首页 > 最新文献

Neuron最新文献

英文 中文
Differential modification of ascending spinal outputs in acute and chronic pain states.
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-21 DOI: 10.1016/j.neuron.2025.01.031
David A Yarmolinsky, Xiangsunze Zeng, Natalie MacKinnon-Booth, Caitlin A Greene, Chloe Kim, Yu-Ting Cheng, Bruna Lenfers Turnes, Clifford J Woolf

Pain hypersensitivity arises from the induction of plasticity in peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain, altering pain perception. We applied longitudinal calcium imaging of spinal dorsal projection neurons to determine whether and how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy mice, we identified stable outputs selective for cooling or warming and a neuronal ensemble activated by noxious thermal and mechanical stimuli. Induction of acute peripheral sensitization by topical capsaicin transiently re-tuned nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury resulted in a persistent suppression of innocuous spinal outputs coupled with persistent activation of a normally silent population of high-threshold neurons. These results demonstrate differential modulation of spinal outputs to the brain during nociceptive and neuropathic pain states.

{"title":"Differential modification of ascending spinal outputs in acute and chronic pain states.","authors":"David A Yarmolinsky, Xiangsunze Zeng, Natalie MacKinnon-Booth, Caitlin A Greene, Chloe Kim, Yu-Ting Cheng, Bruna Lenfers Turnes, Clifford J Woolf","doi":"10.1016/j.neuron.2025.01.031","DOIUrl":"10.1016/j.neuron.2025.01.031","url":null,"abstract":"<p><p>Pain hypersensitivity arises from the induction of plasticity in peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain, altering pain perception. We applied longitudinal calcium imaging of spinal dorsal projection neurons to determine whether and how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy mice, we identified stable outputs selective for cooling or warming and a neuronal ensemble activated by noxious thermal and mechanical stimuli. Induction of acute peripheral sensitization by topical capsaicin transiently re-tuned nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury resulted in a persistent suppression of innocuous spinal outputs coupled with persistent activation of a normally silent population of high-threshold neurons. These results demonstrate differential modulation of spinal outputs to the brain during nociceptive and neuropathic pain states.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal statistics of hippocampal place fields across species and dimensionalities.
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-20 DOI: 10.1016/j.neuron.2025.01.017
Nischal Mainali, Rava Azeredo da Silveira, Yoram Burak

Hippocampal place cells have single, bell-shaped place fields in small environments. Recent experiments, however, reveal that, in large environments, place cells have multiple fields with heterogeneous shapes and sizes. We show that this diversity is explained by a surprisingly simple mathematical model, in which place fields are generated by thresholding a realization of a random Gaussian process. The model captures the statistics of field arrangements and generates new quantitative predictions about the statistics of field shapes and topologies. These predictions are quantitatively verified in bats and rodents, in one, two, and three dimensions, in both small and large environments. These results imply that common mechanisms underlie the diverse statistics observed in different experiments and further suggest that synaptic projections to CA1 are predominantly random.

