Junlong Guo, Yakuan Li, Bo Huang, Liang Ding, Haibo Gao, Ming Zhong
Planetary rovers may become stuck due to the soft terrain on Mars and other planetary surface. The escape entrapment control strategy is of great significance for planetary rover traversing loosely consolidated granular terrain. After analyzing the performance of the published quadrupedal rotary sequence gait, a “sweeping-spinning” gait was proposed to improve escape entrapment capability. And the forward distance of planetary rovers with “sweeping-spinning” gait was modeled as a function of six control parameters. An online optimization escape entrapment strategy for planetary rover was proposed based on the Bayesian Optimization algorithm. Single-factor experiments were conducted to investigate the effect of each control parameter on forward distance, and determine the parameter ranges. The average forward distance with randomly selected control parameters is 89.64 cm, while that is 136.93 cm with Bayesian optimized control parameters, which verifies the effectiveness of the escape entrapment strategy. Moreover, compared with the trajectory of a planetary rover prototype with the published quadrupedal rotary sequence gait, the trajectory of a planetary rover prototype with “sweeping-spinning” gait is more accurate. Furthermore, the online estimated equivalent terrain mechanical parameters can be used to determine the running state of the planetary rover prototype, which was verified using experiments.
{"title":"An online optimization escape entrapment strategy for planetary rovers based on Bayesian optimization","authors":"Junlong Guo, Yakuan Li, Bo Huang, Liang Ding, Haibo Gao, Ming Zhong","doi":"10.1002/rob.22361","DOIUrl":"10.1002/rob.22361","url":null,"abstract":"<p>Planetary rovers may become stuck due to the soft terrain on Mars and other planetary surface. The escape entrapment control strategy is of great significance for planetary rover traversing loosely consolidated granular terrain. After analyzing the performance of the published quadrupedal rotary sequence gait, a “sweeping-spinning” gait was proposed to improve escape entrapment capability. And the forward distance of planetary rovers with “sweeping-spinning” gait was modeled as a function of six control parameters. An online optimization escape entrapment strategy for planetary rover was proposed based on the Bayesian Optimization algorithm. Single-factor experiments were conducted to investigate the effect of each control parameter on forward distance, and determine the parameter ranges. The average forward distance with randomly selected control parameters is 89.64 cm, while that is 136.93 cm with Bayesian optimized control parameters, which verifies the effectiveness of the escape entrapment strategy. Moreover, compared with the trajectory of a planetary rover prototype with the published quadrupedal rotary sequence gait, the trajectory of a planetary rover prototype with “sweeping-spinning” gait is more accurate. Furthermore, the online estimated equivalent terrain mechanical parameters can be used to determine the running state of the planetary rover prototype, which was verified using experiments.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2518-2529"},"PeriodicalIF":4.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Focused on the problems of cumbersome operation, low efficiency, and high cost in the traditional manual rebar binding process, we propose a mobile robot vision detection and path-planning method for rebar binding to realize automated rebar binding by combining deep learning and path-planning technology. A MobileNetV3-SSD rebar binding crosspoints recognition model is built based on TensorFlow deep learning framework, and a crosspoints localization method combining control factor α and feature projection curve is introduced to achieve the localization of unbound crosspoints. In addition, A back-and-forth path-planning algorithm with priority constraints combined with dead zone escape algorithm based on improved A* is proposed to achieve complete coverage path planning of the working area and path transfer of the dead zone. In the field test of the robot prototype, the classification accuracy and localization accuracy reached 94.40% and 90.49%, and the robot was able to reach complete coverage path planning successfully. The experimental results show that the visual detection method can achieve fast, noncontact and intelligent recognition of rebar binding crosspoints, which has good robustness and application value. At the same time, the proposed path-planning method has higher efficiency in the execution of robot complete coverage path planning, and meets the basic requirements of path planning for rebar binding process.
