首页 > 最新文献

Neuron最新文献

英文 中文
BRAIN @ 10: A decade of innovation. 大脑 @ 10:创新的十年。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 DOI: 10.1016/j.neuron.2024.09.007
John Ngai

Now entering its second decade, the National Institutes of Health Brain Research Through Advancing Innovative Neurotechnologies Initiative, or the NIH BRAIN Initiative, has yielded remarkable success, accelerating research on the neural circuit basis of behavior and breaking new ground toward the treatment of complex human brain disorders.

美国国立卫生研究院的 "通过推进创新神经技术进行脑研究计划"(简称 "NIH BRAIN 计划")现已进入第二个十年,该计划取得了令人瞩目的成就,加速了对行为的神经回路基础的研究,并在治疗复杂的人类脑部疾病方面取得了新的突破。
{"title":"BRAIN @ 10: A decade of innovation.","authors":"John Ngai","doi":"10.1016/j.neuron.2024.09.007","DOIUrl":"10.1016/j.neuron.2024.09.007","url":null,"abstract":"<p><p>Now entering its second decade, the National Institutes of Health Brain Research Through Advancing Innovative Neurotechnologies Initiative, or the NIH BRAIN Initiative, has yielded remarkable success, accelerating research on the neural circuit basis of behavior and breaking new ground toward the treatment of complex human brain disorders.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"112 18","pages":"3003-3006"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1. 星形胶质细胞通过磷酸盐吸收转运体 PiT2 和输出体 XPR1 的极化分布调节大脑磷酸盐稳态
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-07-16 DOI: 10.1016/j.neuron.2024.06.020
Xuewen Cheng, Miao Zhao, Lei Chen, Chenwei Huang, Qiwu Xu, Jia Shao, Hong-Tao Wang, Yuxian Zhang, Xuequan Li, Xuan Xu, Xiang-Ping Yao, Kai-Jun Lin, Hui Xue, Han Wang, Qi Chen, Yong-Chuan Zhu, Jia-Wei Zhou, Woo-Ping Ge, Shu-Jia Zhu, Jing-Yu Liu, Wan-Jin Chen, Zhi-Qi Xiong

Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.

无机磷酸盐(Pi)平衡失调会导致脑钙化并加重神经退行性病变,但其潜在机制仍不清楚。在这里,我们发现原发性家族性脑钙化(PFBC)相关的 Pi 转运基因 Pit2 和 Xpr1 在星形胶质细胞中高度表达,其中导入基因 PiT2 分布在整个星形胶质细胞过程中,而导出基因 XPR1 则定位于血管上的星形胶质细胞端足。这种 PiT2 和 XPR1 的极化分布赋予了星形胶质细胞在大脑π平衡中的π运输能力,而这种能力在 Pit2 或 Xpr1 被特异性敲除(KO)的小鼠中被破坏。此外,我们还发现 PiT2 对π的吸收以及 PFBC 相关半乳糖苷酶 MYORG 对其的促进作用是星形胶质细胞高π转运能力的必要条件。最后,在 Pit2-KO 小鼠中,星形胶质细胞特异性 PiT2 的再表达抑制了脑钙化。因此,星形胶质细胞介导的π转运是大脑π平衡的关键,提高星形胶质细胞的π转运功能是减少大脑钙化的潜在治疗策略。
{"title":"Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1.","authors":"Xuewen Cheng, Miao Zhao, Lei Chen, Chenwei Huang, Qiwu Xu, Jia Shao, Hong-Tao Wang, Yuxian Zhang, Xuequan Li, Xuan Xu, Xiang-Ping Yao, Kai-Jun Lin, Hui Xue, Han Wang, Qi Chen, Yong-Chuan Zhu, Jia-Wei Zhou, Woo-Ping Ge, Shu-Jia Zhu, Jing-Yu Liu, Wan-Jin Chen, Zhi-Qi Xiong","doi":"10.1016/j.neuron.2024.06.020","DOIUrl":"10.1016/j.neuron.2024.06.020","url":null,"abstract":"<p><p>Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3126-3142.e8"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mature enteric neurons have the capacity to reinnervate the intestine with glial cells as their guide. 成熟的肠神经元有能力在神经胶质细胞的引导下重新支配肠道。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-07-16 DOI: 10.1016/j.neuron.2024.06.018
Rhian Stavely, Ahmed A Rahman, Jessica L Mueller, Abigail R Leavitt, Christopher Y Han, Weikang Pan, Kyla N Kaiser, Leah C Ott, Takahiro Ohkura, Richard A Guyer, Alan J Burns, Abigail N Koppes, Ryo Hotta, Allan M Goldstein

