, Valeria Capra, Andrea Accogli, Silvia Maitz, Alice Spano, Rory J Olson, Eric W Klee, Brendan C Lanpher, Se Song Jang, Jong-Hee Chae, Philipp Steinbauer, Dietmar Rieder, Andreas R Janecke, Julia Vodopiutz, Ida Vogel, Jenny Blechingberg, Jennifer L Cohen, Kacie Riley, Victoria Klee, Laurence E Walsh, Matthias Begemann, Miriam Elbracht, Thomas Eggermann, Arzu Stoppe, Kyra Stuurman, Marjon van Slegtenhorst, Tahsin Stefan Barakat, Maureen S Mulhern, Tristan T Sands, Cheryl Cytrynbaum, Rosanna Weksberg, Federica Isidori, Tommaso Pippucci, Giulia Severi, Francesca Montanari, Michael C Kruer, Somayeh Bakhtiari, Hossein Darvish, Heiko Reutter, Gregor Hagelueken, Matthias Geyer, Adrian S Woolf, Jennifer E Posey, James R Lupski, Benjamin Odermatt, Alina C Hilger","doi":"10.1038/s41525-024-00398-9","DOIUrl":"10.1038/s41525-024-00398-9","url":null,"abstract":"<p><p>CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"18"},"PeriodicalIF":4.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1038/s41525-024-00404-0
Stephen F Kingsmore, Russell Nofsinger, Kasia Ellsworth
Single locus (Mendelian) diseases are a leading cause of childhood hospitalization, intensive care unit (ICU) admission, mortality, and healthcare cost. Rapid genome sequencing (RGS), ultra-rapid genome sequencing (URGS), and rapid exome sequencing (RES) are diagnostic tests for genetic diseases for ICU patients. In 44 studies of children in ICUs with diseases of unknown etiology, 37% received a genetic diagnosis, 26% had consequent changes in management, and net healthcare costs were reduced by $14,265 per child tested by URGS, RGS, or RES. URGS outperformed RGS and RES with faster time to diagnosis, and higher rate of diagnosis and clinical utility. Diagnostic and clinical outcomes will improve as methods evolve, costs decrease, and testing is implemented within precision medicine delivery systems attuned to ICU needs. URGS, RGS, and RES are currently performed in <5% of the ~200,000 children likely to benefit annually due to lack of payor coverage, inadequate reimbursement, hospital policies, hospitalist unfamiliarity, under-recognition of possible genetic diseases, and current formatting as tests rather than as a rapid precision medicine delivery system. The gap between actual and optimal outcomes in children in ICUs is currently increasing since expanded use of URGS, RGS, and RES lags growth in those likely to benefit through new therapies. There is sufficient evidence to conclude that URGS, RGS, or RES should be considered in all children with diseases of uncertain etiology at ICU admission. Minimally, diagnostic URGS, RGS, or RES should be ordered early during admissions of critically ill infants and children with suspected genetic diseases.
单基因位点(孟德尔)疾病是导致儿童住院、入住重症监护室(ICU)、死亡率和医疗费用的主要原因。快速基因组测序(RGS)、超快速基因组测序(URGS)和快速外显子组测序(RES)是 ICU 患者遗传疾病的诊断检测方法。在对重症监护室中病因不明的儿童进行的 44 项研究中,37% 的儿童得到了基因诊断,26% 的儿童因此改变了治疗方法,每名接受 URGS、RGS 或 RES 检测的儿童的净医疗成本减少了 14,265 美元。URGS 优于 RGS 和 RES,诊断时间更快,诊断率和临床实用性更高。随着方法的发展、成本的降低以及在适应重症监护室需求的精准医疗服务系统中实施检测,诊断和临床结果将得到改善。URGS、RGS 和 RES 目前在以下医院进行
{"title":"Rapid genomic sequencing for genetic disease diagnosis and therapy in intensive care units: a review.","authors":"Stephen F Kingsmore, Russell Nofsinger, Kasia Ellsworth","doi":"10.1038/s41525-024-00404-0","DOIUrl":"10.1038/s41525-024-00404-0","url":null,"abstract":"<p><p>Single locus (Mendelian) diseases are a leading cause of childhood hospitalization, intensive care unit (ICU) admission, mortality, and healthcare cost. Rapid genome sequencing (RGS), ultra-rapid genome sequencing (URGS), and rapid exome sequencing (RES) are diagnostic tests for genetic diseases for ICU patients. In 44 studies of children in ICUs with diseases of unknown etiology, 37% received a genetic diagnosis, 26% had consequent changes in management, and net healthcare costs were reduced by $14,265 per child tested by URGS, RGS, or RES. URGS outperformed RGS and RES with faster time to diagnosis, and higher rate of diagnosis and clinical utility. Diagnostic and clinical outcomes will improve as methods evolve, costs