Pub Date : 2025-12-15DOI: 10.1038/s41535-025-00834-8
F. Elson, J. Philippe, G. Simutis, O. K. Forslund, M. Abdel-Hafiez, M. Janoschek, R. Khasanov, D. Das, J. Weissenrieder, D. W. Tam, Y. Sassa, M. Månsson
Superconductivity in TiSe2 emerges when the charge density wave (CDW) order is suppressed under pressure or doping. Recent theoretical and experimental studies suggest that a Lifshitz transition plays a key role in stabilizing the superconducting phase. Here, we present muon spin resonance measurements of pressurized TiSe2, revealing a two-gap superconducting state. Our results indicate that the smaller gap contributes unexpectedly strongly to the total superfluid density. This effect is consistent with an enhanced density of states in a newly formed Fermi surface pocket at the Lifshitz transition. These findings provide microscopic insight into the interplay between CDW suppression, Fermi surface reconstruction, and multi-gap superconductivity in TiSe2, demonstrating how pressure-induced changes in electronic structure can shape superconducting properties in layered materials.
{"title":"Lifshitz-enhanced superfluid density in two-gap superconducting TiSe2","authors":"F. Elson, J. Philippe, G. Simutis, O. K. Forslund, M. Abdel-Hafiez, M. Janoschek, R. Khasanov, D. Das, J. Weissenrieder, D. W. Tam, Y. Sassa, M. Månsson","doi":"10.1038/s41535-025-00834-8","DOIUrl":"https://doi.org/10.1038/s41535-025-00834-8","url":null,"abstract":"Superconductivity in TiSe2 emerges when the charge density wave (CDW) order is suppressed under pressure or doping. Recent theoretical and experimental studies suggest that a Lifshitz transition plays a key role in stabilizing the superconducting phase. Here, we present muon spin resonance measurements of pressurized TiSe2, revealing a two-gap superconducting state. Our results indicate that the smaller gap contributes unexpectedly strongly to the total superfluid density. This effect is consistent with an enhanced density of states in a newly formed Fermi surface pocket at the Lifshitz transition. These findings provide microscopic insight into the interplay between CDW suppression, Fermi surface reconstruction, and multi-gap superconductivity in TiSe2, demonstrating how pressure-induced changes in electronic structure can shape superconducting properties in layered materials.","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"158 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-04DOI: 10.1038/s41535-025-00833-9
Sabrina J. Li, Guru Khalsa, Jeffrey Z. Kaaret, Nicole A. Benedek
Experiments involving resonant optical excitation of infrared-active phonons in crystals have emerged as a powerful new way to tune materials properties. A puzzling and so far unexplained aspect of some so-called nonlinear phononics experiments is that the observed lifetimes of the optically created metastable phases are sometimes orders of magnitude longer than expected based on the nonlinear phononics mechanism assumed in most works. We use a combination of phenomenological theory and first-principles calculations to demonstrate that strong coupling between different lattice degrees of freedom (strains and Raman-active phonons) can give rise to a long-lived metastable phase recently observed in experiments on perovskite LaAlO 3 [Hortensius et al. npj Quantum Mater . 5 95 (2020)]. We show that the long-timescale oscillatory response in the experimental optical reflectivity data is not due solely to shear strains, as originally suggested, but arises from a “hybrid” mode involving displacements of Raman-active phonons of the same symmetry. Our work suggests that strong coupling between different order parameters can provide a mechanism for long-lived optically created metastable phases and points towards strategies, such as strain engineering, for modifying or increasing the lifetime of light-induced phases in ultrafast optical experiments.
