Pub Date : 2025-02-10DOI: 10.1038/s41535-025-00741-y
Albert Liu
Multidimensional spectroscopy has a long history originating from nuclear magnetic resonance, and has now found widespread application at infrared and optical frequencies as well. However, the energy scales of traditional multidimensional probes have been ill-suited for studying quantum materials. Recent technological advancements have now enabled extension of these multidimensional techniques to the terahertz frequency range, in which collective excitations of quantum materials are typically found. This Perspective introduces the technique of two-dimensional terahertz spectroscopy (2DTS) and the unique physics of quantum materials revealed by 2DTS spectra, accompanied by a selection of the rapidly expanding experimental and theoretical literature. While 2DTS has so far been primarily applied to quantum materials at equilibrium, we provide an outlook for its application towards understanding their dynamical non-equilibrium states and beyond.
{"title":"Multidimensional terahertz probes of quantum materials","authors":"Albert Liu","doi":"10.1038/s41535-025-00741-y","DOIUrl":"https://doi.org/10.1038/s41535-025-00741-y","url":null,"abstract":"<p>Multidimensional spectroscopy has a long history originating from nuclear magnetic resonance, and has now found widespread application at infrared and optical frequencies as well. However, the energy scales of traditional multidimensional probes have been ill-suited for studying quantum materials. Recent technological advancements have now enabled extension of these multidimensional techniques to the terahertz frequency range, in which collective excitations of quantum materials are typically found. This Perspective introduces the technique of two-dimensional terahertz spectroscopy (2DTS) and the unique physics of quantum materials revealed by 2DTS spectra, accompanied by a selection of the rapidly expanding experimental and theoretical literature. While 2DTS has so far been primarily applied to quantum materials at equilibrium, we provide an outlook for its application towards understanding their dynamical non-equilibrium states and beyond.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"41 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The interplay between different degrees of freedom governs the emergence of correlated electronic states in quantum materials, with charge density waves (CDW) often coexisting with other exotic phases. Under thermal equilibrium, traditional CDW states are consequentially accompanied by structural phase transitions. In contrast, ultrafast photoexcitation allows access to exotic states where a single degree of freedom dominates in the time domain, enabling the study of underlying physics without interference. Here, we report the realization of a long-lived metastable CDW state without lattice distortion at the photoinduced interfaces in GdTe3 using time- and angle-resolved photoemission spectroscopy. After optical excitation above the CDW melting threshold, we identified emerged metastable interfaces through inverting the CDW-coupled lattice distortions, with lifetimes on the order of 10 picoseconds. These photoinduced interfaces represent a novel CDW state lacking the usual amplitude mode and lattice distortions, allowing quantification of the dominant role of electronic instabilities in CDW order. This work provides a new approach to disentangling electronic instabilities from electron-phonon coupling using a nonequilibrium method.
{"title":"Identification of metastable lattice distortion free charge density wave at photoinduced interface via TRARPES","authors":"Shaofeng Duan, Binshuo Zhang, Zihao Wang, Shichong Wang, Lingxiao Gu, Haoran Liu, Jiongyu Huang, Jianzhe Liu, Dong Qian, Yanfeng Guo, Wentao Zhang","doi":"10.1038/s41535-025-00742-x","DOIUrl":"https://doi.org/10.1038/s41535-025-00742-x","url":null,"abstract":"<p>The interplay between different degrees of freedom governs the emergence of correlated electronic states in quantum materials, with charge density waves (CDW) often coexisting with other exotic phases. Under thermal equilibrium, traditional CDW states are consequentially accompanied by structural phase transitions. In contrast, ultrafast photoexcitation allows access to exotic states where a single degree of freedom dominates in the time domain, enabling the study of underlying physics without interference. Here, we report the realization of a long-lived metastable CDW state without lattice distortion at the photoinduced interfaces in GdTe<sub>3</sub> using time- and angle-resolved photoemission spectroscopy. After optical excitation above the CDW melting threshold, we identified emerged metastable interfaces through inverting the CDW-coupled lattice distortions, with lifetimes on the order of 10 picoseconds. These photoinduced interfaces represent a novel CDW state lacking the usual amplitude mode and lattice distortions, allowing quantification of the dominant role of electronic instabilities in CDW order. This work provides a new approach to disentangling electronic instabilities from electron-phonon coupling using a nonequilibrium method.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"84 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143371679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1038/s41535-025-00737-8
Xinyi Jiang, Qingzheng Qiu, Cheng Peng, Hoyoung Jang, Wenjie Chen, Xianghong Jin, Li Yue, Byungjune Lee, Sang-Youn Park, Minseok Kim, Hyeong-Do Kim, Xinqiang Cai, Qizhi Li, Tao Dong, Nanlin Wang, Joshua J. Turner, Yuan Li, Yao Wang, Yingying Peng
Spin-orbit entangled materials have attracted widespread interest due to the novel magnetic phenomena arising from the interplay between spin-orbit coupling and electronic correlations. However, the intricate nature of spin interactions within Kiteav materials complicates the precise measurement of low-energy spin excitations. Using Na2Co2TeO6 as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of ~1 μeV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques.