{"title":"Vision detection and path planning of mobile robots for rebar binding","authors":"Bin Cheng, Lei Deng","doi":"10.1002/rob.22356","DOIUrl":"10.1002/rob.22356","url":null,"abstract":"<p>Focused on the problems of cumbersome operation, low efficiency, and high cost in the traditional manual rebar binding process, we propose a mobile robot vision detection and path-planning method for rebar binding to realize automated rebar binding by combining deep learning and path-planning technology. A MobileNetV3-SSD rebar binding crosspoints recognition model is built based on TensorFlow deep learning framework, and a crosspoints localization method combining control factor <i>α</i> and feature projection curve is introduced to achieve the localization of unbound crosspoints. In addition, A back-and-forth path-planning algorithm with priority constraints combined with dead zone escape algorithm based on improved A* is proposed to achieve complete coverage path planning of the working area and path transfer of the dead zone. In the field test of the robot prototype, the classification accuracy and localization accuracy reached 94.40% and 90.49%, and the robot was able to reach complete coverage path planning successfully. The experimental results show that the visual detection method can achieve fast, noncontact and intelligent recognition of rebar binding crosspoints, which has good robustness and application value. At the same time, the proposed path-planning method has higher efficiency in the execution of robot complete coverage path planning, and meets the basic requirements of path planning for rebar binding process.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1864-1886"},"PeriodicalIF":4.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the widespread adoption of mobile robots, effective path planning has become increasingly critical. Although traditional search methods have been extensively utilized, meta-heuristic algorithms have gained popularity owing to their efficiency and problem-specific heuristics. However, challenges remain in terms of premature convergence and lack of solution diversity. To address these issues, this paper proposes a novel artificial potential field enhanced improved multiobjective snake optimization algorithm (APF-IMOSO). This paper presents four key enhancements to the snake optimizer to significantly improve its performance. Additionally, it introduces four fitness functions focused on optimizing path length, safety (evaluated via artificial potential field method), energy consumption, and time efficiency. The results of simulation and experiment in four scenarios including static and dynamic highlight APF-IMOSO's advantages, delivering improvements of 8.02%, 7.61%, 50.71%, and 12.74% in path length, safety, energy efficiency, and time-savings, respectively, over the original snake optimization algorithm. Compared with other advanced meta-heuristics, APF-IMOSO also excels in these indexes. Real robot experiments show an average path length error of 1.19% across four scenarios. The results reveal that APF-IMOSO can generate multiple viable collision-free paths in complex environments under various constraints, showcasing its potential for use in dynamic path planning within the realm of robot navigation.
{"title":"Dynamic path planning for mobile robots based on artificial potential field enhanced improved multiobjective snake optimization (APF-IMOSO)","authors":"Qilin Li, Qihua Ma, Xin Weng","doi":"10.1002/rob.22354","DOIUrl":"10.1002/rob.22354","url":null,"abstract":"<p>With the widespread adoption of mobile robots, effective path planning has become increasingly critical. Although traditional search methods have been extensively utilized, meta-heuristic algorithms have gained popularity owing to their efficiency and problem-specific heuristics. However, challenges remain in terms of premature convergence and lack of solution diversity. To address these issues, this paper proposes a novel artificial potential field enhanced improved multiobjective snake optimization algorithm (APF-IMOSO). This paper presents four key enhancements to the snake optimizer to significantly improve its performance. Additionally, it introduces four fitness functions focused on optimizing path length, safety (evaluated via artificial potential field method), energy consumption, and time efficiency. The results of simulation and experiment in four scenarios including static and dynamic highlight APF-IMOSO's advantages, delivering improvements of 8.02%, 7.61%, 50.71%, and 12.74% in path length, safety, energy efficiency, and time-savings, respectively, over the original snake optimization algorithm. Compared with other advanced meta-heuristics, APF-IMOSO also excels in these indexes. Real robot experiments show an average path length error of 1.19% across four scenarios. The results reveal that APF-IMOSO can generate multiple viable collision-free paths in complex environments under various constraints, showcasing its potential for use in dynamic path planning within the realm of robot navigation.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1843-1863"},"PeriodicalIF":4.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cover image is based on the Research Article The Haidou-1 hybrid underwater vehicle for the Mariana Trench science exploration to 10,908 m depth by Jian Wang et al., https://doi.org/10.1002/rob.22307