{"title":"Universal statistics of hippocampal place fields across species and dimensionalities.","authors":"Nischal Mainali, Rava Azeredo da Silveira, Yoram Burak","doi":"10.1016/j.neuron.2025.01.017","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.01.017","url":null,"abstract":"<p><p>Hippocampal place cells have single, bell-shaped place fields in small environments. Recent experiments, however, reveal that, in large environments, place cells have multiple fields with heterogeneous shapes and sizes. We show that this diversity is explained by a surprisingly simple mathematical model, in which place fields are generated by thresholding a realization of a random Gaussian process. The model captures the statistics of field arrangements and generates new quantitative predictions about the statistics of field shapes and topologies. These predictions are quantitatively verified in bats and rodents, in one, two, and three dimensions, in both small and large environments. These results imply that common mechanisms underlie the diverse statistics observed in different experiments and further suggest that synaptic projections to CA1 are predominantly random.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143502939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Notice to: Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins.
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 Epub Date: 2025-02-11 DOI: 10.1016/j.neuron.2025.01.027
Lulu Y Chen, Man Jiang, Bo Zhang, Ozgun Gokce, Thomas C Südhof
{"title":"Retraction Notice to: Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins.","authors":"Lulu Y Chen, Man Jiang, Bo Zhang, Ozgun Gokce, Thomas C Südhof","doi":"10.1016/j.neuron.2025.01.027","DOIUrl":"10.1016/j.neuron.2025.01.027","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"639"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dennis D.M. O'Leary (1954-2024). 丹尼斯-奥利里(Dennis D.M.O'Leary,1954-2024 年)。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 DOI: 10.1016/j.neuron.2025.01.020
Shen-Ju Chou, Robert Hindges, Todd McLaughlin, Yasushi Nakagawa, Linda J Richards, Adina L Roskies, Setsuko Sahara, Bradley L Schlaggar, Kathleen T Yee
{"title":"Dennis D.M. O'Leary (1954-2024).","authors":"Shen-Ju Chou, Robert Hindges, Todd McLaughlin, Yasushi Nakagawa, Linda J Richards, Adina L Roskies, Setsuko Sahara, Bradley L Schlaggar, Kathleen T Yee","doi":"10.1016/j.neuron.2025.01.020","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.01.020","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"113 4","pages":"506-508"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extensive dataset of spiking activity to reveal the syntax of the ventral stream. 一个广泛的尖峰活动数据集,揭示腹侧流的语法。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 Epub Date: 2025-01-13 DOI: 10.1016/j.neuron.2024.12.003
Paolo Papale, Feng Wang, Matthew W Self, Pieter R Roelfsema

Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.

视觉神经科学得益于对许多图像的神经元反应的高质量数据集。近年来已经发表了几个神经成像数据集,但没有可比较的具有尖峰活动的数据集。在这里,我们介绍了THINGS腹侧流峰值数据集(TVSD)。我们在猕猴的三个关键皮质区域(初级视觉皮层(V1)、V4和颞下皮层)使用高通道计数植入物,对来自THINGS数据库的bbbb25 000张自然图像的神经元活动进行了广泛采样。我们通过使用人工神经网络来可视化神经元的调谐来展示TVSD的实用性。我们还描述了区域内和区域之间活动的相关波动,并证明这些噪声相关性在具有相似调谐的神经元之间最强。TVSD允许研究人员回答许多关于神经元调节的问题,分析皮层区域内部和之间的相互作用,并将猴子的尖峰活动与人类的神经成像数据进行比较。
{"title":"An extensive dataset of spiking activity to reveal the syntax of the ventral stream.","authors":"Paolo Papale, Feng Wang, Matthew W Self, Pieter R Roelfsema","doi":"10.1016/j.neuron.2024.12.003","DOIUrl":"10.1016/j.neuron.2024.12.003","url":null,"abstract":"<p><p>Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"539-553.e5"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intermediate open structure reveals the gating transition of the mechanically activated PIEZO1 channel. 中间开放结构揭示了机械激活的PIEZO1通道的门控转变。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 Epub Date: 2024-12-23 DOI: 10.1016/j.neuron.2024.11.020
Sijia Liu, Xuzhong Yang, Xudong Chen, Xiaochun Zhang, Jinghui Jiang, Jingyi Yuan, Wenhao Liu, Li Wang, Heng Zhou, Kun Wu, Boxue Tian, Xueming Li, Bailong Xiao

PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure. Compared with the curved and flattened structures of PIEZO1, the S2472E-Intermediate structure displays partially flattened blades, a downward and rotational motion of the top cap, and a spring-like compression of the linker connecting the cap to the pore-lining inner helix. These conformational changes open the cap gate and the hydrophobic transmembrane gate, whereas the intracellular lateral plug gate remains closed. The flattened structure of PIEZO1 with an up-state cap and closed cap gate might represent an inactivated state. Molecular dynamics (MD) simulations of ion conduction support the closed, intermediate open, and inactivated structural states. Mutagenesis and electrophysiological studies identified key domains and residues critical for the mechanical activation of PIEZO1. These studies collectively define the distinct structural states and gating transitions of PIEZO1.

