Pub Date : 2024-10-13DOI: 10.1038/s41535-024-00687-7
Adrian Valadkhani, Jonas B. Profe, Andreas Kreisel, P. J. Hirschfeld, Roser Valentí
Scanning tunneling spectroscopy (STS) and scanning tunneling microscopy (STM) are perhaps the most promising ways to detect the superconducting gap size and structure in the canonical unconventional superconductor Sr2RuO4 directly. However, in many cases, researchers have reported being unable to detect the gap at all in STM conductance measurements. Recently, an investigation of this issue on various local topographic structures on a Sr-terminated surface found that superconducting spectra appeared only in the region of small nanoscale canyons, corresponding to the removal of one RuO surface layer. Here, we analyze the electronic structure of various possible surface structures using first principles methods, and argue that bulk conditions favorable for superconductivity can be achieved when removal of the RuO layer suppresses the RuO4 octahedral rotation locally. We further propose alternative terminations to the most frequently reported Sr termination where superconductivity surfaces should be observed.
扫描隧道光谱法(STS)和扫描隧道显微镜法(STM)也许是直接探测典型非常规超导体 Sr2RuO4 中超导间隙大小和结构的最有前途的方法。然而,在许多情况下,研究人员报告说在 STM 电导测量中根本无法探测到间隙。最近,一项针对 Sr 端面各种局部拓扑结构的研究发现,超导光谱只出现在小纳米级峡谷区域,这与去除一层 RuO 表面层相对应。在此,我们使用第一原理方法分析了各种可能的表面结构的电子结构,并认为当去除 RuO 层时,局部抑制了 RuO4 八面体旋转,就能实现有利于超导的体态条件。除了最常报道的 Sr 端接外,我们还进一步提出了其他端接,在这些端接中应该能观察到超导表面。
{"title":"Why scanning tunneling spectroscopy of Sr2RuO4 sometimes doesn’t see the superconducting gap","authors":"Adrian Valadkhani, Jonas B. Profe, Andreas Kreisel, P. J. Hirschfeld, Roser Valentí","doi":"10.1038/s41535-024-00687-7","DOIUrl":"https://doi.org/10.1038/s41535-024-00687-7","url":null,"abstract":"<p>Scanning tunneling spectroscopy (STS) and scanning tunneling microscopy (STM) are perhaps the most promising ways to detect the superconducting gap size and structure in the canonical unconventional superconductor Sr<sub>2</sub>RuO<sub>4</sub> directly. However, in many cases, researchers have reported being unable to detect the gap at all in STM conductance measurements. Recently, an investigation of this issue on various local topographic structures on a Sr-terminated surface found that superconducting spectra appeared only in the region of small nanoscale canyons, corresponding to the removal of one RuO surface layer. Here, we analyze the electronic structure of various possible surface structures using first principles methods, and argue that bulk conditions favorable for superconductivity can be achieved when removal of the RuO layer suppresses the RuO<sub>4</sub> octahedral rotation locally. We further propose alternative terminations to the most frequently reported Sr termination where superconductivity surfaces should be observed.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1038/s41535-024-00691-x
Yan-Xing Yang, Cheng-Yu Jiang, Liang-Long Huang, Zi-Hao Zhu, Chang-Sheng Chen, Qiong Wu, Zhao-Feng Ding, Cheng Tan, Kai-Wen Chen, Pabi K. Biswas, Adrian D. Hillier, You-Guo Shi, Cai Liu, Le Wang, Fei Ye, Jia-Wei Mei, Lei Shu
The vacancy effect in quantum spin liquid (QSL) has been extensively studied. A finite density of random vacancies in the Kitaev model can lead to a pileup of low-energy density of states (DOS), which is generally experimentally determined by a scaling behavior of thermodynamic or magnetization quantities. Here, we report detailed muon spin relaxation (μSR) results of H3LiIr2O6, a Kitaev QSL candidate with vacancies. The absence of magnetic order is confirmed down to 80 mK, and the spin fluctuations are found to be persistent at low temperatures. Intriguingly, the time-field scaling law of longitudinal-field (LF)-μSR polarization is observed down to 0.1 K. This indicates a dynamical scaling, whose critical exponent of 0.46 is excellently consistent with the scaling behavior of specific heat and magnetization data. All the observations point to the finite DOS with the form (N(E)sim {E}^{-nu }), which is expected for the Kitaev QSL in the presence of vacancies. Our μSR study provides a dynamical fingerprint of the power-law low-energy DOS and introduces a crucial new insight into the vacancy effect in QSL.