decrease, and testing is implemented within precision medicine delivery systems attuned to ICU needs. URGS, RGS, and RES are currently performed in <5% of the ~200,000 children likely to benefit annually due to lack of payor coverage, inadequate reimbursement, hospital policies, hospitalist unfamiliarity, under-recognition of possible genetic diseases, and current formatting as tests rather than as a rapid precision medicine delivery system. The gap between actual and optimal outcomes in children in ICUs is currently increasing since expanded use of URGS, RGS, and RES lags growth in those likely to benefit through new therapies. There is sufficient evidence to conclude that URGS, RGS, or RES should be considered in all children with diseases of uncertain etiology at ICU admission. Minimally, diagnostic URGS, RGS, or RES should be ordered early during admissions of critically ill infants and children with suspected genetic diseases.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"17"},"PeriodicalIF":4.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1038/s41525-024-00397-w
Ariel Dadush, Rona Merdler-Rabinowicz, David Gorelik, Ariel Feiglin, Ilana Buchumenski, Lipika R Pal, Shay Ben-Aroya, Eytan Ruppin, Erez Y Levanon
The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we also present several factors that affect applicability such as bystander and off-target occurrences. For cases where editing the mismatched nucleotide is not feasible, we introduce an approach that calculates the optimal substitution of the deleterious amino acid with a new amino acid, further expanding the scope of applicability. As personalized therapy is rapidly advancing, our demonstration that most SNVs can be treated by base editing is of high importance. The data provided will serve as a comprehensive resource for those seeking to design therapeutic base editors and study their potential in curing genetic diseases.
大多数人类遗传疾病都是由基因组序列中的单核苷酸变异(SNV)引起的。令人振奋的是,被称为碱基编辑的新基因组技术为纠正错误核苷酸开辟了有效途径。由于依赖脱氨酶将 A 转为 I(G)和将 C 转为 U,碱基编辑的直接适用性在可恢复的突变范围方面似乎受到了限制。在本评估中,我们评估了 DNA 和 RNA 碱基编辑方法治疗人类遗传疾病的潜力。我们的研究结果表明,基因中 62% 的致病性 SNV 可通过碱基编辑进行修正;30% 的 G>A 和 T>C SNV 可通过 DNA 碱基编辑进行修正,其中大部分也可通过 RNA 碱基编辑进行修正;29% 的 C>T 和 A>G SNV 可通过针对互补链的 DNA 碱基编辑进行修正。对于每种情况,我们还介绍了影响适用性的几个因素,如旁观者和脱靶现象。对于编辑错配核苷酸不可行的情况,我们介绍了一种计算有害氨基酸与新氨基酸最佳置换的方法,进一步扩大了适用范围。随着个性化治疗的快速发展,我们证明大多数 SNV 都可以通过碱基编辑来治疗,这一点非常重要。我们提供的数据将为那些寻求设计治疗性碱基编辑器和研究其治疗遗传疾病潜力的人提供全面的资源。
{"title":"DNA and RNA base editors can correct the majority of pathogenic single nucleotide variants.","authors":"Ariel Dadush, Rona Merdler-Rabinowicz, David Gorelik, Ariel Feiglin, Ilana Buchumenski, Lipika R Pal, Shay Ben-Aroya, Eytan Ruppin, Erez Y Levanon","doi":"10.1038/s41525-024-00397-w","DOIUrl":"10.1038/s41525-024-00397-w","url":null,"abstract":"<p><p>The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we also present several factors that affect applicability such as bystander and off-target occurrences. For cases where editing the mismatched nucleotide is not feasible, we introduce an approach that calculates the optimal substitution of the deleterious amino acid with a new amino acid, further expanding the scope of applicability. As personalized therapy is rapidly advancing, our demonstration that most SNVs can be treated by base editing is of high importance. The data provided will serve as a comprehensive resource for those seeking to design therapeutic base editors and study their potential in curing genetic diseases.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"16"},"PeriodicalIF":5.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1038/s41525-024-00396-x
Kristen M. Wigby, Deanna Brockman, Gregory Costain, Caitlin Hale, Stacie L. Taylor, John Belmont, David Bick, David Dimmock, Susan Fernbach, John Greally, Vaidehi Jobanputra, Shashikant Kulkarni, Elizabeth Spiteri, Ryan J. Taft
Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12–73%), 33% (6–86%) in cohorts with prior genetic testing, and 33% (9–60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24–100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.
