首页 > 最新文献

Neuron最新文献

英文 中文
Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development. 胚胎期活跃的梨状皮层神经元在发育过程中促进了皮层内的循环连接。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-07-03 DOI: 10.1016/j.neuron.2024.06.007
David C Wang, Fernando Santos-Valencia, Jun H Song, Kevin M Franks, Liqun Luo

Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.

神经元活动在将感官信息传播到大脑的电路成熟过程中起着至关重要的作用。早期活动对整个发育中大脑回路成熟的调节作用有多大?在这里,我们利用活跃群体中的定向重组(TRAP)对小鼠出生前活跃的神经元进行了全脑调查,发现梨状皮层是一个TRAP丰富的区域。新生儿切片的全细胞记录显示,胚胎TRAP化的梨状体神经元具有优先互联性,而且它们与其他梨状体神经元的突触连接也得到了增强。新生儿体内神经像素记录显示,胚胎TRAP化的梨状体神经元在梨状体内表现出广泛的功能连接性,并在新生儿的短暂时期内导致自发的同步群体活动,而这一时期的复发性连接性正在加强。选择性地激活或沉默这些神经元可分别增强或抑制新生儿的递归突触强度。因此,胚胎TRAP化的梨状体神经元代表了一个相互连接的枢纽样群体,其活动促进了早期发育中的递归连接。
{"title":"Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development.","authors":"David C Wang, Fernando Santos-Valencia, Jun H Song, Kevin M Franks, Liqun Luo","doi":"10.1016/j.neuron.2024.06.007","DOIUrl":"10.1016/j.neuron.2024.06.007","url":null,"abstract":"<p><p>Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2938-2954.e6"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mentoring to propagate racial inclusivity in neuroscience. 指导宣传神经科学中的种族包容性。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-08-21 DOI: 10.1016/j.neuron.2024.08.004
Jose Rodriguez-Romaguera, Gregory J Quirk

Mentoring the next generation of neuroscientists from historically excluded backgrounds brings several challenges. Successful mentor-mentee relationships are critical for addressing these challenges. Rodriguez-Romaguera and Quirk reflect on lessons learned from their cross-racial mentor-mentee relationship that could apply to many mentors.

指导来自历来被排斥背景的下一代神经科学家会带来一些挑战。成功的师徒关系对于应对这些挑战至关重要。Rodriguez-Romaguera 和 Quirk 反思了他们从跨种族导师与被指导者关系中汲取的经验教训,这些经验教训可能适用于许多导师。
{"title":"Mentoring to propagate racial inclusivity in neuroscience.","authors":"Jose Rodriguez-Romaguera, Gregory J Quirk","doi":"10.1016/j.neuron.2024.08.004","DOIUrl":"10.1016/j.neuron.2024.08.004","url":null,"abstract":"<p><p>Mentoring the next generation of neuroscientists from historically excluded backgrounds brings several challenges. Successful mentor-mentee relationships are critical for addressing these challenges. Rodriguez-Romaguera and Quirk reflect on lessons learned from their cross-racial mentor-mentee relationship that could apply to many mentors.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2833-2836"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semaphorin 6D tunes amygdalar circuits for emotional, metabolic, and inflammatory outputs. Semaphorin 6D 可调节杏仁回路,促进情绪、新陈代谢和炎症输出。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-07-12 DOI: 10.1016/j.neuron.2024.06.017
Yoshimitsu Nakanishi, Mayuko Izumi, Hiroaki Matsushita, Yoshihisa Koyama, Diego Diez, Hyota Takamatsu, Shohei Koyama, Masayuki Nishide, Maiko Naito, Yumiko Mizuno, Yuta Yamaguchi, Tomoki Mae, Yu Noda, Kamon Nakaya, Satoshi Nojima, Fuminori Sugihara, Daisuke Okuzaki, Masahito Ikawa, Shoichi Shimada, Sujin Kang, Atsushi Kumanogoh