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

在这里,我们通过证明有丝分裂后肠神经元(ENs)的神经再支配潜能,证实了可塑性存在于出生后肠神经系统中。利用 BAF53b-Cre 小鼠进行选择性神经元追踪,在多个模型系统中展示了成熟的出生后肠神经元的再神经支配能力。离体EN在体外再生神经元,神经元的复杂性和方向受与肠胶质细胞(EGC)接触的影响。移植EN的神经纤维只与固有肌内的EGCs接触并沿着EGCs移动。正如神经纤维投射追踪所显示的那样,Cre 依赖性消融 ENs 后,驻留的 EGCs 仍然存在,并支配着重新神经支配 ENs 的肠系膜神经丛的结构。体内移植和光遗传实验凸显了有丝分裂后神经元的快速神经再支配潜能,可在两周内恢复肠道肌肉的收缩活动。这些研究说明了有丝分裂后神经元的结构和功能再支配能力,以及EGCs在引导和规划其轨迹方面的关键作用。
{"title":"Mature enteric neurons have the capacity to reinnervate the intestine with glial cells as their guide.","authors":"Rhian Stavely, Ahmed A Rahman, Jessica L Mueller, Abigail R Leavitt, Christopher Y Han, Weikang Pan, Kyla N Kaiser, Leah C Ott, Takahiro Ohkura, Richard A Guyer, Alan J Burns, Abigail N Koppes, Ryo Hotta, Allan M Goldstein","doi":"10.1016/j.neuron.2024.06.018","DOIUrl":"10.1016/j.neuron.2024.06.018","url":null,"abstract":"<p><p>Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3143-3160.e6"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A shared model-based linguistic space for transmitting our thoughts from brain to brain in natural conversations. 基于模型的共享语言空间,在自然对话中将我们的思想从大脑传递到大脑。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-08-02 DOI: 10.1016/j.neuron.2024.06.025
Zaid Zada, Ariel Goldstein, Sebastian Michelmann, Erez Simony, Amy Price, Liat Hasenfratz, Emily Barham, Asieh Zadbood, Werner Doyle, Daniel Friedman, Patricia Dugan, Lucia Melloni, Sasha Devore, Adeen Flinker, Orrin Devinsky, Samuel A Nastase, Uri Hasson

Effective communication hinges on a mutual understanding of word meaning in different contexts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We developed a model-based coupling framework that aligns brain activity in both speaker and listener to a shared embedding space from a large language model (LLM). The context-sensitive LLM embeddings allow us to track the exchange of linguistic information, word by word, from one brain to another in natural conversations. Linguistic content emerges in the speaker's brain before word articulation and rapidly re-emerges in the listener's brain after word articulation. The contextual embeddings better capture word-by-word neural alignment between speaker and listener than syntactic and articulatory models. Our findings indicate that the contextual embeddings learned by LLMs can serve as an explicit numerical model of the shared, context-rich meaning space humans use to communicate their thoughts to one another.