{"title":"Evidence review and considerations for use of first line genome sequencing to diagnose rare genetic disorders","authors":"Kristen M. Wigby, Deanna Brockman, Gregory Costain, Caitlin Hale, Stacie L. Taylor, John Belmont, David Bick, David Dimmock, Susan Fernbach, John Greally, Vaidehi Jobanputra, Shashikant Kulkarni, Elizabeth Spiteri, Ryan J. Taft","doi":"10.1038/s41525-024-00396-x","DOIUrl":"https://doi.org/10.1038/s41525-024-00396-x","url":null,"abstract":"<p>Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12–73%), 33% (6–86%) in cohorts with prior genetic testing, and 33% (9–60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24–100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"4 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1038/s41525-024-00401-3
Debanjan Saha, Ha X Dang, Meng Zhang, David A Quigley, Felix Y Feng, Christopher A Maher
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of prostate cancer. Although long-noncoding RNAs (lncRNAs) have been implicated in mCRPC, past studies have relied on bulk sequencing methods with low depth and lack of single-cell resolution. Hence, we performed a lncRNA-focused analysis of single-cell RNA-sequencing data (n = 14) from mCRPC biopsies followed by integration with bulk multi-omic datasets. This yielded 389 cell-enriched lncRNAs in prostate cancer cells and the tumor microenvironment (TME). These lncRNAs demonstrated enrichment with regulatory elements and exhibited alterations during prostate cancer progression. Prostate-lncRNAs were correlated with AR mutational status and response to treatment with enzalutamide, while TME-lncRNAs were associated with RB1 deletions and poor prognosis. Finally, lncRNAs identified between prostate adenocarcinomas and neuroendocrine tumors exhibited distinct expression and methylation profiles. Our findings demonstrate the ability of single-cell analysis to refine our understanding of lncRNAs in mCRPC and serve as a resource for future mechanistic studies.
{"title":"Single cell-transcriptomic analysis informs the lncRNA landscape in metastatic castration resistant prostate cancer.","authors":"Debanjan Saha, Ha X Dang, Meng Zhang, David A Quigley, Felix Y Feng, Christopher A Maher","doi":"10.1038/s41525-024-00401-3","DOIUrl":"10.1038/s41525-024-00401-3","url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of prostate cancer. Although long-noncoding RNAs (lncRNAs) have been implicated in mCRPC, past studies have relied on bulk sequencing methods with low depth and lack of single-cell resolution. Hence, we performed a lncRNA-focused analysis of single-cell RNA-sequencing data (n = 14) from mCRPC biopsies followed by integration with bulk multi-omic datasets. This yielded 389 cell-enriched lncRNAs in prostate cancer cells and the tumor microenvironment (TME). These lncRNAs demonstrated enrichment with regulatory elements and exhibited alterations during prostate cancer progression. Prostate-lncRNAs were correlated with AR mutational status and response to treatment with enzalutamide, while TME-lncRNAs were associated with RB1 deletions and poor prognosis. Finally, lncRNAs identified between prostate adenocarcinomas and neuroendocrine tumors exhibited distinct expression and methylation profiles. Our findings demonstrate the ability of single-cell analysis to refine our understanding of lncRNAs in mCRPC and serve as a resource for future mechanistic studies.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"14"},"PeriodicalIF":4.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139940355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1038/s41525-024-00403-1
April Kennedy, Gabriel Ma, Roozbeh Manshaei, Rebekah K Jobling, Raymond H Kim, Tamorah Lewis, Iris Cohn
Commercial pharmacogenetic testing panels capture a fraction of the genetic variation underlying medication metabolism and predisposition to adverse reactions. In this study we compared variation in six pharmacogenes detected by whole genome sequencing (WGS) to a targeted commercial panel in a cohort of 308 individuals with family history of pediatric heart disease. In 1% of the cohort, WGS identified rare variants that altered the interpretation of metabolizer status and would thus prevent potential errors in gene-based dosing.
