Junlong Guo, Yakuan Li, Bo Huang, Liang Ding, Haibo Gao, Ming Zhong
Planetary rovers may become stuck due to the soft terrain on Mars and other planetary surface. The escape entrapment control strategy is of great significance for planetary rover traversing loosely consolidated granular terrain. After analyzing the performance of the published quadrupedal rotary sequence gait, a “sweeping-spinning” gait was proposed to improve escape entrapment capability. And the forward distance of planetary rovers with “sweeping-spinning” gait was modeled as a function of six control parameters. An online optimization escape entrapment strategy for planetary rover was proposed based on the Bayesian Optimization algorithm. Single-factor experiments were conducted to investigate the effect of each control parameter on forward distance, and determine the parameter ranges. The average forward distance with randomly selected control parameters is 89.64 cm, while that is 136.93 cm with Bayesian optimized control parameters, which verifies the effectiveness of the escape entrapment strategy. Moreover, compared with the trajectory of a planetary rover prototype with the published quadrupedal rotary sequence gait, the trajectory of a planetary rover prototype with “sweeping-spinning” gait is more accurate. Furthermore, the online estimated equivalent terrain mechanical parameters can be used to determine the running state of the planetary rover prototype, which was verified using experiments.
{"title":"An online optimization escape entrapment strategy for planetary rovers based on Bayesian optimization","authors":"Junlong Guo, Yakuan Li, Bo Huang, Liang Ding, Haibo Gao, Ming Zhong","doi":"10.1002/rob.22361","DOIUrl":"10.1002/rob.22361","url":null,"abstract":"<p>Planetary rovers may become stuck due to the soft terrain on Mars and other planetary surface. The escape entrapment control strategy is of great significance for planetary rover traversing loosely consolidated granular terrain. After analyzing the performance of the published quadrupedal rotary sequence gait, a “sweeping-spinning” gait was proposed to improve escape entrapment capability. And the forward distance of planetary rovers with “sweeping-spinning” gait was modeled as a function of six control parameters. An online optimization escape entrapment strategy for planetary rover was proposed based on the Bayesian Optimization algorithm. Single-factor experiments were conducted to investigate the effect of each control parameter on forward distance, and determine the parameter ranges. The average forward distance with randomly selected control parameters is 89.64 cm, while that is 136.93 cm with Bayesian optimized control parameters, which verifies the effectiveness of the escape entrapment strategy. Moreover, compared with the trajectory of a planetary rover prototype with the published quadrupedal rotary sequence gait, the trajectory of a planetary rover prototype with “sweeping-spinning” gait is more accurate. Furthermore, the online estimated equivalent terrain mechanical parameters can be used to determine the running state of the planetary rover prototype, which was verified using experiments.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2518-2529"},"PeriodicalIF":4.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Focused on the problems of cumbersome operation, low efficiency, and high cost in the traditional manual rebar binding process, we propose a mobile robot vision detection and path-planning method for rebar binding to realize automated rebar binding by combining deep learning and path-planning technology. A MobileNetV3-SSD rebar binding crosspoints recognition model is built based on TensorFlow deep learning framework, and a crosspoints localization method combining control factor α and feature projection curve is introduced to achieve the localization of unbound crosspoints. In addition, A back-and-forth path-planning algorithm with priority constraints combined with dead zone escape algorithm based on improved A* is proposed to achieve complete coverage path planning of the working area and path transfer of the dead zone. In the field test of the robot prototype, the classification accuracy and localization accuracy reached 94.40% and 90.49%, and the robot was able to reach complete coverage path planning successfully. The experimental results show that the visual detection method can achieve fast, noncontact and intelligent recognition of rebar binding crosspoints, which has good robustness and application value. At the same time, the proposed path-planning method has higher efficiency in the execution of robot complete coverage path planning, and meets the basic requirements of path planning for rebar binding process.