PIEZO1是一种机械激活的阳离子通道,经历力诱导的激活和失活。然而,其独特的结构状态仍未确定。在这里,我们使用了一个开放倾向的PIEZO1-S2472E突变体来捕获一个中间开放结构。与PIEZO1的弯曲和扁平结构相比,S2472E-Intermediate结构表现出部分扁平的叶片,上盖向下旋转运动,连接上盖与孔衬内螺旋的连接件类似弹簧的压缩。这些构象变化打开了帽门和疏水跨膜门,而细胞内侧塞门保持关闭。压电陶瓷具有上盖和闭合盖栅的扁平结构可能代表失活状态。离子传导的分子动力学(MD)模拟支持封闭、中间开放和失活的结构状态。诱变和电生理研究确定了PIEZO1机械激活的关键结构域和残基。这些研究共同定义了PIEZO1的不同结构状态和门控转变。
{"title":"An intermediate open structure reveals the gating transition of the mechanically activated PIEZO1 channel.","authors":"Sijia Liu, Xuzhong Yang, Xudong Chen, Xiaochun Zhang, Jinghui Jiang, Jingyi Yuan, Wenhao Liu, Li Wang, Heng Zhou, Kun Wu, Boxue Tian, Xueming Li, Bailong Xiao","doi":"10.1016/j.neuron.2024.11.020","DOIUrl":"10.1016/j.neuron.2024.11.020","url":null,"abstract":"<p><p>PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure. Compared with the curved and flattened structures of PIEZO1, the S2472E-Intermediate structure displays partially flattened blades, a downward and rotational motion of the top cap, and a spring-like compression of the linker connecting the cap to the pore-lining inner helix. These conformational changes open the cap gate and the hydrophobic transmembrane gate, whereas the intracellular lateral plug gate remains closed. The flattened structure of PIEZO1 with an up-state cap and closed cap gate might represent an inactivated state. Molecular dynamics (MD) simulations of ion conduction support the closed, intermediate open, and inactivated structural states. Mutagenesis and electrophysiological studies identified key domains and residues critical for the mechanical activation of PIEZO1. These studies collectively define the distinct structural states and gating transitions of PIEZO1.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"590-604.e6"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tachykinin signaling in the right parabrachial nucleus mediates early-phase neuropathic pain development. 右臂旁核的速激肽信号介导早期神经性疼痛的发展。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 Epub Date: 2024-12-23 DOI: 10.1016/j.neuron.2024.11.021
Yinxia Li, Ngoc T Ha, Juan Li, Yaxin Yan, Qian Chen, Liping Cai, Weike Li, Shoupei Liu, Bo Li, Tianlin Cheng, Yangang Sun, Yingwei Wang, Juan Deng

The lateral parabrachial nucleus (PBN) is critically involved in neuropathic pain modulation. However, the cellular and molecular mechanisms underlying this process remain largely unknown. Here, we report that in mice, the right-sided, but not the left-sided, PBN plays an essential role in the development of hyperalgesia following nerve injury, irrespective of the injury side. Spino-parabrachial pathways targeting the right-sided PBN display short-term facilitation, and right-sided PBN neurons exhibit an increase in the excitability and activity after nerve injury. Inhibiting Tacr1-positive neurons, blocking Tacr1-encoding tachykinin 1 receptor (NK1R), or knocking down the Tacr1 gene in the right-sided, rather than left-sided, PBN alleviates neuropathic pain-induced sensory hypersensitivity. Additionally, the right-sided PBN plays a critical role in the development of hyperalgesia during the early phase of neuropathic pain. These results highlight the essential role of NK1R in the lateralized modulation of neuropathic pain by the PBN, providing new insights into the mechanisms underlying neuropathic pain.