{"title":"A call for increased inclusivity and global representation in pharmacogenetic testing.","authors":"April Kennedy, Gabriel Ma, Roozbeh Manshaei, Rebekah K Jobling, Raymond H Kim, Tamorah Lewis, Iris Cohn","doi":"10.1038/s41525-024-00403-1","DOIUrl":"10.1038/s41525-024-00403-1","url":null,"abstract":"<p><p>Commercial pharmacogenetic testing panels capture a fraction of the genetic variation underlying medication metabolism and predisposition to adverse reactions. In this study we compared variation in six pharmacogenes detected by whole genome sequencing (WGS) to a targeted commercial panel in a cohort of 308 individuals with family history of pediatric heart disease. In 1% of the cohort, WGS identified rare variants that altered the interpretation of metabolizer status and would thus prevent potential errors in gene-based dosing.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"13"},"PeriodicalIF":5.3,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139932262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype–phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
{"title":"Clinical application of next generation sequencing for Mendelian disease diagnosis in the Iranian population","authors":"Ayda Abolhassani, Zohreh Fattahi, Maryam Beheshtian, Mahsa Fadaee, Raheleh Vazehan, Fatemeh Ahangari, Shima Dehdahsi, Mehrshid Faraji Zonooz, Elham Parsimehr, Zahra Kalhor, Fatemeh Peymani, Maryam Mozaffarpour Nouri, Mojgan Babanejad, Khadijeh Noudehi, Fatemeh Fatehi, Shima Zamanian Najafabadi, Fariba Afroozan, Hilda Yazdan, Bita Bozorgmehr, Azita Azarkeivan, Shokouh Sadat Mahdavi, Pooneh Nikuei, Farzad Fatehi, Payman Jamali, Mahmoud Reza Ashrafi, Parvaneh Karimzadeh, Haleh Habibi, Kimia Kahrizi, Shahriar Nafissi, Ariana Kariminejad, Hossein Najmabadi","doi":"10.1038/s41525-024-00393-0","DOIUrl":"https://doi.org/10.1038/s41525-024-00393-0","url":null,"abstract":"<p>Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype–phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"39 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139902070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Innovations in sequencing technology have led to the discovery of novel mutations that cause inherited diseases. However, many patients with suspected genetic diseases remain undiagnosed. Long-read sequencing technologies are expected to significantly improve the diagnostic rate by overcoming the limitations of short-read sequencing. In addition, Oxford Nanopore Technologies (ONT) offers adaptive sampling and computationally driven target enrichment technology. This enables more affordable intensive analysis of target gene regions compared to standard non-selective long-read sequencing. In this study, we developed an efficient computational workflow for target adaptive sampling long-read sequencing (TAS-LRS) and evaluated it through application to 33 genomes collected from suspected hereditary cancer patients. Our workflow can identify single nucleotide variants with nearly the same accuracy as the short-read platform and elucidate complex forms of structural variations. We also newly identified several SINE-R/VNTR/Alu (SVA) elements affecting the APC gene in two patients with familial adenomatous polyposis, as well as their sites of origin. In addition, we demonstrated that off-target reads from adaptive sampling, which is typically discarded, can be effectively used to accurately genotype common single-nucleotide polymorphisms (SNPs) across the entire genome, enabling the calculation of a polygenic risk score. Furthermore, we identified allele-specific MLH1 promoter hypermethylation in a Lynch syndrome patient. In summary, our workflow with TAS-LRS can simultaneously capture monogenic risk variants including complex structural variations, polygenic background as well as epigenetic alterations, and will be an efficient platform for genetic disease research and diagnosis.