{"title":"Muon spin relaxation study of spin dynamics on a Kitaev honeycomb material H3LiIr2O6","authors":"Yan-Xing Yang, Cheng-Yu Jiang, Liang-Long Huang, Zi-Hao Zhu, Chang-Sheng Chen, Qiong Wu, Zhao-Feng Ding, Cheng Tan, Kai-Wen Chen, Pabi K. Biswas, Adrian D. Hillier, You-Guo Shi, Cai Liu, Le Wang, Fei Ye, Jia-Wei Mei, Lei Shu","doi":"10.1038/s41535-024-00691-x","DOIUrl":"https://doi.org/10.1038/s41535-024-00691-x","url":null,"abstract":"<p>The vacancy effect in quantum spin liquid (QSL) has been extensively studied. A finite density of random vacancies in the Kitaev model can lead to a pileup of low-energy density of states (DOS), which is generally experimentally determined by a scaling behavior of thermodynamic or magnetization quantities. Here, we report detailed muon spin relaxation (μSR) results of H<sub>3</sub>LiIr<sub>2</sub>O<sub>6</sub>, a Kitaev QSL candidate with vacancies. The absence of magnetic order is confirmed down to 80 mK, and the spin fluctuations are found to be persistent at low temperatures. Intriguingly, the time-field scaling law of longitudinal-field (LF)-μSR polarization is observed down to 0.1 K. This indicates a dynamical scaling, whose critical exponent of 0.46 is excellently consistent with the scaling behavior of specific heat and magnetization data. All the observations point to the finite DOS with the form <span>(N(E)sim {E}^{-nu })</span>, which is expected for the Kitaev QSL in the presence of vacancies. Our μSR study provides a dynamical fingerprint of the power-law low-energy DOS and introduces a crucial new insight into the vacancy effect in QSL.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"66 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1038/s41535-024-00679-7
Zoltán Kovács-Krausz, Dániel Nagy, Albin Márffy, Bogdan Karpiak, Zoltán Tajkov, László Oroszlány, János Koltai, Péter Nemes-Incze, Saroj P. Dash, Péter Makk, Szabolcs Csonka, Endre Tóvári
The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.
层状范德瓦耳斯材料 ZrTe5 是众所周知的候选拓扑绝缘体(TI),但其拓扑相以及与其他特性(如明显的狄拉克半金属态)的关系仍是一个争论的话题。我们采用半经典多载流子传输(MCT)模型分析了 ZrTe5 纳米器件在高达 2 GPa 的静水压力下的磁传输。在热激活的背景下,我们评估了 10 至 300 K 之间 MCT 结果的温度依赖性,并获得了化学势附近导带和价带边缘的位置。我们发现有证据表明,随着压力的增加,带隙会关闭或重新打开,这与从弱 TI 到强 TI 的相变是一致的。这与 ab initio 带结构计算的预期结果以及以前的观察结果一致,即 CVT 生长的 ZrTe5 在环境条件下是一种弱 TI。
{"title":"Signature of pressure-induced topological phase transition in ZrTe5","authors":"Zoltán Kovács-Krausz, Dániel Nagy, Albin Márffy, Bogdan Karpiak, Zoltán Tajkov, László Oroszlány, János Koltai, Péter Nemes-Incze, Saroj P. Dash, Péter Makk, Szabolcs Csonka, Endre Tóvári","doi":"10.1038/s41535-024-00679-7","DOIUrl":"https://doi.org/10.1038/s41535-024-00679-7","url":null,"abstract":"<p>The layered van der Waals material ZrTe<sub>5</sub> is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe<sub>5</sub> nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe<sub>5</sub> is a weak TI in ambient conditions.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"12 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1038/s41535-024-00688-6
V. Oliviero, I. Gilmutdinov, D. Vignolles, S. Benhabib, N. Bruyant, A. Forget, D. Colson, W. A. Atkinson, C. Proust
We study the transport properties of underdoped trilayer cuprate HgBa2Ca2Cu3O8+δ with doping level p = 0.10–0.12 in magnetic field up to 88 T. We report for the first time in a cuprate superconductor a dramatic change of the quantum oscillation spectrum versus temperature, which is accompanied by a sign change of the Hall effect below T ≈10 K. Based on numerical simulations, we infer a Fermi surface reconstruction in the inner plane from an antiferromagnetic state (hole pockets) to a biaxial charge density wave state (electron pockets). We show that both orders compete and share the same hotspots of the Fermi surface, and we discuss our result in the context of spin-fermion models.