外侧臂旁核(PBN)在神经性疼痛调节中起关键作用。然而,这一过程背后的细胞和分子机制在很大程度上仍然未知。在这里,我们报道,在小鼠的右侧,而不是左侧,PBN在神经损伤后痛觉过敏的发展中起重要作用,而不考虑损伤侧。以右侧PBN为靶点的脊髓-臂旁通路表现出短期易化,右侧PBN神经元在神经损伤后表现出兴奋性和活动性的增加。PBN抑制Tacr1阳性神经元,阻断Tacr1编码的速激肽1受体(NK1R),或敲低右侧而非左侧的Tacr1基因,可减轻神经性疼痛引起的感觉超敏反应。此外,在神经性疼痛的早期阶段,右侧PBN在痛觉过敏的发展中起着关键作用。这些结果强调了NK1R在PBN对神经性疼痛的偏侧调节中的重要作用,为神经性疼痛的潜在机制提供了新的见解。
{"title":"Tachykinin signaling in the right parabrachial nucleus mediates early-phase neuropathic pain development.","authors":"Yinxia Li, Ngoc T Ha, Juan Li, Yaxin Yan, Qian Chen, Liping Cai, Weike Li, Shoupei Liu, Bo Li, Tianlin Cheng, Yangang Sun, Yingwei Wang, Juan Deng","doi":"10.1016/j.neuron.2024.11.021","DOIUrl":"10.1016/j.neuron.2024.11.021","url":null,"abstract":"<p><p>The lateral parabrachial nucleus (PBN) is critically involved in neuropathic pain modulation. However, the cellular and molecular mechanisms underlying this process remain largely unknown. Here, we report that in mice, the right-sided, but not the left-sided, PBN plays an essential role in the development of hyperalgesia following nerve injury, irrespective of the injury side. Spino-parabrachial pathways targeting the right-sided PBN display short-term facilitation, and right-sided PBN neurons exhibit an increase in the excitability and activity after nerve injury. Inhibiting Tacr1-positive neurons, blocking Tacr1-encoding tachykinin 1 receptor (NK1R), or knocking down the Tacr1 gene in the right-sided, rather than left-sided, PBN alleviates neuropathic pain-induced sensory hypersensitivity. Additionally, the right-sided PBN plays a critical role in the development of hyperalgesia during the early phase of neuropathic pain. These results highlight the essential role of NK1R in the lateralized modulation of neuropathic pain by the PBN, providing new insights into the mechanisms underlying neuropathic pain.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"605-619.e6"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions.
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 Epub Date: 2025-02-01 DOI: 10.1016/j.neuron.2025.01.018
Isabel Lam, Alain Ndayisaba, Amanda J Lewis, YuHong Fu, Giselle T Sagredo, Anastasia Kuzkina, Ludovica Zaccagnini, Meral Celikag, Jackson Sandoe, Ricardo L Sanz, Aazam Vahdatshoar, Timothy D Martin, Nader Morshed, Toru Ichihashi, Arati Tripathi, Nagendran Ramalingam, Charlotte Oettgen-Suazo, Theresa Bartels, Manel Boussouf, Max Schäbinger, Erinc Hallacli, Xin Jiang, Amrita Verma, Challana Tea, Zichen Wang, Hiroyuki Hakozaki, Xiao Yu, Kelly Hyles, Chansaem Park, Xinyuan Wang, Thorold W Theunissen, Haoyi Wang, Rudolf Jaenisch, Susan Lindquist, Beth Stevens, Nadia Stefanova, Gregor Wenning, Wilma D J van de Berg, Kelvin C Luk, Rosario Sanchez-Pernaute, Juan Carlos Gómez-Esteban, Daniel Felsky, Yasujiro Kiyota, Nidhi Sahni, S Stephen Yi, Chee Yeun Chung, Henning Stahlberg, Isidro Ferrer, Johannes Schöneberg, Stephen J Elledge, Ulf Dettmer, Glenda M Halliday, Tim Bartels, Vikram Khurana
{"title":"Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions.","authors":"Isabel Lam, Alain Ndayisaba, Amanda J Lewis, YuHong Fu, Giselle T Sagredo, Anastasia Kuzkina, Ludovica Zaccagnini, Meral Celikag, Jackson Sandoe, Ricardo L Sanz, Aazam Vahdatshoar, Timothy D Martin, Nader Morshed, Toru Ichihashi, Arati Tripathi, Nagendran Ramalingam, Charlotte Oettgen-Suazo, Theresa Bartels, Manel Boussouf, Max Schäbinger, Erinc Hallacli, Xin Jiang, Amrita Verma, Challana Tea, Zichen Wang, Hiroyuki Hakozaki, Xiao Yu, Kelly Hyles, Chansaem Park, Xinyuan Wang, Thorold W Theunissen, Haoyi Wang, Rudolf Jaenisch, Susan Lindquist, Beth Stevens, Nadia Stefanova, Gregor Wenning, Wilma D J van de Berg, Kelvin C Luk, Rosario Sanchez-Pernaute, Juan Carlos Gómez-Esteban, Daniel Felsky, Yasujiro Kiyota, Nidhi Sahni, S Stephen Yi, Chee Yeun Chung, Henning Stahlberg, Isidro Ferrer, Johannes Schöneberg, Stephen J Elledge, Ulf Dettmer, Glenda M Halliday, Tim Bartels, Vikram Khurana","doi":"10.1016/j.neuron.2025.01.018","DOIUrl":"10.1016/j.neuron.2025.01.018","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"637"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stressed microglia turn to the dark side in Alzheimer's disease.
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 DOI: 10.1016/j.neuron.2025.01.010
Gilbert Di Paolo, Joseph W Lewcock