涉及晶体中红外主动声子的共振光学激发的实验已经成为调节材料性质的一种强大的新方法。在一些所谓的非线性声子实验中,一个令人困惑和至今无法解释的方面是,根据大多数工作中假设的非线性声子机制,观察到的光学产生的亚稳相的寿命有时比预期的长几个数量级。我们使用现象学理论和第一原理计算的结合来证明不同晶格自由度(应变和拉曼活跃声子)之间的强耦合可以产生最近在钙钛矿LaAlO 3实验中观察到的长寿命亚稳相[Hortensius et al. npj Quantum Mater]。[5][95](2020)。我们表明,实验光学反射率数据中的长时间振荡响应并不像最初提出的那样仅仅是由于剪切应变,而是由于涉及相同对称性的拉曼主动声子位移的“混合”模式。我们的研究表明,不同阶参量之间的强耦合可以为长寿命的光学创建亚稳相提供一种机制,并指出了在超快光学实验中修改或增加光诱导相寿命的策略,如应变工程。
{"title":"Understanding long-lived metastable phases in ultrafast optical experiments","authors":"Sabrina J. Li, Guru Khalsa, Jeffrey Z. Kaaret, Nicole A. Benedek","doi":"10.1038/s41535-025-00833-9","DOIUrl":"https://doi.org/10.1038/s41535-025-00833-9","url":null,"abstract":"Experiments involving resonant optical excitation of infrared-active phonons in crystals have emerged as a powerful new way to tune materials properties. A puzzling and so far unexplained aspect of some so-called nonlinear phononics experiments is that the observed lifetimes of the optically created metastable phases are sometimes orders of magnitude longer than expected based on the nonlinear phononics mechanism assumed in most works. We use a combination of phenomenological theory and first-principles calculations to demonstrate that strong coupling between different lattice degrees of freedom (strains and Raman-active phonons) can give rise to a long-lived metastable phase recently observed in experiments on perovskite LaAlO <jats:sub>3</jats:sub> [Hortensius et al. <jats:italic>npj Quantum Mater</jats:italic> . 5 95 (2020)]. We show that the long-timescale oscillatory response in the experimental optical reflectivity data is not due solely to shear strains, as originally suggested, but arises from a “hybrid” mode involving displacements of Raman-active phonons of the same symmetry. Our work suggests that strong coupling between different order parameters can provide a mechanism for long-lived optically created metastable phases and points towards strategies, such as strain engineering, for modifying or increasing the lifetime of light-induced phases in ultrafast optical experiments.","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"216 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-03DOI: 10.1038/s41535-025-00815-x
Changle Liu, Guijing Duan, Rong Yu
{"title":"Theory of rare-earth Kramers magnets on a shastry-sutherland lattice: dimer phases in the presence of strong spin-orbit coupling","authors":"Changle Liu, Guijing Duan, Rong Yu","doi":"10.1038/s41535-025-00815-x","DOIUrl":"https://doi.org/10.1038/s41535-025-00815-x","url":null,"abstract":"","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Twist-angle transferable continuum model and second flat Chern band in twisted MoTe2 and WSe2","authors":"Xiao-Wei Zhang, Kaijie Yang, Chong Wang, Xiaoyu Liu, Ting Cao, Di Xiao","doi":"10.1038/s41535-025-00828-6","DOIUrl":"https://doi.org/10.1038/s41535-025-00828-6","url":null,"abstract":"","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"202 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-27DOI: 10.1038/s41535-025-00824-w
Jian Li, Shunjiao Li, Kai Liu, Xuyang Li, Linpeng Nie, Dan Zhao, Mengzhu Shi, Tao Wu, Xianhui Chen
Multi-orbital/band electronic structure and orbital-dependent electron correlations critically shape emergent electronic states in correlated materials. Bulk FeSe exemplifies this through its enigmatic nematic phase, whose microscopic mechanism remains an outstanding question. Here, we perform comprehensive 57 Fe and 77 Se nuclear magnetic resonance (NMR) study on the evolution of the nematicity of bulk FeSe under hydrostatic pressure. At low pressures, alongside the nematicity involving on-site 3 dxz /3 dyz orbital polarization, a distinct non-local $${d}_{{xy}}$$dxy nematicity emerges, indicating anisotropic intersite hopping of 3 dx y orbital electrons. With increasing pressure, while the on-site 3 dxz /3 dyz orbital polarization is gradually suppressed, the Lifshitz transition of the 3 dx y orbital hole pocket causes the $${d}_{{xy}}$$dxy nematicity transforms into a spin-driven Ising-type nematicity above a characteristic pressure. This Fermi-surface crossover also influences the superconducting transition temperature $${T}_{{rm{c}}}$$Tc , signifying the pivotal role of the more-correlated 3 dx y orbital in Cooper pairing at high pressures. Our results establish the orbital-selective nature of nematicity in FeSe and its nontrivial tunability via hydrostatic pressure. We demonstrate that nematicity serves as a sensitive indicator of the underlying electronic structure and interactions in correlated electron systems.