{"title":"Using magnetic dynamics to measure the spin gap in a candidate Kitaev material","authors":"Xinyi Jiang, Qingzheng Qiu, Cheng Peng, Hoyoung Jang, Wenjie Chen, Xianghong Jin, Li Yue, Byungjune Lee, Sang-Youn Park, Minseok Kim, Hyeong-Do Kim, Xinqiang Cai, Qizhi Li, Tao Dong, Nanlin Wang, Joshua J. Turner, Yuan Li, Yao Wang, Yingying Peng","doi":"10.1038/s41535-025-00737-8","DOIUrl":"https://doi.org/10.1038/s41535-025-00737-8","url":null,"abstract":"<p>Spin-orbit entangled materials have attracted widespread interest due to the novel magnetic phenomena arising from the interplay between spin-orbit coupling and electronic correlations. However, the intricate nature of spin interactions within Kiteav materials complicates the precise measurement of low-energy spin excitations. Using Na<sub>2</sub>Co<sub>2</sub>TeO<sub>6</sub> as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of ~1 <i>μ</i>eV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1038/s41535-025-00733-y
Qiong Qin, Yi-feng Yang
Can room temperature superconductivity be achieved in correlated materials under ambient pressure? Our answer to this billion-dollar question is probably no, at least for realistic models within the current theoretical framework. This is shown by our systematic simulations on the pairing instability of some effective models for two-dimensional superconductivity. For a square lattice model with nearest-neighbour pairing, we find a plaquette state formed of weakly-connected 2 × 2 blocks for sufficiently large pairing interaction. The superconductivity is suppressed on both sides away from its melting quantum critical point. Thus, the magnitude of Tc is constrained by the plaquette state for the d-wave superconductivity, in resemblance of other competing orders. We then extend our simulations to a variety of effective models covering nearest-neighbour or onsite pairings, single layer or two-layer structures, intralayer or interlayer pairings, and find an intrinsic maximum of the ratio Tc/J ≈ 0.04−0.07, where J is the pairing interaction, given by the onsite attractive interaction in the attractive Hubbard model or the exchange interaction in the repulsive Hubbard model. Our results agree well with previous quantum Monte Carlo simulations for the attractive Hubbard model. Comparison with existing experiments supports this constraint in cuprate, iron-based, nickelate, and heavy fermion superconductors, despite that these compounds are so complicated well beyond our simplified models. As a result, the known families of unconventional superconductivity, possibly except the infinite-layer nickelates, seem to almost exhaust their potentials in reaching the maximal Tc allowed by their respective J, while achieving room temperature superconductor would require a much larger J beyond 400–700 meV, which seems unrealistic in existing correlated materials and hence demands novel pairing mechanisms. The agreement also implies some deep underlying principles of the constraint that urge for a more rigorous theoretical understanding.