Regulated neural-metabolic-inflammatory responses are essential for maintaining physiological homeostasis. However, the molecular machinery that coordinates neural, metabolic, and inflammatory responses is largely unknown. Here, we show that semaphorin 6D (SEMA6D) coordinates anxiogenic, metabolic, and inflammatory outputs from the amygdala by maintaining synaptic homeostasis. Using genome-wide approaches, we identify SEMA6D as a pleiotropic gene for both psychiatric and metabolic traits in human. Sema6d deficiency increases anxiety in mice. When fed a high-fat diet, Sema6d-/- mice display attenuated obesity and enhanced myelopoiesis compared with control mice due to higher sympathetic activity via the β3-adrenergic receptor. Genetic manipulation and spatial and single-nucleus transcriptomics reveal that SEMA6D in amygdalar interneurons is responsible for regulating anxiogenic and autonomic responses. Mechanistically, SEMA6D is required for synaptic maturation and γ-aminobutyric acid transmission. These results demonstrate that SEMA6D is important for the normal functioning of the neural circuits in the amygdala, coupling emotional, metabolic, and inflammatory responses.

调节神经-代谢-炎症反应对维持生理平衡至关重要。然而,协调神经、代谢和炎症反应的分子机制在很大程度上是未知的。在这里,我们发现semaphorin 6D (SEMA6D)通过维持突触平衡来协调杏仁核的焦虑、代谢和炎症输出。利用全基因组方法,我们发现 SEMA6D 是人类精神和代谢特征的多效应基因。Sema6d缺乏会增加小鼠的焦虑。与对照组小鼠相比,Sema6d-/-小鼠在摄入高脂肪饮食时,由于通过β3-肾上腺素能受体提高交感神经活性,肥胖程度减轻,骨髓造血功能增强。遗传操作以及空间和单核转录组学发现,杏仁核中间神经元中的SEMA6D负责调节致焦虑和自主神经反应。从机制上讲,SEMA6D是突触成熟和γ-氨基丁酸传递所必需的。这些结果表明,SEMA6D 对杏仁核神经环路的正常功能非常重要,它将情绪、新陈代谢和炎症反应联系在一起。
{"title":"Semaphorin 6D tunes amygdalar circuits for emotional, metabolic, and inflammatory outputs.","authors":"Yoshimitsu Nakanishi, Mayuko Izumi, Hiroaki Matsushita, Yoshihisa Koyama, Diego Diez, Hyota Takamatsu, Shohei Koyama, Masayuki Nishide, Maiko Naito, Yumiko Mizuno, Yuta Yamaguchi, Tomoki Mae, Yu Noda, Kamon Nakaya, Satoshi Nojima, Fuminori Sugihara, Daisuke Okuzaki, Masahito Ikawa, Shoichi Shimada, Sujin Kang, Atsushi Kumanogoh","doi":"10.1016/j.neuron.2024.06.017","DOIUrl":"10.1016/j.neuron.2024.06.017","url":null,"abstract":"<p><p>Regulated neural-metabolic-inflammatory responses are essential for maintaining physiological homeostasis. However, the molecular machinery that coordinates neural, metabolic, and inflammatory responses is largely unknown. Here, we show that semaphorin 6D (SEMA6D) coordinates anxiogenic, metabolic, and inflammatory outputs from the amygdala by maintaining synaptic homeostasis. Using genome-wide approaches, we identify SEMA6D as a pleiotropic gene for both psychiatric and metabolic traits in human. Sema6d deficiency increases anxiety in mice. When fed a high-fat diet, Sema6d<sup>-/-</sup> mice display attenuated obesity and enhanced myelopoiesis compared with control mice due to higher sympathetic activity via the β3-adrenergic receptor. Genetic manipulation and spatial and single-nucleus transcriptomics reveal that SEMA6D in amygdalar interneurons is responsible for regulating anxiogenic and autonomic responses. Mechanistically, SEMA6D is required for synaptic maturation and γ-aminobutyric acid transmission. These results demonstrate that SEMA6D is important for the normal functioning of the neural circuits in the amygdala, coupling emotional, metabolic, and inflammatory responses.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2955-2972.e9"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia are not necessary for maintenance of blood-brain barrier properties in health, but PLX5622 alters brain endothelial cholesterol metabolism. 小胶质细胞不是维持健康血脑屏障特性的必要条件,但 PLX5622 会改变脑内皮胆固醇代谢。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-08-13 DOI: 10.1016/j.neuron.2024.07.015
Caterina P Profaci, Sean S Harvey, Kaja Bajc, Tony Z Zhang, Danielle A Jeffrey, Alexander Z Zhang, Kelsey M Nemec, Hayk Davtyan, Carleigh A O'Brien, Gabriel L McKinsey, Aaron Longworth, Timothy P McMullen, Joia K Capocchi, Jessica G Gonzalez, Devon A Lawson, Thomas D Arnold, Dimitrios Davalos, Mathew Blurton-Jones, Fabrice Dabertrand, F Chris Bennett, Richard Daneman