A microglia subpopulation termed "dark microglia" has been associated with aging and neurodegeneration, although its role has remained elusive. New research from Flury et al. in this issue of Neuron shows that dark microglia drive neurodegeneration via secretion of toxic lipids.1.

{"title":"Stressed microglia turn to the dark side in Alzheimer's disease.","authors":"Gilbert Di Paolo, Joseph W Lewcock","doi":"10.1016/j.neuron.2025.01.010","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.01.010","url":null,"abstract":"<p><p>A microglia subpopulation termed \"dark microglia\" has been associated with aging and neurodegeneration, although its role has remained elusive. New research from Flury et al. in this issue of Neuron shows that dark microglia drive neurodegeneration via secretion of toxic lipids.<sup>1</sup>.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"113 4","pages":"501-503"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjoint specification of action by neocortex and striatum. 新皮层和纹状体共同规范作用。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-19 Epub Date: 2025-01-20 DOI: 10.1016/j.neuron.2024.12.024
Junchol Park, Peter Polidoro, Catia Fortunato, Jon Arnold, Brett Mensh, Juan A Gallego, Joshua T Dudman

The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification. These alternatives have been difficult to reconcile because comparing very distinct actions, as is often done, makes essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity across similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify continuous parameters governing movement execution.

两个主要的前脑结构——皮层和皮层下纹状体——之间的相互作用对于灵活的、目标导向的行为至关重要。传统上,人们认为纹状体对于选择启动何种类型的动作至关重要,而初级运动皮层则参与指定即将到来/正在进行的运动的连续参数。最近的资料表明纹状体也可能参与规格。这些选择很难调和,因为比较非常不同的行为,就像经常做的那样,做出本质上无法区分的预测。在这里,我们开发了定量模型来揭示一个有点矛盾的见解:只有比较类似行为中的神经活动才能做出强烈的区分预测。因此,我们开发了一种新颖的“伸手到拉”任务,在该任务中,小鼠可靠地在两个相似但不同的伸手到目标和拉力之间进行选择。同时皮层和皮层下的记录与皮层和纹状体共同指定控制运动执行的连续参数的模型是唯一一致的。
{"title":"Conjoint specification of action by neocortex and striatum.","authors":"Junchol Park, Peter Polidoro, Catia Fortunato, Jon Arnold, Brett Mensh, Juan A Gallego, Joshua T Dudman","doi":"10.1016/j.neuron.2024.12.024","DOIUrl":"10.1016/j.neuron.2024.12.024","url":null,"abstract":"<p><p>The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification. These alternatives have been difficult to reconcile because comparing very distinct actions, as is often done, makes essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity across similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify continuous parameters governing movement execution.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"620-636.e6"},"PeriodicalIF":14.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuron
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1