{"title":"Vision detection and path planning of mobile robots for rebar binding","authors":"Bin Cheng, Lei Deng","doi":"10.1002/rob.22356","DOIUrl":"10.1002/rob.22356","url":null,"abstract":"<p>Focused on the problems of cumbersome operation, low efficiency, and high cost in the traditional manual rebar binding process, we propose a mobile robot vision detection and path-planning method for rebar binding to realize automated rebar binding by combining deep learning and path-planning technology. A MobileNetV3-SSD rebar binding crosspoints recognition model is built based on TensorFlow deep learning framework, and a crosspoints localization method combining control factor <i>α</i> and feature projection curve is introduced to achieve the localization of unbound crosspoints. In addition, A back-and-forth path-planning algorithm with priority constraints combined with dead zone escape algorithm based on improved A* is proposed to achieve complete coverage path planning of the working area and path transfer of the dead zone. In the field test of the robot prototype, the classification accuracy and localization accuracy reached 94.40% and 90.49%, and the robot was able to reach complete coverage path planning successfully. The experimental results show that the visual detection method can achieve fast, noncontact and intelligent recognition of rebar binding crosspoints, which has good robustness and application value. At the same time, the proposed path-planning method has higher efficiency in the execution of robot complete coverage path planning, and meets the basic requirements of path planning for rebar binding process.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1864-1886"},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the widespread adoption of mobile robots, effective path planning has become increasingly critical. Although traditional search methods have been extensively utilized, meta-heuristic algorithms have gained popularity owing to their efficiency and problem-specific heuristics. However, challenges remain in terms of premature convergence and lack of solution diversity. To address these issues, this paper proposes a novel artificial potential field enhanced improved multiobjective snake optimization algorithm (APF-IMOSO). This paper presents four key enhancements to the snake optimizer to significantly improve its performance. Additionally, it introduces four fitness functions focused on optimizing path length, safety (evaluated via artificial potential field method), energy consumption, and time efficiency. The results of simulation and experiment in four scenarios including static and dynamic highlight APF-IMOSO's advantages, delivering improvements of 8.02%, 7.61%, 50.71%, and 12.74% in path length, safety, energy efficiency, and time-savings, respectively, over the original snake optimization algorithm. Compared with other advanced meta-heuristics, APF-IMOSO also excels in these indexes. Real robot experiments show an average path length error of 1.19% across four scenarios. The results reveal that APF-IMOSO can generate multiple viable collision-free paths in complex environments under various constraints, showcasing its potential for use in dynamic path planning within the realm of robot navigation.
{"title":"Dynamic path planning for mobile robots based on artificial potential field enhanced improved multiobjective snake optimization (APF-IMOSO)","authors":"Qilin Li, Qihua Ma, Xin Weng","doi":"10.1002/rob.22354","DOIUrl":"10.1002/rob.22354","url":null,"abstract":"<p>With the widespread adoption of mobile robots, effective path planning has become increasingly critical. Although traditional search methods have been extensively utilized, meta-heuristic algorithms have gained popularity owing to their efficiency and problem-specific heuristics. However, challenges remain in terms of premature convergence and lack of solution diversity. To address these issues, this paper proposes a novel artificial potential field enhanced improved multiobjective snake optimization algorithm (APF-IMOSO). This paper presents four key enhancements to the snake optimizer to significantly improve its performance. Additionally, it introduces four fitness functions focused on optimizing path length, safety (evaluated via artificial potential field method), energy consumption, and time efficiency. The results of simulation and experiment in four scenarios including static and dynamic highlight APF-IMOSO's advantages, delivering improvements of 8.02%, 7.61%, 50.71%, and 12.74% in path length, safety, energy efficiency, and time-savings, respectively, over the original snake optimization algorithm. Compared with other advanced meta-heuristics, APF-IMOSO also excels in these indexes. Real robot experiments show an average path length error of 1.19% across four scenarios. The results reveal that APF-IMOSO can generate multiple viable collision-free paths in complex environments under various constraints, showcasing its potential for use in dynamic path planning within the realm of robot navigation.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1843-1863"},"PeriodicalIF":4.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the Research Article The Haidou-1 hybrid underwater vehicle for the Mariana Trench science exploration to 10,908 m depth by Jian Wang et al., https://doi.org/10.1002/rob.22307