{"title":"Assessing the efficacy of target adaptive sampling long-read sequencing through hereditary cancer patient genomes.","authors":"Wataru Nakamura, Makoto Hirata, Satoyo Oda, Kenichi Chiba, Ai Okada, Raúl Nicolás Mateos, Masahiro Sugawa, Naoko Iida, Mineko Ushiama, Noriko Tanabe, Hiromi Sakamoto, Shigeki Sekine, Akira Hirasawa, Yosuke Kawai, Katsushi Tokunaga, Shin-Ichi Tsujimoto, Norio Shiba, Shuichi Ito, Teruhiko Yoshida, Yuichi Shiraishi","doi":"10.1038/s41525-024-00394-z","DOIUrl":"10.1038/s41525-024-00394-z","url":null,"abstract":"<p><p>Innovations in sequencing technology have led to the discovery of novel mutations that cause inherited diseases. However, many patients with suspected genetic diseases remain undiagnosed. Long-read sequencing technologies are expected to significantly improve the diagnostic rate by overcoming the limitations of short-read sequencing. In addition, Oxford Nanopore Technologies (ONT) offers adaptive sampling and computationally driven target enrichment technology. This enables more affordable intensive analysis of target gene regions compared to standard non-selective long-read sequencing. In this study, we developed an efficient computational workflow for target adaptive sampling long-read sequencing (TAS-LRS) and evaluated it through application to 33 genomes collected from suspected hereditary cancer patients. Our workflow can identify single nucleotide variants with nearly the same accuracy as the short-read platform and elucidate complex forms of structural variations. We also newly identified several SINE-R/VNTR/Alu (SVA) elements affecting the APC gene in two patients with familial adenomatous polyposis, as well as their sites of origin. In addition, we demonstrated that off-target reads from adaptive sampling, which is typically discarded, can be effectively used to accurately genotype common single-nucleotide polymorphisms (SNPs) across the entire genome, enabling the calculation of a polygenic risk score. Furthermore, we identified allele-specific MLH1 promoter hypermethylation in a Lynch syndrome patient. In summary, our workflow with TAS-LRS can simultaneously capture monogenic risk variants including complex structural variations, polygenic background as well as epigenetic alterations, and will be an efficient platform for genetic disease research and diagnosis.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"11"},"PeriodicalIF":5.3,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multi-gene panel testing has led to the detection of pathogenic/likely pathogenic (P/LP) variants in many cancer susceptibility genes in patients with breast-ovarian cancer spectrum. However, the clinical and genomic data of Asian populations, including Thai cancer patients, was underrepresented, and the clinical significance of multi-gene panel testing in Thailand remains undetermined. In this study, we collected the clinical and genetic data from 4567 Thai patients with cancer in the hereditary breast-ovarian cancer (HBOC) spectrum who underwent multi-gene panel testing. Six hundred and ten individuals (13.4%) had germline P/LP variants. Detection rates of germline P/LP variants in breast, ovarian, pancreatic, and prostate cancer were 11.8%, 19.8%, 14.0%, and 7.1%, respectively. Non-BRCA gene mutations accounted for 35% of patients with germline P/LP variants. ATM was the most common non-BRCA gene mutation. Four hundred and thirty-two breast cancer patients with germline P/LP variants (80.4%) met the current NCCN genetic testing criteria. The most common indication was early-onset breast cancer. Ten patients harbored double pathogenic variants in this cohort. Our result showed that a significant proportion of non-BRCA P/LP variants were identified in patients with HBOC-related cancers. These findings support the benefit of multi-gene panel testing for inherited cancer susceptibility among Thai HBOC patients. Some modifications of the testing policy may be appropriate for implementation in diverse populations.
{"title":"Germline mutations of 4567 patients with hereditary breast-ovarian cancer spectrum in Thailand.","authors":"Chalermkiat Kansuttiviwat, Pongtawat Lertwilaiwittaya, Ekkapong Roothumnong, Panee Nakthong, Peerawat Dungort, Chutima Meesamarnpong, Warisara Tansa-Nga, Khontawan Pongsuktavorn, Supakit Wiboonthanasarn, Warunya Tititumjariya, Nannipa Phuphuripan, Chittapat Lertbussarakam, Jantanee Wattanarangsan, Jiraporn Sritun, Kittiporn Punuch, Jirayu Kammarabutr, Pornthira Mutirangura, Wanna Thongnoppakhun, Chanin Limwongse, Manop Pithukpakorn","doi":"10.1038/s41525-024-00400-4","DOIUrl":"10.1038/s41525-024-00400-4","url":null,"abstract":"<p><p>Multi-gene panel testing has led to the detection of pathogenic/likely pathogenic (P/LP) variants in many cancer susceptibility genes in patients with breast-ovarian cancer spectrum. However, the clinical