{"title":"Cover Image, Volume 41, Number 4, June 2024","authors":"Jian Wang, Yuangui Tang, Shuo Li, Yang Lu, Jixu Li, Tiejun Liu, Zhibin Jiang, Cong Chen, Yu Cheng, Deyong Yu, Xingya Yan, Shuxue Yan","doi":"10.1002/rob.22363","DOIUrl":"https://doi.org/10.1002/rob.22363","url":null,"abstract":"<p>The cover image is based on the Research Article <i>The Haidou-1 hybrid underwater vehicle for the Mariana Trench science exploration to 10,908 m depth</i> by Jian Wang et al., https://doi.org/10.1002/rob.22307\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 4","pages":"i"},"PeriodicalIF":8.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22363","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Amatucci, Giulio Turrisi, Angelo Bratta, Victor Barasuol, Claudio Semini
Litter nowadays presents a significant threat to the equilibrium of many ecosystems. An example is the sea, where litter coming from coasts and cities via gutters, streets, and waterways, releases toxic chemicals and microplastics during its decomposition. Litter removal is often carried out manually by humans, which inherently lowers the amount of waste that can be effectively collected from the environment. In this paper, we present a novel quadruped robot prototype that, thanks to its natural mobility, is able to collect cigarette butts (CBs) autonomously, the second most common undisposed waste worldwide, in terrains that are hard to reach for wheeled and tracked robots. The core of our approach is a convolutional neural network for litter detection, followed by a time-optimal planner for reducing the time needed to collect all the target objects. Precise litter removal is then performed by a visual-servoing procedure which drives the nozzle of a vacuum cleaner that is attached to one of the robot legs on top of the detected CB. As a result of this particular position of the nozzle, we are able to perform the collection task without even stopping the robot's motion, thus greatly increasing the time-efficiency of the entire procedure. Extensive tests were conducted in six different outdoor scenarios to show the performance of our prototype and method. To the best knowledge of the authors, this is the first time that such a design and method was presented and successfully tested on a legged robot.
{"title":"VERO: A vacuum-cleaner-equipped quadruped robot for efficient litter removal","authors":"Lorenzo Amatucci, Giulio Turrisi, Angelo Bratta, Victor Barasuol, Claudio Semini","doi":"10.1002/rob.22350","DOIUrl":"10.1002/rob.22350","url":null,"abstract":"<p>Litter nowadays presents a significant threat to the equilibrium of many ecosystems. An example is the sea, where litter coming from coasts and cities via gutters, streets, and waterways, releases toxic chemicals and microplastics during its decomposition. Litter removal is often carried out manually by humans, which inherently lowers the amount of waste that can be effectively collected from the environment. In this paper, we present a novel quadruped robot prototype that, thanks to its natural mobility, is able to collect cigarette butts (CBs) autonomously, the second most common undisposed waste worldwide, in terrains that are hard to reach for wheeled and tracked robots. The core of our approach is a convolutional neural network for litter detection, followed by a time-optimal planner for reducing the time needed to collect all the target objects. Precise litter removal is then performed by a visual-servoing procedure which drives the nozzle of a vacuum cleaner that is attached to one of the robot legs on top of the detected CB. As a result of this particular position of the nozzle, we are able to perform the collection task without even stopping the robot's motion, thus greatly increasing the time-efficiency of the entire procedure. Extensive tests were conducted in six different outdoor scenarios to show the performance of our prototype and method. To the best knowledge of the authors, this is the first time that such a design and method was presented and successfully tested on a legged robot.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1829-1842"},"PeriodicalIF":4.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Aflakian, Alireza Rastegarpanah, Jamie Hathaway, Rustam Stolkin
This paper fuses ideas from reinforcement learning (RL), Learning from Demonstration (LfD), and Ensemble Learning into a single paradigm. Knowledge from a mixture of control algorithms (experts) are used to constrain the action space of the agent, enabling faster RL refining of a control policy, by avoiding unnecessary explorative actions. Domain-specific knowledge of each expert is exploited. However, the resulting policy is robust against errors of individual experts, since it is refined by a RL reward function without copying any particular demonstration. Our method has the potential to supplement existing RLfD methods when multiple algorithmic approaches are available to function as experts, specifically in tasks involving continuous action spaces. We illustrate our method in the context of a visual servoing (VS) task, in which a 7-DoF robot arm is controlled to maintain a desired pose relative to a target object. We explore four methods for bounding the actions of the RL agent during training. These methods include using a hypercube and convex hull with modified loss functions, ignoring actions outside the convex hull, and projecting actions onto the convex hull. We compare the training progress of each method using expert demonstrators, employing one expert demonstrator with the DAgger algorithm, and without using any demonstrators. Our experiments show that using the convex hull with a modified loss function not only accelerates learning but also provides the most optimal solution compared with other approaches. Furthermore, we demonstrate faster VS error convergence while maintaining higher manipulability of the arm, compared with classical image-based VS, position-based VS, and hybrid-decoupled VS.