Microglia, the resident immune cells of the central nervous system, are intimately involved in the brain's most basic processes, from pruning neural synapses during development to preventing excessive neuronal activity throughout life. Studies have reported both helpful and harmful roles for microglia at the blood-brain barrier (BBB) in the context of disease. However, less is known about microglia-endothelial cell interactions in the healthy brain. To investigate the role of microglia at a healthy BBB, we used the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia and analyzed the BBB ultrastructure, permeability, and transcriptome. Interestingly, we found that, despite their direct contact with endothelial cells, microglia are not necessary for the maintenance of BBB structure, function, or gene expression in the healthy brain. However, we found that PLX5622 treatment alters brain endothelial cholesterol metabolism. This effect was independent from microglial depletion, suggesting that PLX5622 has off-target effects on brain vasculature.

小胶质细胞是中枢神经系统的常驻免疫细胞,与大脑最基本的过程密切相关,从发育过程中修剪神经突触到终生防止神经元过度活动。有研究报告称,小胶质细胞在血脑屏障(BBB)的疾病中既能发挥有益的作用,也能发挥有害的作用。然而,人们对小胶质细胞-内皮细胞在健康大脑中的相互作用知之甚少。为了研究小胶质细胞在健康血脑屏障中的作用,我们使用集落刺激因子 1 受体(CSF1R)抑制剂 PLX5622 来清除小胶质细胞,并分析了血脑屏障的超微结构、通透性和转录组。有趣的是,我们发现,尽管小胶质细胞与内皮细胞直接接触,但它们对于维持健康大脑中的 BBB 结构、功能或基因表达并不是必需的。然而,我们发现 PLX5622 治疗会改变大脑内皮胆固醇代谢。这种效应与小胶质细胞耗竭无关,这表明 PLX5622 对脑血管具有脱靶效应。
{"title":"Microglia are not necessary for maintenance of blood-brain barrier properties in health, but PLX5622 alters brain endothelial cholesterol metabolism.","authors":"Caterina P Profaci, Sean S Harvey, Kaja Bajc, Tony Z Zhang, Danielle A Jeffrey, Alexander Z Zhang, Kelsey M Nemec, Hayk Davtyan, Carleigh A O'Brien, Gabriel L McKinsey, Aaron Longworth, Timothy P McMullen, Joia K Capocchi, Jessica G Gonzalez, Devon A Lawson, Thomas D Arnold, Dimitrios Davalos, Mathew Blurton-Jones, Fabrice Dabertrand, F Chris Bennett, Richard Daneman","doi":"10.1016/j.neuron.2024.07.015","DOIUrl":"10.1016/j.neuron.2024.07.015","url":null,"abstract":"<p><p>Microglia, the resident immune cells of the central nervous system, are intimately involved in the brain's most basic processes, from pruning neural synapses during development to preventing excessive neuronal activity throughout life. Studies have reported both helpful and harmful roles for microglia at the blood-brain barrier (BBB) in the context of disease. However, less is known about microglia-endothelial cell interactions in the healthy brain. To investigate the role of microglia at a healthy BBB, we used the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia and analyzed the BBB ultrastructure, permeability, and transcriptome. Interestingly, we found that, despite their direct contact with endothelial cells, microglia are not necessary for the maintenance of BBB structure, function, or gene expression in the healthy brain. However, we found that PLX5622 treatment alters brain endothelial cholesterol metabolism. This effect was independent from microglial depletion, suggesting that PLX5622 has off-target effects on brain vasculature.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2910-2921.e7"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence variations and accessory proteins adapt TMC functions to distinct sensory modalities. 序列变异和附属蛋白使 TMC 功能适应不同的感觉模式。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-07-09 DOI: 10.1016/j.neuron.2024.06.013
Qiang Jiang, Wenjuan Zou, Shitian Li, Xufeng Qiu, Linhui Zhu, Lijun Kang, Ulrich Müller