我们研究了掺杂水平 p = 0.10-0.12 的欠掺杂三层铜氧化物 HgBa2Ca2Cu3O8+δ 在高达 88 T 的磁场中的传输特性。基于数值模拟,我们推断内平面的费米面从反铁磁态(空穴)重构为双轴电荷密度波态(电子穴)。我们的研究表明,这两种状态相互竞争并共享费米面上的相同热点,我们还在自旋费米子模型的背景下讨论了我们的结果。
{"title":"Charge order near the antiferromagnetic quantum critical point in the trilayer high Tc cuprate HgBa2Ca2Cu3O8+δ","authors":"V. Oliviero, I. Gilmutdinov, D. Vignolles, S. Benhabib, N. Bruyant, A. Forget, D. Colson, W. A. Atkinson, C. Proust","doi":"10.1038/s41535-024-00688-6","DOIUrl":"https://doi.org/10.1038/s41535-024-00688-6","url":null,"abstract":"<p>We study the transport properties of underdoped trilayer cuprate HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>8+<i>δ</i></sub> with doping level <i>p</i> = 0.10–0.12 in magnetic field up to 88 T. We report for the first time in a cuprate superconductor a dramatic change of the quantum oscillation spectrum versus temperature, which is accompanied by a sign change of the Hall effect below <i>T</i> ≈10 K. Based on numerical simulations, we infer a Fermi surface reconstruction in the inner plane from an antiferromagnetic state (hole pockets) to a biaxial charge density wave state (electron pockets). We show that both orders compete and share the same hotspots of the Fermi surface, and we discuss our result in the context of spin-fermion models.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"55 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1038/s41535-024-00685-9
Keyu Zeng, Ziqiang Wang
Flat bands are intriguing platforms for correlated and topological physics. Various methods have been developed to create flat bands utilizing lattice geometry, but the investigation of orbital symmetry in multiorbital materials is a new area of focus. Here, we introduce a site symmetry-based approach to emerging multiorbital 2D and 3D flat bands on the kagome and pyrochlore lattices. As a conceptual advance, the one-orbital flat bands are shown to originate as mutual eigenstates of isolated molecular motifs. Further developing the mutual eigenstate method for multiple orbitals transforming differently under the site symmetries, we derive interorbital hopping generated flat bands from the antisymmetric interorbital Hamiltonian and introduce group-theoretic descriptions of the flat band wavefunctions. Realizations of multiorbital flat bands in realistic materials are shown to be possible in the Slater-Koster formalism. Our findings provide new directions for exploring flat-band electronic structures for novel correlated and topological quantum states.