本文将强化学习(RL)、示范学习(LfD)和集合学习(Ensemble Learning)的理念融合到一个单一的范例中。来自混合控制算法(专家)的知识被用来限制代理的行动空间,从而通过避免不必要的探索性行动,更快地对控制策略进行 RL 精炼。每个专家的特定领域知识都得到了利用。不过,由此产生的政策对单个专家的错误具有鲁棒性,因为它是通过 RL 奖励函数完善的,而不会复制任何特定的示范。当有多种算法方法可作为专家发挥作用时,我们的方法有可能补充现有的 RLfD 方法,特别是在涉及连续行动空间的任务中。我们以视觉伺服(VS)任务为背景说明了我们的方法,在该任务中,一个 7-DoF 机械臂被控制以保持相对于目标物体的理想姿势。在训练过程中,我们探索了四种限定 RL 代理动作的方法。这些方法包括使用带有修正损失函数的超立方体和凸壳、忽略凸壳外的动作以及将动作投影到凸壳上。我们比较了每种方法的训练进度,包括使用专家演示器、使用一个专家演示器和 DAgger 算法,以及不使用任何演示器。我们的实验表明,与其他方法相比,使用带有修正损失函数的凸壳不仅能加快学习速度,还能提供最优解。此外,与经典的基于图像的 VS、基于位置的 VS 和混合解耦 VS 相比,我们展示了更快的 VS 误差收敛速度,同时保持了手臂更高的可操作性。
{"title":"An online hyper-volume action bounding approach for accelerating the process of deep reinforcement learning from multiple controllers","authors":"Ali Aflakian, Alireza Rastegarpanah, Jamie Hathaway, Rustam Stolkin","doi":"10.1002/rob.22355","DOIUrl":"10.1002/rob.22355","url":null,"abstract":"<p>This paper fuses ideas from reinforcement learning (RL), Learning from Demonstration (LfD), and Ensemble Learning into a single paradigm. Knowledge from a mixture of control algorithms (experts) are used to constrain the action space of the agent, enabling faster RL refining of a control policy, by avoiding unnecessary explorative actions. Domain-specific knowledge of each expert is exploited. However, the resulting policy is robust against errors of individual experts, since it is refined by a RL reward function without copying any particular demonstration. Our method has the potential to supplement existing RLfD methods when multiple algorithmic approaches are available to function as experts, specifically in tasks involving continuous action spaces. We illustrate our method in the context of a visual servoing (VS) task, in which a 7-DoF robot arm is controlled to maintain a desired pose relative to a target object. We explore four methods for bounding the actions of the RL agent during training. These methods include using a hypercube and convex hull with modified loss functions, ignoring actions outside the convex hull, and projecting actions onto the convex hull. We compare the training progress of each method using expert demonstrators, employing one expert demonstrator with the DAgger algorithm, and without using any demonstrators. Our experiments show that using the convex hull with a modified loss function not only accelerates learning but also provides the most optimal solution compared with other approaches. Furthermore, we demonstrate faster VS error convergence while maintaining higher manipulability of the arm, compared with classical image-based VS, position-based VS, and hybrid-decoupled VS.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1814-1828"},"PeriodicalIF":4.2,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22355","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Station keeping is an essential maneuver for autonomous surface vehicles (ASVs), mainly when used in confined spaces, to carry out surveys that require the ASV to keep its position or in collaboration with other vehicles where the relative position has an impact over the mission. However, this maneuver can become challenging for classic feedback controllers due to the need for an accurate model of the ASV dynamics and the environmental disturbances. This work proposes a model predictive controller using neural network simulation error minimization (NNSEM–MPC) to accurately predict the dynamics of the ASV under wind disturbances. The performance of the proposed scheme under wind disturbances is tested and compared against other controllers in simulation, using the robotics operating system and the multipurpose simulation environment Gazebo. A set of six tests was conducted by combining two varying wind speeds that are modeled as the Harris spectrum and three wind directions (<span></span><math> <semantics> <mrow> <mrow> <msup> <mn>0</mn> <mo>°</mo> </msup> </mrow> </mrow> <annotation> ${0}^{^circ }$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <mrow> <msup> <mn>90</mn> <mo>°</mo> </msup> </mrow> </mrow> <annotation> ${90}^{^circ }$</annotation> </semantics></math>, and <span></span><math> <semantics> <mrow> <mrow> <msup> <mn>180</mn> <mo>°</mo> </msup> </mrow> </mrow> <annotation> ${180}^{^circ }$</annotation> </semantics></math>). The simulation results clearly show the advantage of the NNSEM–MPC over the following methods: backstepping controller, sliding mode controller, simplified dynamics MPC (SD-MPC), neural ordinary differential equation MPC (NODE-MPC), and knowledge-based NODE MPC. The proposed NNSEM–MPC approach performs better than the rest in five out of the six test conditions, and it is the second best in the remaining test case, reducing the mean position and heading error by at least <span></span><math> <semantics> <mrow> <mrow> <mn>27.08</mn> </mrow>