{"title":"Intrinsic constraint on Tc for unconventional superconductivity","authors":"Qiong Qin, Yi-feng Yang","doi":"10.1038/s41535-025-00733-y","DOIUrl":"https://doi.org/10.1038/s41535-025-00733-y","url":null,"abstract":"<p>Can room temperature superconductivity be achieved in correlated materials under ambient pressure? Our answer to this billion-dollar question is probably no, at least for realistic models within the current theoretical framework. This is shown by our systematic simulations on the pairing instability of some effective models for two-dimensional superconductivity. For a square lattice model with nearest-neighbour pairing, we find a plaquette state formed of weakly-connected 2 × 2 blocks for sufficiently large pairing interaction. The superconductivity is suppressed on both sides away from its melting quantum critical point. Thus, the magnitude of <i>T</i><sub><i>c</i></sub> is constrained by the plaquette state for the <i>d</i>-wave superconductivity, in resemblance of other competing orders. We then extend our simulations to a variety of effective models covering nearest-neighbour or onsite pairings, single layer or two-layer structures, intralayer or interlayer pairings, and find an intrinsic maximum of the ratio <i>T</i><sub><i>c</i></sub>/<i>J</i> ≈ 0.04−0.07, where <i>J</i> is the pairing interaction, given by the onsite attractive interaction in the attractive Hubbard model or the exchange interaction in the repulsive Hubbard model. Our results agree well with previous quantum Monte Carlo simulations for the attractive Hubbard model. Comparison with existing experiments supports this constraint in cuprate, iron-based, nickelate, and heavy fermion superconductors, despite that these compounds are so complicated well beyond our simplified models. As a result, the known families of unconventional superconductivity, possibly except the infinite-layer nickelates, seem to almost exhaust their potentials in reaching the maximal <i>T</i><sub><i>c</i></sub> allowed by their respective <i>J</i>, while achieving room temperature superconductor would require a much larger <i>J</i> beyond 400–700 meV, which seems unrealistic in existing correlated materials and hence demands novel pairing mechanisms. The agreement also implies some deep underlying principles of the constraint that urge for a more rigorous theoretical understanding.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"9 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1038/s41535-025-00729-8
Masahiro O. Takahashi, Wen-Han Kao, Satoshi Fujimoto, Natalia B. Perkins
Stabilizing Z2 fluxes in Kitaev spin liquids (KSLs) is crucial for both characterizing candidate materials and identifying Ising anyons. In this study, we investigate the effects of spin-S magnetic impurities embedded in the spin-1/2 KSL. Utilizing exact diagonalization and density matrix renormalization group methods, we examine the impurity magnetization and ground-state flux sector with varying impurity coupling and spin size. Our findings reveal that impurity magnetization exhibits an integer/half-integer spin dependence, which aligns with analytical predictions, and a flux-sector transition from bound-flux to zero-flux occurs at low coupling strengths, independent of the impurity spin. Notably, for spin-3/2 impurities, we observe a reentrant bound-flux sector, which remains stable under magnetic fields. By considering fermionic representations of our spin Hamiltonian, we provide phenomenological explanations for the transitions. Our results suggest a novel way of binding a flux in KSLs, beyond the proposals of vacancies or Kondo impurities.
{"title":"Z2 flux binding to higher-spin impurities in the Kitaev spin liquid","authors":"Masahiro O. Takahashi, Wen-Han Kao, Satoshi Fujimoto, Natalia B. Perkins","doi":"10.1038/s41535-025-00729-8","DOIUrl":"https://doi.org/10.1038/s41535-025-00729-8","url":null,"abstract":"<p>Stabilizing <i>Z</i><sub>2</sub> fluxes in Kitaev spin liquids (KSLs) is crucial for both characterizing candidate materials and identifying Ising anyons. In this study, we investigate the effects of spin-<i>S</i> magnetic impurities embedded in the spin-1/2 KSL. Utilizing exact diagonalization and density matrix renormalization group methods, we examine the impurity magnetization and ground-state flux sector with varying impurity coupling and spin size. Our findings reveal that impurity magnetization exhibits an integer/half-integer spin dependence, which aligns with analytical predictions, and a flux-sector transition from bound-flux to zero-flux occurs at low coupling strengths, independent of the impurity spin. Notably, for spin-3/2 impurities, we observe a reentrant bound-flux sector, which remains stable under magnetic fields. By considering fermionic representations of our spin Hamiltonian, we provide phenomenological explanations for the transitions. Our results suggest a novel way of binding a flux in KSLs, beyond the proposals of vacancies or Kondo impurities.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"40 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1038/s41535-025-00731-0
Tao Hong, Taikang Chen, Dalong Jin, Yu Zhu, Heng Gao, Kun Zhao, Tongyi Zhang, Wei Ren, Guixin Cao
Topological materials possess unique electronic properties and hold immense attraction to both fundamental physics research and practical applications. Over the past decades, the discovery of new topological materials has relied on the symmetry-based analysis of the quantum wave function. In this study, we propose an efficient inverse design method CTMT (CTMT: CDVAE, Topogivity, interatomic potentials (IAPs) as realized in M3GNet, and TQC) utilizing deep generative machine learning models to discover novel topological insulators and semimetals in a much-fast and low-cost manner. This method covers the entire process of new crystal structure generation, heuristic rule screening, fast stability estimation, and topology type diagnosis, resulting in 4 topological insulators and 16 topological semimetals. Especially, the newly discovered topological materials include several chiral Kramers-Weyl fermion semimetals and chiral materials with low symmetry, whose topology is previously considered challenging to discern. These findings demonstrate the capability of CTMT in discovering topological materials and its great potential for data-driven inverse design of advanced functional materials.