{"title":"Interorbital antisymmetric hopping generated flat bands on kagome and pyrochlore Lattices","authors":"Keyu Zeng, Ziqiang Wang","doi":"10.1038/s41535-024-00685-9","DOIUrl":"https://doi.org/10.1038/s41535-024-00685-9","url":null,"abstract":"<p>Flat bands are intriguing platforms for correlated and topological physics. Various methods have been developed to create flat bands utilizing lattice geometry, but the investigation of orbital symmetry in multiorbital materials is a new area of focus. Here, we introduce a site symmetry-based approach to emerging multiorbital 2D and 3D flat bands on the kagome and pyrochlore lattices. As a conceptual advance, the one-orbital flat bands are shown to originate as mutual eigenstates of isolated molecular motifs. Further developing the mutual eigenstate method for multiple orbitals transforming differently under the site symmetries, we derive interorbital hopping generated flat bands from the antisymmetric interorbital Hamiltonian and introduce group-theoretic descriptions of the flat band wavefunctions. Realizations of multiorbital flat bands in realistic materials are shown to be possible in the Slater-Koster formalism. Our findings provide new directions for exploring flat-band electronic structures for novel correlated and topological quantum states.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"202 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1038/s41535-024-00677-9
Pascal Reiss, Alix McCollam, Zachary Zajicek, Amir A. Haghighirad, Amalia I. Coldea
We investigate the high-pressure phase of the iron-based superconductor FeSe0.89S0.11 using transport and tunnel diode oscillator studies using diamond anvil cells. We construct detailed pressure-temperature phase diagrams that indicate that the superconducting critical temperature is strongly enhanced by more than a factor of four towards 40 K above 4 GPa. The resistivity data reveal signatures of a fan-like structure of non-Fermi liquid behaviour which could indicate the existence of a putative quantum critical point buried underneath the superconducting dome around 4.3 GPa. With further increasing the pressure, the zero-field electrical resistivity develops a non-metallic temperature dependence and the superconducting transition broadens significantly. Eventually, the system fails to reach a fully zero-resistance state, and the finite resistance at low temperatures becomes strongly current-dependent. Our results suggest that the high-pressure, high-Tc phase of iron chalcogenides is very fragile and sensitive to uniaxial effects of the pressure medium, cell design and sample thickness. This high-pressure region could be understood assuming a real-space phase separation caused by nearly concomitant electronic and structural instabilities.
{"title":"Collapse of metallicity and high-Tc superconductivity in the high-pressure phase of FeSe0.89S0.11","authors":"Pascal Reiss, Alix McCollam, Zachary Zajicek, Amir A. Haghighirad, Amalia I. Coldea","doi":"10.1038/s41535-024-00677-9","DOIUrl":"https://doi.org/10.1038/s41535-024-00677-9","url":null,"abstract":"<p>We investigate the high-pressure phase of the iron-based superconductor FeSe<sub>0.89</sub>S<sub>0.11</sub> using transport and tunnel diode oscillator studies using diamond anvil cells. We construct detailed pressure-temperature phase diagrams that indicate that the superconducting critical temperature is strongly enhanced by more than a factor of four towards 40 K above 4 GPa. The resistivity data reveal signatures of a fan-like structure of non-Fermi liquid behaviour which could indicate the existence of a putative quantum critical point buried underneath the superconducting dome around 4.3 GPa. With further increasing the pressure, the zero-field electrical resistivity develops a non-metallic temperature dependence and the superconducting transition broadens significantly. Eventually, the system fails to reach a fully zero-resistance state, and the finite resistance at low temperatures becomes strongly current-dependent. Our results suggest that the high-pressure, high-<i>T</i><sub>c</sub> phase of iron chalcogenides is very fragile and sensitive to uniaxial effects of the pressure medium, cell design and sample thickness. This high-pressure region could be understood assuming a real-space phase separation caused by nearly concomitant electronic and structural instabilities.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"8 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1038/s41535-024-00676-w
Y. Alexanian, J. Saugnier, C. Decorse, J. Robert, R. Ballou, E. Lhotel, J. Debray, F. Gay, V. Simonet, S. de Brion
The possibilities of combining several degrees of freedom inside a unique material have recently been highlighted in their dynamics and proposed as information carriers in quantum devices where their cross-manipulation by external parameters such as electric and magnetic fields could enhance their functionalities. An emblematic example is that of electromagnons, spin-waves dressed with electric dipoles, that are fingerprints of multiferroics. Point-like objects have also been identified, which may take the form of excited quasiparticles. This is the case for magnetic monopoles, the exotic excitations of spin ices, that have been recently proposed to carry an electric dipole, although experimental evidences remain elusive. Presently, we investigate the electrical signature of a classical spin ice and a related compound that supports quantum fluctuations. Our in-depth study clearly attributes magneto-electricity to the correlated spin ice phase distinguishing it from extrinsic and single-ion effects. Our calculations show that the proposed model conferring magneto-electricity to monopoles is not sufficient, calling for higher-order contributions.