{"title":"ASV station keeping under wind disturbances using neural network simulation error minimization model predictive control","authors":"Jalil Chavez-Galaviz, Jianwen Li, Ajinkya Chaudhary, Nina Mahmoudian","doi":"10.1002/rob.22346","DOIUrl":"10.1002/rob.22346","url":null,"abstract":"<p>Station keeping is an essential maneuver for autonomous surface vehicles (ASVs), mainly when used in confined spaces, to carry out surveys that require the ASV to keep its position or in collaboration with other vehicles where the relative position has an impact over the mission. However, this maneuver can become challenging for classic feedback controllers due to the need for an accurate model of the ASV dynamics and the environmental disturbances. This work proposes a model predictive controller using neural network simulation error minimization (NNSEM–MPC) to accurately predict the dynamics of the ASV under wind disturbances. The performance of the proposed scheme under wind disturbances is tested and compared against other controllers in simulation, using the robotics operating system and the multipurpose simulation environment Gazebo. A set of six tests was conducted by combining two varying wind speeds that are modeled as the Harris spectrum and three wind directions (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mn>0</mn>\u0000 \u0000 <mo>°</mo>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${0}^{^circ }$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mn>90</mn>\u0000 \u0000 <mo>°</mo>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${90}^{^circ }$</annotation>\u0000 </semantics></math>, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <msup>\u0000 <mn>180</mn>\u0000 \u0000 <mo>°</mo>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${180}^{^circ }$</annotation>\u0000 </semantics></math>). The simulation results clearly show the advantage of the NNSEM–MPC over the following methods: backstepping controller, sliding mode controller, simplified dynamics MPC (SD-MPC), neural ordinary differential equation MPC (NODE-MPC), and knowledge-based NODE MPC. The proposed NNSEM–MPC approach performs better than the rest in five out of the six test conditions, and it is the second best in the remaining test case, reducing the mean position and heading error by at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mn>27.08</mn>\u0000 </mrow>\u0000 ","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1797-1813"},"PeriodicalIF":4.2,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22346","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Learning-based visual odometry (VO) becomes popular as it achieves a remarkable performance without manually crafted image processing and burdensome calibration. Meanwhile, the inertial navigation can provide a localization solution to assist VO when the VO produces poor state estimation under challenging visual conditions. Therefore, the combination of learning-based technique and classical state estimation method can further improve the performance of pose estimation. In this paper, we propose a learning-based visual-inertial odometry (VIO) algorithm, which consists of an end-to-end VO network and an -Extended Kalman Filter (EKF). The VO network mainly combines a convolutional neural network with a recurrent neural network, taking advantage of two consecutive monocular images to produce relative pose estimation with associated uncertainties. The -EKF, which is proved to overcome the inconsistency issues of VIO, propagates inertial measurement unit kinematics-based states, and fuses relative measurements and uncertainties from the VO network in its update step. The extensive experimental results on the KITTI data set and the EuRoC data set demonstrate the superior performance of the proposed method compared to other related methods.