有效的交流取决于对不同语境中词汇含义的相互理解。我们使用皮层电图记录了五对癫痫患者自发面对面交谈时的大脑活动。我们开发了一个基于模型的耦合框架,将说话者和听话者的大脑活动与大语言模型(LLM)的共享嵌入空间相匹配。通过对上下文敏感的 LLM 嵌入,我们可以跟踪自然对话中一个大脑与另一个大脑逐字交换语言信息的情况。语言内容在单词发音前出现在说话者的大脑中,并在单词发音后迅速重新出现在听者的大脑中。与句法和发音模型相比,语境嵌入能更好地捕捉说话者和听话者之间的逐字神经一致性。我们的研究结果表明,由 LLMs 学习到的语境嵌入可以作为一个明确的数字模型,用于描述人类用来相互交流思想的共享的、语境丰富的意义空间。
{"title":"A shared model-based linguistic space for transmitting our thoughts from brain to brain in natural conversations.","authors":"Zaid Zada, Ariel Goldstein, Sebastian Michelmann, Erez Simony, Amy Price, Liat Hasenfratz, Emily Barham, Asieh Zadbood, Werner Doyle, Daniel Friedman, Patricia Dugan, Lucia Melloni, Sasha Devore, Adeen Flinker, Orrin Devinsky, Samuel A Nastase, Uri Hasson","doi":"10.1016/j.neuron.2024.06.025","DOIUrl":"10.1016/j.neuron.2024.06.025","url":null,"abstract":"<p><p>Effective communication hinges on a mutual understanding of word meaning in different contexts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We developed a model-based coupling framework that aligns brain activity in both speaker and listener to a shared embedding space from a large language model (LLM). The context-sensitive LLM embeddings allow us to track the exchange of linguistic information, word by word, from one brain to another in natural conversations. Linguistic content emerges in the speaker's brain before word articulation and rapidly re-emerges in the listener's brain after word articulation. The contextual embeddings better capture word-by-word neural alignment between speaker and listener than syntactic and articulatory models. Our findings indicate that the contextual embeddings learned by LLMs can serve as an explicit numerical model of the shared, context-rich meaning space humans use to communicate their thoughts to one another.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3211-3222.e5"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal enhancers fine-tune adaptive circuit plasticity. 神经元增强子对适应性电路可塑性进行微调
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-08-28 DOI: 10.1016/j.neuron.2024.08.002
Eric C Griffith, Anne E West, Michael E Greenberg

Neuronal activity-regulated gene expression plays a crucial role in sculpting neural circuits that underpin adaptive brain function. Transcriptional enhancers are now recognized as key components of gene regulation that orchestrate spatiotemporally precise patterns of gene transcription. We propose that the dynamics of enhancer activation uniquely position these genomic elements to finely tune activity-dependent cellular plasticity. Enhancer specificity and modularity can be exploited to gain selective genetic access to specific cell states, and the precise modulation of target gene expression within restricted cellular contexts enabled by targeted enhancer manipulation allows for fine-grained evaluation of gene function. Mounting evidence also suggests that enduring stimulus-induced changes in enhancer states can modify target gene activation upon restimulation, thereby contributing to a form of cell-wide metaplasticity. We advocate for focused exploration of activity-dependent enhancer function to gain new insight into the mechanisms underlying brain plasticity and cognitive dysfunction.