and genomic data of Asian populations, including Thai cancer patients, was underrepresented, and the clinical significance of multi-gene panel testing in Thailand remains undetermined. In this study, we collected the clinical and genetic data from 4567 Thai patients with cancer in the hereditary breast-ovarian cancer (HBOC) spectrum who underwent multi-gene panel testing. Six hundred and ten individuals (13.4%) had germline P/LP variants. Detection rates of germline P/LP variants in breast, ovarian, pancreatic, and prostate cancer were 11.8%, 19.8%, 14.0%, and 7.1%, respectively. Non-BRCA gene mutations accounted for 35% of patients with germline P/LP variants. ATM was the most common non-BRCA gene mutation. Four hundred and thirty-two breast cancer patients with germline P/LP variants (80.4%) met the current NCCN genetic testing criteria. The most common indication was early-onset breast cancer. Ten patients harbored double pathogenic variants in this cohort. Our result showed that a significant proportion of non-BRCA P/LP variants were identified in patients with HBOC-related cancers. These findings support the benefit of multi-gene panel testing for inherited cancer susceptibility among Thai HBOC patients. Some modifications of the testing policy may be appropriate for implementation in diverse populations.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"9"},"PeriodicalIF":5.3,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1038/s41525-024-00399-8
Ilias Goranitis, Yan Meng, Melissa Martyn, Stephanie Best, Sophie Bouffler, Yvonne Bombard, Clara Gaff, Zornitza Stark
Health economic evidence is needed to inform the design of high-value and cost-effective processes for returning genomic results from analyses for additional findings (AF). This study reports the results of a discrete-choice experiment designed to elicit preferences for the process of returning AF results from the perspective of parents of children with rare conditions and to estimate the value placed on AF analysis. Overall, 94 parents recruited within the Australian Genomics and Melbourne Genomics programmes participated in the survey, providing preferences in a total of 1128 choice scenarios. Statistically significant preferences were identified for the opportunity to change the choices made about AF; receiving positive AF in person from a genetic counsellor; timely access to a medical specialist and high-quality online resources; receiving automatic updates through a secure online portal if new information becomes available; and lower costs. For AF uptake rates ranging between 50-95%, the mean per person value from AF analysis was estimated at AU$450-$1700 (US$300-$1140). The findings enable the design of a value-maximising process of analysis for AF in rare-disease genomic sequencing.
我们需要健康经济学证据来为设计高价值、高成本效益的流程提供信息,以便从分析中返还基因组结果以获得额外发现(AF)。本研究报告了一项离散选择实验的结果,该实验旨在从罕见病患儿家长的角度了解他们对返还 AF 结果流程的偏好,并估算 AF 分析的价值。澳大利亚基因组学计划和墨尔本基因组学计划共招募了 94 名家长参与调查,他们共提供了 1128 种选择方案。经统计发现,在以下方面有明显的偏好:有机会改变对房颤做出的选择;亲自从遗传咨询师那里获得积极的房颤信息;及时获得医学专家和高质量的在线资源;在有新信息时通过安全的在线门户网站获得自动更新;以及较低的成本。对于 50-95% 的心房颤动接受率,心房颤动分析的人均价值估计为 450-1 700 澳元(300-1140 美元)。这些研究结果有助于在罕见病基因组测序中设计一种价值最大化的房颤分析流程。
{"title":"Eliciting parental preferences and values for the return of additional findings from genomic sequencing.","authors":"Ilias Goranitis, Yan Meng, Melissa Martyn, Stephanie Best, Sophie Bouffler, Yvonne Bombard, Clara Gaff, Zornitza Stark","doi":"10.1038/s41525-024-00399-8","DOIUrl":"10.1038/s41525-024-00399-8","url":null,"abstract":"<p><p>Health economic evidence is needed to inform the design of high-value and cost-effective processes for returning genomic results from analyses for additional findings (AF). This study reports the results of a discrete-choice experiment designed to elicit preferences for the process of returning AF results from the perspective of parents of children with rare conditions and to estimate the value placed on AF analysis. Overall, 94 parents recruited within the Australian Genomics and Melbourne Genomics programmes participated in the survey, providing preferences in a total of 1128 choice scenarios. Statistically significant preferences were identified for the opportunity to change the choices made about AF; receiving positive AF in person from a genetic counsellor; timely access to a medical specialist and high-quality online resources; receiving automatic updates through a secure online portal if new information becomes available; and lower costs. For AF uptake rates ranging between 50-95%, the mean per person value from AF analysis was estimated at AU$450-$1700 (US$300-$1140). The findings enable the design of a value-maximising process of analysis for AF in rare-disease genomic sequencing.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"10"},"PeriodicalIF":5.3,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}