基于学习的视觉里程测量(VO)无需人工图像处理和繁琐的校准就能实现出色的性能,因此广受欢迎。同时,惯性导航可以提供一种定位解决方案,当视觉里程计在具有挑战性的视觉条件下产生较差的状态估计时,惯性导航可以辅助视觉里程计。因此,将基于学习的技术与经典的状态估计方法相结合,可以进一步提高姿态估计的性能。本文提出了一种基于学习的视觉惯性里程测量(VIO)算法,它由端到端 VO 网络和扩展卡尔曼滤波器(EKF)组成。VO 网络主要结合了卷积神经网络和递归神经网络,利用两幅连续的单目图像来产生带有相关不确定性的相对姿态估计。事实证明,EKF 克服了 VIO 的不一致性问题,它传播基于惯性测量单元运动学的状态,并在更新步骤中融合来自 VO 网络的相对测量和不确定性。在 KITTI 数据集和 EuRoC 数据集上的大量实验结果表明,与其他相关方法相比,所提出的方法具有更优越的性能。
{"title":"Learning-based monocular visual-inertial odometry with \u0000 \u0000 \u0000 \u0000 S\u0000 \u0000 E\u0000 2\u0000 \u0000 \u0000 (\u0000 3\u0000 )\u0000 \u0000 \u0000 \u0000 $S{E}_{2}(3)$\u0000 -EKF","authors":"Chi Guo, Jianlang Hu, Yarong Luo","doi":"10.1002/rob.22349","DOIUrl":"10.1002/rob.22349","url":null,"abstract":"<p>Learning-based visual odometry (VO) becomes popular as it achieves a remarkable performance without manually crafted image processing and burdensome calibration. Meanwhile, the inertial navigation can provide a localization solution to assist VO when the VO produces poor state estimation under challenging visual conditions. Therefore, the combination of learning-based technique and classical state estimation method can further improve the performance of pose estimation. In this paper, we propose a learning-based visual-inertial odometry (VIO) algorithm, which consists of an end-to-end VO network and an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 \u0000 <msub>\u0000 <mi>E</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $S{E}_{2}(3)$</annotation>\u0000 </semantics></math>-Extended Kalman Filter (EKF). The VO network mainly combines a convolutional neural network with a recurrent neural network, taking advantage of two consecutive monocular images to produce relative pose estimation with associated uncertainties. The <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 \u0000 <mrow>\u0000 <mi>S</mi>\u0000 \u0000 <msub>\u0000 <mi>E</mi>\u0000 \u0000 <mn>2</mn>\u0000 </msub>\u0000 \u0000 <mrow>\u0000 <mo>(</mo>\u0000 \u0000 <mn>3</mn>\u0000 \u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $S{E}_{2}(3)$</annotation>\u0000 </semantics></math>-EKF, which is proved to overcome the inconsistency issues of VIO, propagates inertial measurement unit kinematics-based states, and fuses relative measurements and uncertainties from the VO network in its update step. The extensive experimental results on the KITTI data set and the EuRoC data set demonstrate the superior performance of the proposed method compared to other related methods.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1780-1796"},"PeriodicalIF":4.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joan Esteba, Patryk Cieślak, Narcís Palomeras, Pere Ridao
This paper presents the design and development of a funnel-shaped Sparus Docking Station intended for the non-holonomic torpedo-shaped Sparus II Autonomous Underwater Vehicle. The Sparus Docking Station is equipped with sensors and batteries, allowing for a stand-alone long-term deployment of the vehicle. An inverted Ultra Short Base-Line system is used to locate the Docking Station as well as to provide long-term drift-less vehicle navigation. The Sparus Docking Station is able to observe the ocean currents using a Doppler Velocity Log, being motorized to allow its self-alignment with the current. Moreover, a docking algorithm accounting for the current is used to guide the robot during the docking maneuver. The paper reports consecutive successful experimental results of the docking maneuver in sea trials in two different countries.