神经元活动调控的基因表达在构建支撑大脑适应性功能的神经回路中发挥着至关重要的作用。转录增强子现在被认为是基因调控的关键组成部分,它协调了时空精确的基因转录模式。我们提出,增强子激活的动态过程独特地定位了这些基因组元素,以精细调节依赖于活动的细胞可塑性。可以利用增强子的特异性和模块化来获得特定细胞状态的选择性遗传途径,通过对增强子进行有针对性的操作,可以在受限的细胞环境中精确调节目标基因的表达,从而对基因功能进行精细的评估。越来越多的证据还表明,增强子状态中由刺激引起的持久变化可在重新刺激时改变目标基因的激活,从而形成一种全细胞的变态反应。我们主张对依赖于活动的增强子功能进行重点探索,以便对大脑可塑性和认知功能障碍的内在机制有新的认识。
{"title":"Neuronal enhancers fine-tune adaptive circuit plasticity.","authors":"Eric C Griffith, Anne E West, Michael E Greenberg","doi":"10.1016/j.neuron.2024.08.002","DOIUrl":"10.1016/j.neuron.2024.08.002","url":null,"abstract":"<p><p>Neuronal activity-regulated gene expression plays a crucial role in sculpting neural circuits that underpin adaptive brain function. Transcriptional enhancers are now recognized as key components of gene regulation that orchestrate spatiotemporally precise patterns of gene transcription. We propose that the dynamics of enhancer activation uniquely position these genomic elements to finely tune activity-dependent cellular plasticity. Enhancer specificity and modularity can be exploited to gain selective genetic access to specific cell states, and the precise modulation of target gene expression within restricted cellular contexts enabled by targeted enhancer manipulation allows for fine-grained evaluation of gene function. Mounting evidence also suggests that enduring stimulus-induced changes in enhancer states can modify target gene activation upon restimulation, thereby contributing to a form of cell-wide metaplasticity. We advocate for focused exploration of activity-dependent enhancer function to gain new insight into the mechanisms underlying brain plasticity and cognitive dysfunction.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3043-3057"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell dissection of the human blood-brain barrier and glioma blood-tumor barrier. 人类血脑屏障和胶质瘤血瘤屏障的单细胞解剖。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-08-26 DOI: 10.1016/j.neuron.2024.07.026
Yuan Xie, Fan Yang, Liqun He, Hua Huang, Min Chao, Haiyan Cao, Yaqin Hu, Zhicheng Fan, Yaohong Zhai, Wenjian Zhao, Xian Liu, Ruozhu Zhao, Bing Xiao, Xinxin Shi, Yuancheng Luo, Jinlong Yin, Dayun Feng, Jean-Philippe Hugnot, Lars Muhl, Anna Dimberg, Christer Betsholtz, Yanyu Zhang, Liang Wang, Lei Zhang

The blood-brain barrier (BBB) serves as a crucial vascular specialization, shielding and nourishing brain neurons and glia while impeding drug delivery. Here, we conducted single-cell mRNA sequencing of human cerebrovascular cells from 13 surgically resected glioma samples and adjacent normal brain tissue. The transcriptomes of 103,230 cells were mapped, including 57,324 endothelial cells (ECs) and 27,703 mural cells (MCs). Both EC and MC transcriptomes originating from lower-grade glioma were indistinguishable from those of normal brain tissue, whereas transcriptomes from glioblastoma (GBM) displayed a range of abnormalities. Among these, we identified LOXL2-dependent collagen modification as a common GBM-dependent trait and demonstrated that inhibiting LOXL2 enhanced chemotherapy efficacy in both murine and human patient-derived xenograft (PDX) GBM models. Our comprehensive single-cell RNA sequencing-based molecular atlas of the human BBB, coupled with insights into its perturbations in GBM, holds promise for guiding future investigations into brain health, pathology, and therapeutic strategies.