{"title":"Discovery of new topological insulators and semimetals using deep generative models","authors":"Tao Hong, Taikang Chen, Dalong Jin, Yu Zhu, Heng Gao, Kun Zhao, Tongyi Zhang, Wei Ren, Guixin Cao","doi":"10.1038/s41535-025-00731-0","DOIUrl":"https://doi.org/10.1038/s41535-025-00731-0","url":null,"abstract":"<p>Topological materials possess unique electronic properties and hold immense attraction to both fundamental physics research and practical applications. Over the past decades, the discovery of new topological materials has relied on the symmetry-based analysis of the quantum wave function. In this study, we propose an efficient inverse design method CTMT (CTMT: CDVAE, Topogivity, interatomic potentials (IAPs) as realized in M3GNet, and TQC) utilizing deep generative machine learning models to discover novel topological insulators and semimetals in a much-fast and low-cost manner. This method covers the entire process of new crystal structure generation, heuristic rule screening, fast stability estimation, and topology type diagnosis, resulting in 4 topological insulators and 16 topological semimetals. Especially, the newly discovered topological materials include several chiral Kramers-Weyl fermion semimetals and chiral materials with low symmetry, whose topology is previously considered challenging to discern. These findings demonstrate the capability of CTMT in discovering topological materials and its great potential for data-driven inverse design of advanced functional materials.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"148 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1038/s41535-025-00728-9
Sangyun Lee, Shengzhi Zhang, S. M. Thomas, L. Pressley, C. A. Bridges, Eun Sang Choi, Vivien S. Zapf, Stephen M. Winter, Minseong Lee
BaCo2(AsO4)2 (BCAO), a honeycomb cobaltate, is considered a promising candidate for materials displaying the Kitaev quantum spin liquid state. This assumption is based on the distinctive characteristics of Co2+ ions (3d7) within an octahedral crystal environment, resulting in spin-orbit-coupled Jeff = 1/2 doublet states. However, recent experimental observations and theoretical analyses have raised questions regarding this hypothesis. Despite these uncertainties, reports of continuum excitations reminiscent of spinon excitations have prompted further investigations. In this study, we explore the magnetic phases of BCAO under both in-plane and out-of-plane magnetic fields, employing dc and ac magnetic susceptibilities, capacitance, and torque magnetometry measurement. Our results affirm the existence of multiple field-induced magnetic phases, with strong anisotropy of the phase boundaries between in-plane and out-of-plane fields. To elucidate the nature of these phases, we develop a minimal anisotropic exchange model. This model, supported by combined first principles calculations and theoretical modeling, quantitatively reproduces our experimental data. In BCAO, the combination of strong bond-independent XXZ anisotropy and geometric frustration leads to significant quantum order by disorder effects that stabilize colinear phases under both zero and finite magnetic fields.