{"title":"Exploring possible magnetic monopoles-induced magneto-electricity in spin ices","authors":"Y. Alexanian, J. Saugnier, C. Decorse, J. Robert, R. Ballou, E. Lhotel, J. Debray, F. Gay, V. Simonet, S. de Brion","doi":"10.1038/s41535-024-00676-w","DOIUrl":"https://doi.org/10.1038/s41535-024-00676-w","url":null,"abstract":"<p>The possibilities of combining several degrees of freedom inside a unique material have recently been highlighted in their dynamics and proposed as information carriers in quantum devices where their cross-manipulation by external parameters such as electric and magnetic fields could enhance their functionalities. An emblematic example is that of electromagnons, spin-waves dressed with electric dipoles, that are fingerprints of multiferroics. Point-like objects have also been identified, which may take the form of excited quasiparticles. This is the case for magnetic monopoles, the exotic excitations of spin ices, that have been recently proposed to carry an electric dipole, although experimental evidences remain elusive. Presently, we investigate the electrical signature of a classical spin ice and a related compound that supports quantum fluctuations. Our in-depth study clearly attributes magneto-electricity to the correlated spin ice phase distinguishing it from extrinsic and single-ion effects. Our calculations show that the proposed model conferring magneto-electricity to monopoles is not sufficient, calling for higher-order contributions.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"41 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1038/s41535-024-00683-x
Jianwei Huang, Chandan Setty, Liangzi Deng, Jing-Yang You, Hongxiong Liu, Sen Shao, Ji Seop Oh, Yucheng Guo, Yichen Zhang, Ziqin Yue, Jia-Xin Yin, Makoto Hashimoto, Donghui Lu, Sergey Gorovikov, Pengcheng Dai, Jonathan D. Denlinger, J. W. Allen, M. Zahid Hasan, Yuan-Ping Feng, Robert J. Birgeneau, Youguo Shi, Ching-Wu Chu, Guoqing Chang, Qimiao Si, Ming Yi
Emergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases in the two-dimensional kagome lattice, including magnetic order, time-reversal symmetry breaking charge order, nematicity, and superconductivity. However, the interlayer coupling of the kagome layers disrupts the destructive interference needed to completely quench the kinetic energy. Here we demonstrate that an interwoven kagome network—a pyrochlore lattice—can host a three dimensional (3D) localization of electron wavefunctions. Meanwhile, the nonsymmorphic symmetry of the pyrochlore lattice guarantees all band crossings at the Brillouin zone X point to be 3D gapless Dirac points, which was predicted theoretically but never yet observed experimentally. Through a combination of angle-resolved photoemission spectroscopy, fundamental lattice model and density functional theory calculations, we investigate the novel electronic structure of a Laves phase superconductor with a pyrochlore sublattice, CeRu2. We observe evidence of flat bands originating from the Ce 4f orbitals as well as flat bands from the 3D destructive interference of the Ru 4d orbitals. We further observe the nonsymmorphic symmetry-protected 3D gapless Dirac cone at the X point. Our work establishes the pyrochlore structure as a promising lattice platform to realize and tune novel emergent phases intertwining topology and many-body interactions.