本文介绍了为非人体工学鱼雷形 Sparus II 自主潜水器设计和开发的漏斗形 Sparus 对接站。Sparus 对接站配备有传感器和电池,可实现潜水器的独立长期部署。倒置超短基线系统用于确定对接站的位置,并提供长期无漂移航行。斯帕鲁斯对接站能够利用多普勒速度记录仪观测洋流,并通过电动方式使其与洋流自动对齐。此外,在对接操作过程中,还使用了一种考虑到海流的对接算法来引导机器人。论文报告了在两个不同国家进行的海上试验中,对接操作连续成功的实验结果。
{"title":"Sparus Docking Station: A current aware docking station system for a non-holonomic AUV","authors":"Joan Esteba, Patryk Cieślak, Narcís Palomeras, Pere Ridao","doi":"10.1002/rob.22310","DOIUrl":"10.1002/rob.22310","url":null,"abstract":"<p>This paper presents the design and development of a funnel-shaped Sparus Docking Station intended for the non-holonomic torpedo-shaped Sparus II Autonomous Underwater Vehicle. The Sparus Docking Station is equipped with sensors and batteries, allowing for a stand-alone long-term deployment of the vehicle. An inverted Ultra Short Base-Line system is used to locate the Docking Station as well as to provide long-term drift-less vehicle navigation. The Sparus Docking Station is able to observe the ocean currents using a Doppler Velocity Log, being motorized to allow its self-alignment with the current. Moreover, a docking algorithm accounting for the current is used to guide the robot during the docking maneuver. The paper reports consecutive successful experimental results of the docking maneuver in sea trials in two different countries.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1765-1779"},"PeriodicalIF":4.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22310","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140664104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao Liu, Dayuan Chen, Mahmoud A. Eldosoky, Zefeng Ye, Xin Jiang, Yunhui Liu, Shuzhi Sam Ge
Plastering is dominated manually, exhibiting low levels of automation and inconsistent finished quality. A comprehensive review of literature indicates that extant plastering robots demonstrate a subpar performance when tasked with rectifying defects in the transition area. The limitations encompass a lack of capacity to independently evaluate the quality of work or perform remedial plastering procedures. To address this issue, this research describes the system design of the Puttybot and a paradigm of plastering to solve the stated problems. The Puttybot consists of a mobile chassis, a lift platform, and a macro/micromanipulator. The force-controlled scraper parameters have been calibrated to dynamically modify their rigidity in response to the applied putty. This strategy utilizes convolutional neural networks to identify plastering defects and executes the plastering operation with force feedback. This paradigm's effectiveness was validated during an autonomous plastering trial wherein a large-scale wall was processed without human involvement.
{"title":"Puttybot: A sensorized robot for autonomous putty plastering","authors":"Zhao Liu, Dayuan Chen, Mahmoud A. Eldosoky, Zefeng Ye, Xin Jiang, Yunhui Liu, Shuzhi Sam Ge","doi":"10.1002/rob.22351","DOIUrl":"10.1002/rob.22351","url":null,"abstract":"<p>Plastering is dominated manually, exhibiting low levels of automation and inconsistent finished quality. A comprehensive review of literature indicates that extant plastering robots demonstrate a subpar performance when tasked with rectifying defects in the transition area. The limitations encompass a lack of capacity to independently evaluate the quality of work or perform remedial plastering procedures. To address this issue, this research describes the system design of the Puttybot and a paradigm of plastering to solve the stated problems. The Puttybot consists of a mobile chassis, a lift platform, and a macro/micromanipulator. The force-controlled scraper parameters have been calibrated to dynamically modify their rigidity in response to the applied putty. This strategy utilizes convolutional neural networks to identify plastering defects and executes the plastering operation with force feedback. This paradigm's effectiveness was validated during an autonomous plastering trial wherein a large-scale wall was processed without human involvement.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1744-1764"},"PeriodicalIF":4.2,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}