{"title":"Quantum order by disorder is a key to understanding the magnetic phases of BaCo2(AsO4)2","authors":"Sangyun Lee, Shengzhi Zhang, S. M. Thomas, L. Pressley, C. A. Bridges, Eun Sang Choi, Vivien S. Zapf, Stephen M. Winter, Minseong Lee","doi":"10.1038/s41535-025-00728-9","DOIUrl":"https://doi.org/10.1038/s41535-025-00728-9","url":null,"abstract":"<p>BaCo<sub>2</sub>(AsO<sub>4</sub>)<sub>2</sub> (BCAO), a honeycomb cobaltate, is considered a promising candidate for materials displaying the Kitaev quantum spin liquid state. This assumption is based on the distinctive characteristics of Co<sup>2+</sup> ions (3<i>d</i><sup>7</sup>) within an octahedral crystal environment, resulting in spin-orbit-coupled <i>J</i><sub>eff</sub> = 1/2 doublet states. However, recent experimental observations and theoretical analyses have raised questions regarding this hypothesis. Despite these uncertainties, reports of continuum excitations reminiscent of spinon excitations have prompted further investigations. In this study, we explore the magnetic phases of BCAO under both in-plane and out-of-plane magnetic fields, employing dc and ac magnetic susceptibilities, capacitance, and torque magnetometry measurement. Our results affirm the existence of multiple field-induced magnetic phases, with strong anisotropy of the phase boundaries between in-plane and out-of-plane fields. To elucidate the nature of these phases, we develop a minimal anisotropic exchange model. This model, supported by combined first principles calculations and theoretical modeling, quantitatively reproduces our experimental data. In BCAO, the combination of strong bond-independent XXZ anisotropy and geometric frustration leads to significant quantum order by disorder effects that stabilize colinear phases under both zero and finite magnetic fields.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"47 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1038/s41535-024-00719-2
Kevin P. Lucht, J. H. Pixley, Pavel A. Volkov
Multilayer flakes of two-dimensional materials were recently shown to be tunable by twisting monolayers on their surface. This raises the question whether qualitatively new phenomena can occur in such finite-thickness moiré systems. Here we demonstrate the emergence of distinct topological phases and transitions in N-layered flakes of nodal superconductors with a single monolayer twisted on top of it. We show that a c-axis current transforms the whole system into a chiral topological superconductor. Increasing the current drives a sequence of topological transitions between states characterized by a Chern number increasing from (sim {mathcal{O}}(N)) up to (sim {mathcal{O}}({N}^{2})), well beyond the additive effect of stacking N layers. We predict thickness-independent signatures of these states in the thermal Hall and tunneling microscopy measurements. Twisted superconductor flakes thus provide an example of a “2.5-dimensional” material where the synergy of two-dimensional layers extended in a third dimension realize states inaccessible in either monolayer or bulk materials.
{"title":"2.5-dimensional topological superconductivity in twisted superconducting flakes","authors":"Kevin P. Lucht, J. H. Pixley, Pavel A. Volkov","doi":"10.1038/s41535-024-00719-2","DOIUrl":"https://doi.org/10.1038/s41535-024-00719-2","url":null,"abstract":"<p>Multilayer flakes of two-dimensional materials were recently shown to be tunable by twisting monolayers on their surface. This raises the question whether qualitatively new phenomena can occur in such finite-thickness moiré systems. Here we demonstrate the emergence of distinct topological phases and transitions in N-layered flakes of nodal superconductors with a single monolayer twisted on top of it. We show that a c-axis current transforms the whole system into a chiral topological superconductor. Increasing the current drives a sequence of topological transitions between states characterized by a Chern number increasing from <span>(sim {mathcal{O}}(N))</span> up to <span>(sim {mathcal{O}}({N}^{2}))</span>, well beyond the additive effect of stacking <i>N</i> layers. We predict thickness-independent signatures of these states in the thermal Hall and tunneling microscopy measurements. Twisted superconductor flakes thus provide an example of a “2.5-dimensional” material where the synergy of two-dimensional layers extended in a third dimension realize states inaccessible in either monolayer or bulk materials.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"35 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1038/s41535-025-00730-1
Bin Shen, Efrain Insuasti Pazmino, Ramesh Dhakal, Friedrich Freund, Philipp Gegenwart, Stephen M. Winter, Alexander A. Tsirlin
We use magnetization measurements under pressure along with ab initio and cluster many-body calculations to investigate magnetism of the Kitaev candidate Li2RhO3. Hydrostatic compression leads to a decrease in the magnitude of the nearest-neighbor ferromagnetic Kitaev coupling K1 and the corresponding increase in the off-diagonal anisotropy Γ1, whereas the experimental Curie-Weiss temperature changes from negative to positive with the slope of +40 K/GPa. On the other hand, spin freezing persists up to at least 3.46 GPa with the almost constant freezing temperature of 5 K that does not follow the large changes in the exchange couplings and indicates the likely extrinsic origin of spin freezing. Magnetic frustration in Li2RhO3 is mainly related to the interplay between ferromagnetic K1 and antiferromagnetic Γ1, along with the weakness of the third-neighbor coupling J3 that would otherwise stabilize zigzag order. The small J3 distinguishes Li2RhO3 from other Kitaev candidates.