当电子动能与库仑相互作用相当时,往往会出现新兴相。寻找作为这种新兴相的宿主的材料系统的一种方法是,由于晶体结构固有的几何挫折,实现电子波函数的局部化,从而形成平坦的电子带。最近,这些努力在二维卡戈米晶格中发现了一系列奇异的相位,包括磁序、时间反转对称破缺电荷序、向列性和超导性。然而,卡戈米层的层间耦合破坏了完全熄灭动能所需的破坏性干涉。在这里,我们证明了交织的可果米网络--火成晶格--可以承载电子波函数的三维(3D)定位。同时,热罗卓晶格的非非晶对称性保证了布里渊区 X 点的所有带交叉都是三维无间隙狄拉克点,这在理论上是可以预测的,但在实验中却从未观察到。通过结合角度分辨光发射光谱、基本晶格模型和密度泛函理论计算,我们研究了具有热绿石子晶格的拉维斯相超导体 CeRu2 的新型电子结构。我们观察到源于 Ce 4f 轨道的平坦带以及源于 Ru 4d 轨道的三维破坏性干扰的平坦带。我们还在 X 点观察到非非晶对称保护的三维无间隙狄拉克锥。我们的研究工作使热长晶石结构成为一个很有前景的晶格平台,可用于实现和调整拓扑结构与多体相互作用相互交织的新出现相。
{"title":"Observation of flat bands and Dirac cones in a pyrochlore lattice superconductor","authors":"Jianwei Huang, Chandan Setty, Liangzi Deng, Jing-Yang You, Hongxiong Liu, Sen Shao, Ji Seop Oh, Yucheng Guo, Yichen Zhang, Ziqin Yue, Jia-Xin Yin, Makoto Hashimoto, Donghui Lu, Sergey Gorovikov, Pengcheng Dai, Jonathan D. Denlinger, J. W. Allen, M. Zahid Hasan, Yuan-Ping Feng, Robert J. Birgeneau, Youguo Shi, Ching-Wu Chu, Guoqing Chang, Qimiao Si, Ming Yi","doi":"10.1038/s41535-024-00683-x","DOIUrl":"https://doi.org/10.1038/s41535-024-00683-x","url":null,"abstract":"<p>Emergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases in the two-dimensional kagome lattice, including magnetic order, time-reversal symmetry breaking charge order, nematicity, and superconductivity. However, the interlayer coupling of the kagome layers disrupts the destructive interference needed to completely quench the kinetic energy. Here we demonstrate that an interwoven kagome network—a pyrochlore lattice—can host a three dimensional (3D) localization of electron wavefunctions. Meanwhile, the nonsymmorphic symmetry of the pyrochlore lattice guarantees all band crossings at the Brillouin zone X point to be 3D gapless Dirac points, which was predicted theoretically but never yet observed experimentally. Through a combination of angle-resolved photoemission spectroscopy, fundamental lattice model and density functional theory calculations, we investigate the novel electronic structure of a Laves phase superconductor with a pyrochlore sublattice, CeRu<sub>2</sub>. We observe evidence of flat bands originating from the Ce 4<i>f</i> orbitals as well as flat bands from the 3D destructive interference of the Ru 4<i>d</i> orbitals. We further observe the nonsymmorphic symmetry-protected 3D gapless Dirac cone at the X point. Our work establishes the pyrochlore structure as a promising lattice platform to realize and tune novel emergent phases intertwining topology and many-body interactions.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"10 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1038/s41535-024-00684-w
Arman Rashidi, William Huynh, Binghao Guo, Sina Ahadi, Susanne Stemmer
The superconducting quantum interference (SQI) patterns of Josephson junctions fabricated from hybrid structures that interface an s-wave superconductor with a topological insulator can be used to detect signatures of novel quasiparticle states. Here, we compare calculated and experimental SQI patterns obtained from hybrid junctions fabricated on cadmium arsenide, a two-dimensional topological insulator. The calculations account for the effects of Abrikosov (anti-) vortices in the superconducting contacts. They describe the experimentally observed deviations of the SQI from an ideal Fraunhofer pattern, including anomalous phase shifts, node lifting, even/odd modulations of the lobes, irregular lobe spacing, and an asymmetry in the positive/negative magnetic field. We also show that under a current bias, these vortices enter the electrodes even if there is no intentionally applied external magnetic field. The results show that Abrikosov vortices in the electrodes of the junctions can explain many of the observed anomalies in the SQI patterns of topological insulator Josephson junctions.