Transmembrane channel-like (TMC) proteins are expressed throughout the animal kingdom and are thought to encode components of ion channels. Mammals express eight TMCs (mTMC1-8), two of which (mTMC1 and mTMC2) are subunits of mechanotransduction channels. C. elegans expresses two TMCs (TMC-1 and TMC-2), which mediate mechanosensation, egg laying, and alkaline sensing. The mechanisms by which nematode TMCs contribute to such diverse physiological processes and their functional relationship to mammalian mTMCs is unclear. Here, we show that association with accessory proteins tunes nematode TMC-1 to divergent sensory functions. In addition, distinct TMC-1 domains enable touch and alkaline sensing. Strikingly, these domains are segregated in mammals between mTMC1 and mTMC3. Consistent with these findings, mammalian mTMC1 can mediate mechanosensation in nematodes, while mTMC3 can mediate alkaline sensation. We conclude that sequence diversification and association with accessory proteins has led to the emergence of TMC protein complexes with diverse properties and physiological functions.

跨膜通道样蛋白(TMC)在整个动物界都有表达,被认为是离子通道的编码元件。哺乳动物表达八种 TMC(mTMC1-8),其中两种(mTMC1 和 mTMC2)是机械传导通道的亚基。线虫表达两种 TMC(TMC-1 和 TMC-2),它们介导机械感觉、产卵和碱性感觉。目前还不清楚线虫的 TMC 对这些不同生理过程的贡献机制及其与哺乳动物 mTMC 的功能关系。在这里,我们发现线虫 TMC-1 与附属蛋白的关联调整了其不同的感官功能。此外,不同的 TMC-1 结构域能够实现触觉和碱性感觉。令人吃惊的是,这些结构域在哺乳动物中被分隔在 mTMC1 和 mTMC3 之间。与这些发现一致的是,哺乳动物的 mTMC1 可以介导线虫的机械感觉,而 mTMC3 则可以介导碱性感觉。我们的结论是,序列的多样化以及与附属蛋白的关联导致了具有不同特性和生理功能的 TMC 蛋白复合物的出现。
{"title":"Sequence variations and accessory proteins adapt TMC functions to distinct sensory modalities.","authors":"Qiang Jiang, Wenjuan Zou, Shitian Li, Xufeng Qiu, Linhui Zhu, Lijun Kang, Ulrich Müller","doi":"10.1016/j.neuron.2024.06.013","DOIUrl":"10.1016/j.neuron.2024.06.013","url":null,"abstract":"<p><p>Transmembrane channel-like (TMC) proteins are expressed throughout the animal kingdom and are thought to encode components of ion channels. Mammals express eight TMCs (mTMC1-8), two of which (mTMC1 and mTMC2) are subunits of mechanotransduction channels. C. elegans expresses two TMCs (TMC-1 and TMC-2), which mediate mechanosensation, egg laying, and alkaline sensing. The mechanisms by which nematode TMCs contribute to such diverse physiological processes and their functional relationship to mammalian mTMCs is unclear. Here, we show that association with accessory proteins tunes nematode TMC-1 to divergent sensory functions. In addition, distinct TMC-1 domains enable touch and alkaline sensing. Strikingly, these domains are segregated in mammals between mTMC1 and mTMC3. Consistent with these findings, mammalian mTMC1 can mediate mechanosensation in nematodes, while mTMC3 can mediate alkaline sensation. We conclude that sequence diversification and association with accessory proteins has led to the emergence of TMC protein complexes with diverse properties and physiological functions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2922-2937.e8"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts beyond the brain: Unraveling molecular mechanisms linking psychiatric, metabolic, and inflammatory conditions. 大脑之外的影响:揭示连接精神疾病、新陈代谢和炎症的分子机制。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 DOI: 10.1016/j.neuron.2024.08.001
Nathaniel Napoli, Quenten Schwarz

By establishing semaphorin 6D expression in the amygdala as a central coordinator of brain, metabolic, and immunologic function, the Neuron publication by Nakanishi et al.1 provides new insight to how primary brain deficiency impacts physiological systems beyond the brain.