血脑屏障(BBB)是一种重要的血管特异性结构,在保护和滋养大脑神经元和胶质细胞的同时阻碍药物的输送。在这里,我们对来自13个手术切除胶质瘤样本和邻近正常脑组织的人类脑血管细胞进行了单细胞mRNA测序。我们绘制了 103,230 个细胞的转录组,包括 57,324 个内皮细胞(EC)和 27,703 个壁细胞(MC)。低级别胶质瘤的EC和MC转录组与正常脑组织的转录组没有区别,而胶质母细胞瘤(GBM)的转录组则显示出一系列异常。其中,我们发现LOXL2依赖性胶原修饰是一种常见的GBM依赖性特征,并证明抑制LOXL2可提高小鼠和人类患者来源异种移植(PDX)GBM模型的化疗效果。我们基于单细胞 RNA 测序的人类 BBB 综合分子图谱,以及对其在 GBM 中扰动的深入了解,有望指导未来对大脑健康、病理学和治疗策略的研究。
{"title":"Single-cell dissection of the human blood-brain barrier and glioma blood-tumor barrier.","authors":"Yuan Xie, Fan Yang, Liqun He, Hua Huang, Min Chao, Haiyan Cao, Yaqin Hu, Zhicheng Fan, Yaohong Zhai, Wenjian Zhao, Xian Liu, Ruozhu Zhao, Bing Xiao, Xinxin Shi, Yuancheng Luo, Jinlong Yin, Dayun Feng, Jean-Philippe Hugnot, Lars Muhl, Anna Dimberg, Christer Betsholtz, Yanyu Zhang, Liang Wang, Lei Zhang","doi":"10.1016/j.neuron.2024.07.026","DOIUrl":"10.1016/j.neuron.2024.07.026","url":null,"abstract":"<p><p>The blood-brain barrier (BBB) serves as a crucial vascular specialization, shielding and nourishing brain neurons and glia while impeding drug delivery. Here, we conducted single-cell mRNA sequencing of human cerebrovascular cells from 13 surgically resected glioma samples and adjacent normal brain tissue. The transcriptomes of 103,230 cells were mapped, including 57,324 endothelial cells (ECs) and 27,703 mural cells (MCs). Both EC and MC transcriptomes originating from lower-grade glioma were indistinguishable from those of normal brain tissue, whereas transcriptomes from glioblastoma (GBM) displayed a range of abnormalities. Among these, we identified LOXL2-dependent collagen modification as a common GBM-dependent trait and demonstrated that inhibiting LOXL2 enhanced chemotherapy efficacy in both murine and human patient-derived xenograft (PDX) GBM models. Our comprehensive single-cell RNA sequencing-based molecular atlas of the human BBB, coupled with insights into its perturbations in GBM, holds promise for guiding future investigations into brain health, pathology, and therapeutic strategies.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3089-3105.e7"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. 小胶质细胞通过隧道纳米管拯救神经元,使其免于聚集体诱发的神经元功能障碍和死亡。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-07-25 DOI: 10.1016/j.neuron.2024.06.029
Hannah Scheiblich, Frederik Eikens, Lena Wischhof, Sabine Opitz, Kay Jüngling, Csaba Cserép, Susanne V Schmidt, Jessica Lambertz, Tracy Bellande, Balázs Pósfai, Charlotte Geck, Jasper Spitzer, Alexandru Odainic, Sergio Castro-Gomez, Stephanie Schwartz, Ibrahim Boussaad, Rejko Krüger, Enrico Glaab, Donato A Di Monte, Daniele Bano, Ádám Dénes, Eike Latz, Ronald Melki, Hans-Christian Pape, Michael T Heneka

Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.

小胶质细胞对维持大脑健康和神经元功能至关重要。在这里,我们报告了小胶质细胞在生理和病理条件下利用隧道纳米管(TNTs)与神经元建立连接的情况。这些 TNTs 可促进细胞器、囊泡和蛋白质的快速交换。在帕金森病和阿尔茨海默病等神经退行性疾病中,α-突触核蛋白(α-syn)和tau的毒性聚集体会在神经元内积聚。我们的研究表明,小胶质细胞利用 TNTs 将神经元从这些聚集体中提取出来,从而恢复神经元的健康。此外,小胶质细胞还能与有负担的神经元分享它们健康的线粒体,从而减少氧化应激并使基因表达正常化。在TNT形成前用抗霉素A破坏线粒体功能,就会消除这种神经保护作用。此外,将神经元与小胶质细胞共同培养并促进 TNT 的形成,还能挽救因 α-syn 或 tau 聚集而受到抑制的神经元活动。值得注意的是,在携带 Lrrk22(Gly2019Ser)或 Trem2(T66M)和(R47H)突变的小胶质细胞中,TNT 介导的聚集体转移会受到影响,这表明这些基因变体在神经退行性疾病的病理学中发挥作用。
{"title":"Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes.","authors":"Hannah Scheiblich, Frederik Eikens, Lena Wischhof, Sabine Opitz, Kay Jüngling, Csaba Cserép, Susanne V Schmidt, Jessica Lambertz, Tracy Bellande, Balázs Pósfai, Charlotte Geck, Jasper Spitzer, Alexandru Odainic, Sergio Castro-Gomez, Stephanie Schwartz, Ibrahim Boussaad, Rejko Krüger, Enrico Glaab, Donato A Di Monte, Daniele Bano, Ádám Dénes, Eike Latz, Ronald Melki, Hans-Christian Pape, Michael T Heneka","doi":"10.1016/j.neuron.2024.06.029","DOIUrl":"10.1016/j.neuron.2024.06.029","url":null,"abstract":"<p><p>Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3106-3125.e8"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of the novel EU AI Act for neurotechnologies. 欧盟新人工智能法案对神经技术的影响。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-09-17 DOI: 10.1016/j.neuron.2024.08.011
Christoph Bublitz, Fruzsina Molnár-Gábor, Surjo R Soekadar