多轨道/带电子结构和轨道依赖的电子相关性对相关材料中的涌现电子态具有重要影响。散装FeSe通过其神秘的向列相证明了这一点,其微观机制仍然是一个悬而未决的问题。在这里,我们进行了全面的57 Fe和77 Se核磁共振(NMR)研究在静水压力下块状FeSe的向列性的演变。在低压下,除了涉及现场三维xz /三维yz轨道极化的向列外,还出现了明显的非局域$${d}_{{xy}}$$ d xy向列,表明三维xy轨道电子的各向异性跃迁。随着压力的增加,当现场三维xz /三维yz轨道极化逐渐被抑制时,三维xy轨道空穴的Lifshitz跃迁导致$${d}_{{xy}}$$ d xy向列在特征压力以上转变为自旋驱动的ising型向列。这种费米-表面交叉也影响超导转变温度$${T}_{{rm{c}}}$$ T c,这表明在高压下,更相关的三维x y轨道在库珀对中起着关键作用。我们的结果建立了FeSe中向列性的轨道选择性及其通过静水压力的非平凡可调性。我们证明了向列性可以作为相关电子系统中潜在电子结构和相互作用的敏感指标。
{"title":"Pressure-dependent orbital-selective nematicity in FeSe","authors":"Jian Li, Shunjiao Li, Kai Liu, Xuyang Li, Linpeng Nie, Dan Zhao, Mengzhu Shi, Tao Wu, Xianhui Chen","doi":"10.1038/s41535-025-00824-w","DOIUrl":"https://doi.org/10.1038/s41535-025-00824-w","url":null,"abstract":"Multi-orbital/band electronic structure and orbital-dependent electron correlations critically shape emergent electronic states in correlated materials. Bulk FeSe exemplifies this through its enigmatic nematic phase, whose microscopic mechanism remains an outstanding question. Here, we perform comprehensive <jats:sup>57</jats:sup> Fe and <jats:sup>77</jats:sup> Se nuclear magnetic resonance (NMR) study on the evolution of the nematicity of bulk FeSe under hydrostatic pressure. At low pressures, alongside the nematicity involving on-site 3 <jats:italic>d</jats:italic> <jats:sub> <jats:italic>xz</jats:italic> </jats:sub> /3 <jats:italic>d</jats:italic> <jats:sub>yz</jats:sub> orbital polarization, a distinct non-local <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${d}_{{xy}}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>xy</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> nematicity emerges, indicating anisotropic intersite hopping of 3 <jats:italic>d</jats:italic> <jats:sub> <jats:italic>x</jats:italic> y </jats:sub> orbital electrons. With increasing pressure, while the on-site 3 <jats:italic>d</jats:italic> <jats:sub> <jats:italic>xz</jats:italic> </jats:sub> /3 <jats:italic>d</jats:italic> <jats:sub>yz</jats:sub> orbital polarization is gradually suppressed, the Lifshitz transition of the 3 <jats:italic>d</jats:italic> <jats:sub> <jats:italic>x</jats:italic> y </jats:sub> orbital hole pocket causes the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${d}_{{xy}}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>xy</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> nematicity transforms into a spin-driven Ising-type nematicity above a characteristic pressure. This Fermi-surface crossover also influences the superconducting transition temperature <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${T}_{{rm{c}}}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , signifying the pivotal role of the more-correlated 3 <jats:italic>d</jats:italic> <jats:sub> <jats:italic>x</jats:italic> y </jats:sub> orbital in Cooper pairing at high pressures. Our results establish the orbital-selective nature of nematicity in FeSe and its nontrivial tunability via hydrostatic pressure. We demonstrate that nematicity serves as a sensitive indicator of the underlying electronic structure and interactions in correlated electron systems.","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"110 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145608803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-26DOI: 10.1038/s41535-025-00819-7
Chris Halcrow, Ilya Shipulin, Federico Caglieris, Yongwei Li, Joachim Wosnitza, Hans-Henning Klauss, Sergei Zherlitsyn, Vadim Grinenko, Egor Babaev
Experiments have pointed to the formation of the electron quadrupling condensate in Ba 1− x K x Fe 2 As 2 at x ~ 0.8. The state spontaneously breaks time-reversal symmetry and is sandwiched between two critical points, separating it from the broken time-reversal symmetry (BTRS) superconducting state at $${T}_{{rm{c}}}^{U(1)}$$TcU(1) and a normal-metal state at $${T}_{{rm{c}}}^{{rm{Z2}}}$$TcZ2 . We report a theory of the acoustic effects spectroscopy of systems with an electron quadrupling phase based on ultrasound-velocity measurements. We show that the experimental results are consistent with BTRS superconductivity at x ~ 0.8, fulfilling the necessary condition for the formation of electron quadrupling in Ba 1− x K x Fe 2 As 2 . We provide the theoretical basis and the experimental strategy to study the order parameter symmetry of emerging quadrupling condensates in superconductors.