约瑟夫森结的超导量子干涉(SQI)模式是通过将 s 波超导体与拓扑绝缘体相接的混合结构制作而成的,可用于探测新型准粒子态的特征。在这里,我们比较了在二维拓扑绝缘体砷化镉上制作的混合结所获得的计算和实验 SQI 图谱。计算考虑了超导接触中的阿布里科索夫(反)涡旋效应。它们描述了实验观察到的 SQI 与理想弗劳恩霍夫模式的偏差,包括异常相移、节点抬升、裂片的偶数/偶数调制、不规则裂片间距以及正/负磁场的不对称。我们还表明,在电流偏压下,即使没有有意施加外部磁场,这些涡流也会进入电极。结果表明,结电极中的阿布里科索夫涡旋可以解释拓扑绝缘体约瑟夫森结的 SQI 模式中观察到的许多异常现象。
{"title":"Vortex-induced anomalies in the superconducting quantum interference patterns of topological insulator Josephson junctions","authors":"Arman Rashidi, William Huynh, Binghao Guo, Sina Ahadi, Susanne Stemmer","doi":"10.1038/s41535-024-00684-w","DOIUrl":"https://doi.org/10.1038/s41535-024-00684-w","url":null,"abstract":"<p>The superconducting quantum interference (SQI) patterns of Josephson junctions fabricated from hybrid structures that interface an s-wave superconductor with a topological insulator can be used to detect signatures of novel quasiparticle states. Here, we compare calculated and experimental SQI patterns obtained from hybrid junctions fabricated on cadmium arsenide, a two-dimensional topological insulator. The calculations account for the effects of Abrikosov (anti-) vortices in the superconducting contacts. They describe the experimentally observed deviations of the SQI from an ideal Fraunhofer pattern, including anomalous phase shifts, node lifting, even/odd modulations of the lobes, irregular lobe spacing, and an asymmetry in the positive/negative magnetic field. We also show that under a current bias, these vortices enter the electrodes even if there is no intentionally applied external magnetic field. The results show that Abrikosov vortices in the electrodes of the junctions can explain many of the observed anomalies in the SQI patterns of topological insulator Josephson junctions.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"35 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1038/s41535-024-00682-y
Yuntian Liu, Jiayu Li, Pengfei Liu, Qihang Liu
Spin textures, i.e., the distribution of spin polarization vectors in reciprocal space, exhibit diverse patterns determined by symmetry constraints, resulting in a variety of spintronic phenomena. Here, we propose a universal theory to comprehensively describe the nature of spin textures by incorporating three symmetry flavors of reciprocal wavevector, atomic orbital, and atomic site. Such an approach enables us to establish a complete classification of spin textures constrained by the little co-group and predict some exotic spin texture types, such as Zeeman-type spin splitting in antiferromagnets and quadratic spin texture. To illustrate the influence of atomic orbitals and sites on spin textures, we predict orbital-dependent spin texture and anisotropic spin-momentum-site locking effects, and corresponding material candidates validated through first-principles calculations. The comprehensive classification and the predicted new spin textures in realistic materials are expected to trigger future spin-based functionalities in electronics.
{"title":"Unconventional spin textures emerging from a universal symmetry theory of spin-momentum locking","authors":"Yuntian Liu, Jiayu Li, Pengfei Liu, Qihang Liu","doi":"10.1038/s41535-024-00682-y","DOIUrl":"https://doi.org/10.1038/s41535-024-00682-y","url":null,"abstract":"<p>Spin textures, i.e., the distribution of spin polarization vectors in reciprocal space, exhibit diverse patterns determined by symmetry constraints, resulting in a variety of spintronic phenomena. Here, we propose a universal theory to comprehensively describe the nature of spin textures by incorporating three symmetry flavors of reciprocal wavevector, atomic orbital, and atomic site. Such an approach enables us to establish a complete classification of spin textures constrained by the little co-group and predict some exotic spin texture types, such as Zeeman-type spin splitting in antiferromagnets and quadratic spin texture. To illustrate the influence of atomic orbitals and sites on spin textures, we predict orbital-dependent spin texture and anisotropic spin-momentum-site locking effects, and corresponding material candidates validated through first-principles calculations. The comprehensive classification and the predicted new spin textures in realistic materials are expected to trigger future spin-based functionalities in electronics.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"17 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}