Nakanishi 等人发表的《神经元》(Neuron)1 一文确定了杏仁核中的 semaphorin 6D 表达是大脑、新陈代谢和免疫功能的核心协调因子,为我们了解原发性脑缺损如何影响大脑以外的生理系统提供了新的视角。
{"title":"Impacts beyond the brain: Unraveling molecular mechanisms linking psychiatric, metabolic, and inflammatory conditions.","authors":"Nathaniel Napoli, Quenten Schwarz","doi":"10.1016/j.neuron.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.08.001","url":null,"abstract":"<p><p>By establishing semaphorin 6D expression in the amygdala as a central coordinator of brain, metabolic, and immunologic function, the Neuron publication by Nakanishi et al.<sup>1</sup> provides new insight to how primary brain deficiency impacts physiological systems beyond the brain.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"112 17","pages":"2827-2829"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Keep calm and carry H3K27me1 off. 保持冷静,将 H3K27me1 起飞。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 DOI: 10.1016/j.neuron.2024.07.014
Rafael Alcalá-Vida, Angel Barco

In this issue of Neuron, Torres-Berrío et al.1 show that stress-susceptible mice exhibit elevated H3K27me1 levels in nucleus accumbens neurons due to the action of the SUZ12 VEFS domain, strengthening the link between specific epigenetic changes and long-lasting stress-induced social, emotional, and cognitive alterations.

在本期《神经元》(Neuron)杂志上,Torres-Berrío 等人1 的研究表明,由于 SUZ12 VEFS 结构域的作用,易受压力影响的小鼠在脑核神经元中表现出 H3K27me1 水平的升高,从而加强了特定表观遗传学变化与长期压力诱导的社会、情感和认知改变之间的联系。
{"title":"Keep calm and carry H3K27me1 off.","authors":"Rafael Alcalá-Vida, Angel Barco","doi":"10.1016/j.neuron.2024.07.014","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.07.014","url":null,"abstract":"<p><p>In this issue of Neuron, Torres-Berrío et al.<sup>1</sup> show that stress-susceptible mice exhibit elevated H3K27me1 levels in nucleus accumbens neurons due to the action of the SUZ12 VEFS domain, strengthening the link between specific epigenetic changes and long-lasting stress-induced social, emotional, and cognitive alterations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"112 17","pages":"2829-2832"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principles of cortical areas and their implications for neuroimaging. 皮层区域原理及其对神经影像学的影响。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-06-03 DOI: 10.1016/j.neuron.2024.05.008
Steven E Petersen, Benjamin A Seitzman, Steven M Nelson, Gagan S Wig, Evan M Gordon

Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.

皮层组织应制约对大脑如何执行行为和认知的研究。皮层组织的一个基本概念是区域化:皮层被划分为离散的区域。在本报告的第一部分,我们回顾了非人类动物研究是如何通过揭示以下内容来阐明皮层区域化原理的:(1)皮层区域的定义;(2)皮层区域是如何形成的;(3)皮层区域之间是如何相互作用的;(4)区域执行哪些 "计算 "或 "功能"。在第二部分中,我们将讨论这些原则如何应用于神经成像研究。在此过程中,我们强调了几个例子,在这些例子中,对神经成像观察结果的普遍接受的解释需要违反arealization原则的假设,包括在短时间尺度上移动的非稳态区域、作为组织特征的大规模梯度,以及具有完美映射心理建构的单一功能的皮层区域。我们认为,神经生物学原则应有力地指导计算解释的性质。
{"title":"Principles of cortical areas and their implications for neuroimaging.","authors":"Steven E Petersen, Benjamin A Seitzman, Steven M Nelson, Gagan S Wig, Evan M Gordon","doi":"10.1016/j.neuron.2024.05.008","DOIUrl":"10.1016/j.neuron.2024.05.008","url":null,"abstract":"<p><p>Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what \"computations\" or \"functions\" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2837-2853"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensory choices as logistic classification. 作为逻辑分类的感官选择
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-07-15 DOI: 10.1016/j.neuron.2024.06.016
Matteo Carandini

Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement it by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.