实验指出Ba 1−x K x fe2 As 2在x 0.8时形成了电子四倍凝聚。该状态自发地打破了时间反转对称,并夹在两个临界点之间,将其与时间反转对称(BTRS)超导态($${T}_{{rm{c}}}^{U(1)}$$ t1 U(1))和正常金属态($${T}_{{rm{c}}}^{{rm{Z2}}}$$ t1 Z2)分开。我们报告了基于超声速度测量的电子四倍相系统的声效应光谱理论。我们发现实验结果与BTRS在x 0.8时的超导性一致,满足了Ba 1−x K x fe2 As 2中电子四重生成的必要条件。为研究超导体中新出现的四重凝聚体的序参量对称性提供了理论依据和实验策略。
{"title":"Ultrasound evidence for multicomponent superconducting order parameter in Ba1−xKxFe2As2 with electron quadrupling phase","authors":"Chris Halcrow, Ilya Shipulin, Federico Caglieris, Yongwei Li, Joachim Wosnitza, Hans-Henning Klauss, Sergei Zherlitsyn, Vadim Grinenko, Egor Babaev","doi":"10.1038/s41535-025-00819-7","DOIUrl":"https://doi.org/10.1038/s41535-025-00819-7","url":null,"abstract":"Experiments have pointed to the formation of the electron quadrupling condensate in Ba <jats:sub> 1− <jats:italic>x</jats:italic> </jats:sub> K <jats:sub> <jats:italic>x</jats:italic> </jats:sub> Fe <jats:sub>2</jats:sub> As <jats:sub>2</jats:sub> at <jats:italic>x</jats:italic> ~ 0.8. The state spontaneously breaks time-reversal symmetry and is sandwiched between two critical points, separating it from the broken time-reversal symmetry (BTRS) superconducting state at <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${T}_{{rm{c}}}^{U(1)}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>U</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:msubsup> </mml:math> </jats:alternatives> </jats:inline-formula> and a normal-metal state at <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${T}_{{rm{c}}}^{{rm{Z2}}}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Z2</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> </jats:alternatives> </jats:inline-formula> . We report a theory of the acoustic effects spectroscopy of systems with an electron quadrupling phase based on ultrasound-velocity measurements. We show that the experimental results are consistent with BTRS superconductivity at <jats:italic>x</jats:italic> ~ 0.8, fulfilling the necessary condition for the formation of electron quadrupling in Ba <jats:sub> 1− <jats:italic>x</jats:italic> </jats:sub> K <jats:sub> <jats:italic>x</jats:italic> </jats:sub> Fe <jats:sub>2</jats:sub> As <jats:sub>2</jats:sub> . We provide the theoretical basis and the experimental strategy to study the order parameter symmetry of emerging quadrupling condensates in superconductors.","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"19 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145599381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recent discovery of altermagnets, which exhibit spin splitting without net magnetization, opens new directions for spintronics beyond the limits of ferromagnets, antiferromagnets, and spin-orbit coupled systems. We investigate spin-selective quantum transport in heterostructures composed of a normal metal and a two-dimensional d -wave altermagnet, and identify a universal mechanism for achieving perfect spin polarization. The mechanism is dictated by Fermi-surface geometry: closed surfaces in weak altermagnets yield partial and oscillatory spin filtering, whereas open surfaces in strong altermagnets intrinsically enforce fully spin-polarized conductance. Exploiting these distinct transport properties, we propose all-electrical spin-filter and spin-valve architectures, where resonant tunneling produces highly spin-polarized conductance tunable by gate voltage and interface transparency. Altermagnets with open Fermi surfaces further support gate-reversible perfect spin polarization that remains robust against interface scattering, disorder, and temperature. We also demonstrate an electrically controlled spin valve that reproduces the functionality of magnetic tunnel junctions without magnetic fields or relativistic mechanisms. d -wave altermagnets with open Fermi surfaces thus provide a new platform for low-dissipation, scalable, and magnetic-field-free spintronic devices, with potential for integration into next-generation quantum and CMOS-compatible technologies.
{"title":"All-electrically controlled spintronics in altermagnetic heterostructures","authors":"Pei-Hao Fu, Qianqian Lv, Yong Xu, Jorge Cayao, Jun-Feng Liu, Xiang-Long Yu","doi":"10.1038/s41535-025-00827-7","DOIUrl":"https://doi.org/10.1038/s41535-025-00827-7","url":null,"abstract":"The recent discovery of altermagnets, which exhibit spin splitting without net magnetization, opens new directions for spintronics beyond the limits of ferromagnets, antiferromagnets, and spin-orbit coupled systems. We investigate spin-selective quantum transport in heterostructures composed of a normal metal and a two-dimensional <jats:italic>d</jats:italic> -wave altermagnet, and identify a universal mechanism for achieving perfect spin polarization. The mechanism is dictated by Fermi-surface geometry: closed surfaces in weak altermagnets yield partial and oscillatory spin filtering, whereas open surfaces in strong altermagnets intrinsically enforce fully spin-polarized conductance. Exploiting these distinct transport properties, we propose all-electrical spin-filter and spin-valve architectures, where resonant tunneling produces highly spin-polarized conductance tunable by gate voltage and interface transparency. Altermagnets with open Fermi surfaces further support gate-reversible perfect spin polarization that remains robust against interface scattering, disorder, and temperature. We also demonstrate an electrically controlled spin valve that reproduces the functionality of magnetic tunnel junctions without magnetic fields or relativistic mechanisms. <jats:italic>d</jats:italic> -wave altermagnets with open Fermi surfaces thus provide a new platform for low-dissipation, scalable, and magnetic-field-free spintronic devices, with potential for integration into next-generation quantum and CMOS-compatible technologies.","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"169 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145567695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}