{"title":"Pressure-dependent magnetism of the Kitaev candidate Li2RhO3","authors":"Bin Shen, Efrain Insuasti Pazmino, Ramesh Dhakal, Friedrich Freund, Philipp Gegenwart, Stephen M. Winter, Alexander A. Tsirlin","doi":"10.1038/s41535-025-00730-1","DOIUrl":"https://doi.org/10.1038/s41535-025-00730-1","url":null,"abstract":"<p>We use magnetization measurements under pressure along with ab initio and cluster many-body calculations to investigate magnetism of the Kitaev candidate Li<sub>2</sub>RhO<sub>3</sub>. Hydrostatic compression leads to a decrease in the magnitude of the nearest-neighbor ferromagnetic Kitaev coupling <i>K</i><sub>1</sub> and the corresponding increase in the off-diagonal anisotropy Γ<sub>1</sub>, whereas the experimental Curie-Weiss temperature changes from negative to positive with the slope of +40 K/GPa. On the other hand, spin freezing persists up to at least 3.46 GPa with the almost constant freezing temperature of 5 K that does not follow the large changes in the exchange couplings and indicates the likely extrinsic origin of spin freezing. Magnetic frustration in Li<sub>2</sub>RhO<sub>3</sub> is mainly related to the interplay between ferromagnetic <i>K</i><sub>1</sub> and antiferromagnetic Γ<sub>1</sub>, along with the weakness of the third-neighbor coupling <i>J</i><sub>3</sub> that would otherwise stabilize zigzag order. The small <i>J</i><sub>3</sub> distinguishes Li<sub>2</sub>RhO<sub>3</sub> from other Kitaev candidates.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"45 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18DOI: 10.1038/s41535-024-00715-6
Amanda A. Konieczna, David A. S. Kaib, Stephen M. Winter, Roser Valentí
Motivated by the on-going discussion on the nature of magnetism in the quantum Ising chain CoNb2O6, we present a first-principles-based analysis of its exchange interactions with additional modeling, addressing drawbacks of a purely density functional theory ansatz. This method allows us to extract and understand the origin of the magnetic couplings—including all symmetry-allowed terms - and resolve conflicting model descriptions in CoNb2O6. We find that the twisted Kitaev chain and transverse-field ferromagnetic Ising chain views are mutually compatible, although additional off-diagonal exchanges are required for a complete picture. We show that the dominant exchange interaction is a ligand-centered process—involving eg electrons -, rendered anisotropic by low-symmetry crystal fields in CoNb2O6, resulting in dominant Ising exchange. Smaller bond-dependent anisotropies are found to originate from d − d kinetic exchange processes involving t2g electrons. We demonstrate the validity of our low-energy model by comparing its predictions to measured THz and INS spectra.
{"title":"Understanding the microscopic origin of the magnetic interactions in CoNb2O6","authors":"Amanda A. Konieczna, David A. S. Kaib, Stephen M. Winter, Roser Valentí","doi":"10.1038/s41535-024-00715-6","DOIUrl":"https://doi.org/10.1038/s41535-024-00715-6","url":null,"abstract":"<p>Motivated by the on-going discussion on the nature of magnetism in the quantum Ising chain CoNb<sub>2</sub>O<sub>6</sub>, we present a first-principles-based analysis of its exchange interactions with additional modeling, addressing drawbacks of a purely density functional theory ansatz. This method allows us to extract and understand the origin of the magnetic couplings—including all symmetry-allowed terms - and resolve conflicting model descriptions in CoNb<sub>2</sub>O<sub>6</sub>. We find that the twisted Kitaev chain and transverse-field ferromagnetic Ising chain views are mutually compatible, although additional off-diagonal exchanges are required for a complete picture. We show that the dominant exchange interaction is a ligand-centered process—involving <i>e</i><sub><i>g</i></sub> electrons -, rendered anisotropic by low-symmetry crystal fields in CoNb<sub>2</sub>O<sub>6</sub>, resulting in dominant Ising exchange. Smaller bond-dependent anisotropies are found to originate from <i>d</i> − <i>d</i> kinetic exchange processes involving <i>t</i><sub>2<i>g</i></sub> electrons. We demonstrate the validity of our low-energy model by comparing its predictions to measured THz and INS spectra.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"23 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}