逻辑分类法是一种基于一系列因素进行选择的简单方法:给每个因素一个权重,将结果相加,然后用总和来设定随机抽签的对数概率。众所周知,这种操作可以描述人类和动物基于价值的选择(经济决策)。越来越多的证据表明,它也可以描述基于感官输入(知觉决策)、跨感官模式(多感官整合)并与非感官因素(如先验概率、预期价值、总体动机和近期行动)相结合的选择。逻辑分类还能捕捉大脑操作的效果,如局部失活。大脑可以通过阈值化随机输入(如信号检测理论)来实现(如漂移扩散模型)。在某些条件下,它是最优策略,而在更广泛的条件下,大脑似乎将其作为一种启发式方法。
{"title":"Sensory choices as logistic classification.","authors":"Matteo Carandini","doi":"10.1016/j.neuron.2024.06.016","DOIUrl":"10.1016/j.neuron.2024.06.016","url":null,"abstract":"<p><p>Logistic classification is a simple way to make choices based on a set of factors: give each factor a weight, sum the results, and use the sum to set the log odds of a random draw. This operation is known to describe human and animal choices based on value (economic decisions). There is increasing evidence that it also describes choices based on sensory inputs (perceptual decisions), presented across sensory modalities (multisensory integration) and combined with non-sensory factors such as prior probability, expected value, overall motivation, and recent actions. Logistic classification can also capture the effects of brain manipulations such as local inactivations. The brain may implement it by thresholding stochastic inputs (as in signal detection theory) acquired over time (as in the drift diffusion model). It is the optimal strategy under certain conditions, and the brain appears to use it as a heuristic in a wider set of conditions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2854-2868.e1"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mono-methylation of lysine 27 at histone 3 confers lifelong susceptibility to stress. 组蛋白 3 中赖氨酸 27 的单甲基化导致终生易受压力影响。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 Epub Date: 2024-07-02 DOI: 10.1016/j.neuron.2024.06.006
Angélica Torres-Berrío, Molly Estill, Vishwendra Patel, Aarthi Ramakrishnan, Hope Kronman, Angélica Minier-Toribio, Orna Issler, Caleb J Browne, Eric M Parise, Yentl Y van der Zee, Deena M Walker, Freddyson J Martínez-Rivera, Casey K Lardner, Romain Durand-de Cuttoli, Scott J Russo, Li Shen, Simone Sidoli, Eric J Nestler

Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.

组蛋白翻译后修饰对于介导基因表达的持续改变至关重要。通过结合无偏见的蛋白质组学分析和全基因组方法,我们发现了组蛋白H3赖氨酸27的单甲基化(H3K27me1)在压力的持久效应中的作用。具体来说,易受早期生活压力(ELS)或慢性社会挫败压力(CSDS)影响的小鼠在大脑奖赏的关键区域--伏隔核(NAc)中显示出更高的H3K27me1富集度。应激诱导的H3K27me1富集发生在控制神经元兴奋性的基因上,并由SUZ12的VEFS结构域介导,SUZ12是控制H3K27甲基化模式的多聚酶抑制复合体-2的核心亚基。病毒 VEFS 的表达改变了 NAc 的转录谱,导致社交、情感和认知异常,并改变了 NAc D1 中刺神经元的兴奋性和突触传递。综上所述,我们描述了H3K27me1在大脑中的新功能,并证明了它作为 "染色质疤痕 "介导终生应激易感性的作用。
{"title":"Mono-methylation of lysine 27 at histone 3 confers lifelong susceptibility to stress.","authors":"Angélica Torres-Berrío, Molly Estill, Vishwendra Patel, Aarthi Ramakrishnan, Hope Kronman, Angélica Minier-Toribio, Orna Issler, Caleb J Browne, Eric M Parise, Yentl Y van der Zee, Deena M Walker, Freddyson J Martínez-Rivera, Casey K Lardner, Romain Durand-de Cuttoli, Scott J Russo, Li Shen, Simone Sidoli, Eric J Nestler","doi":"10.1016/j.neuron.2024.06.006","DOIUrl":"10.1016/j.neuron.2024.06.006","url":null,"abstract":"<p><p>Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a \"chromatin scar\" that mediates lifelong stress susceptibility.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2973-2989.e10"},"PeriodicalIF":14.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuron
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1