The EU AI Act, the first comprehensive regulation of AI, came into effect in August. Here, we provide an overview of the provisions that apply to the field of neurotechnology with respect to research and development and neuroscience practice and discuss some implications for the future.

欧盟人工智能法案》是第一部人工智能综合法规,已于今年 8 月生效。在此,我们将概述适用于神经技术领域研发和神经科学实践的条款,并讨论对未来的一些影响。
{"title":"Implications of the novel EU AI Act for neurotechnologies.","authors":"Christoph Bublitz, Fruzsina Molnár-Gábor, Surjo R Soekadar","doi":"10.1016/j.neuron.2024.08.011","DOIUrl":"10.1016/j.neuron.2024.08.011","url":null,"abstract":"<p><p>The EU AI Act, the first comprehensive regulation of AI, came into effect in August. Here, we provide an overview of the provisions that apply to the field of neurotechnology with respect to research and development and neuroscience practice and discuss some implications for the future.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3013-3016"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data science and its future in large neuroscience collaborations. 数据科学及其在大型神经科学合作中的未来。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 DOI: 10.1016/j.neuron.2024.08.017
Manuel Schottdorf, Guoqiang Yu, Edgar Y Walker

Collaborative neuroscience requires systematic data management and analysis. How this is best done in practice remains unclear. Based on a survey across collaborative neuroscience projects, we document the current state of the art focusing on data integration, sharing, and researcher training. We propose best practices and list actions and policies to attain these goals.

合作神经科学需要系统的数据管理和分析。在实践中如何做到这一点仍不清楚。基于对神经科学合作项目的调查,我们记录了当前的技术水平,重点是数据整合、共享和研究人员培训。我们提出了最佳实践,并列出了实现这些目标的行动和政策。
{"title":"Data science and its future in large neuroscience collaborations.","authors":"Manuel Schottdorf, Guoqiang Yu, Edgar Y Walker","doi":"10.1016/j.neuron.2024.08.017","DOIUrl":"10.1016/j.neuron.2024.08.017","url":null,"abstract":"<p><p>Collaborative neuroscience requires systematic data management and analysis. How this is best done in practice remains unclear. Based on a survey across collaborative neuroscience projects, we document the current state of the art focusing on data integration, sharing, and researcher training. We propose best practices and list actions and policies to attain these goals.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"112 18","pages":"3007-3012"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo. SYNGAP1 缺乏会破坏体内异种移植人皮质神经元的突触新生。
IF 14.7 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-25 Epub Date: 2024-08-06 DOI: 10.1016/j.neuron.2024.07.007
Ben Vermaercke, Ryohei Iwata, Keimpe Wierda, Leïla Boubakar, Paula Rodriguez, Martyna Ditkowska, Vincent Bonin, Pierre Vanderhaeghen

Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.

人脑本体发育的特点是大脑皮层神经元和回路的新生发育时间相当长。新神经元被认为是获得高级认知功能的必要条件,而智力障碍(ID)和自闭症谱系障碍(ASD)通常会改变这些功能。在某些形式的智力障碍和/或自闭症谱系障碍中,人类神经元的新生可能会受到破坏,但这一点从未得到过测试。在这里,我们利用将人类皮层神经元异种移植到小鼠大脑的方法来模拟SYNGAP1单倍体缺失,这是ID/ASD最常见的遗传病因之一。我们发现,SYNGAP1缺陷的人类神经元在形态和功能上的突触形成和成熟都表现出很强的加速性,同时突触可塑性也受到破坏。在电路水平上,SYNGAP1单倍体缺陷神经元会提前数月获得对视觉刺激的反应能力。我们的研究结果表明,SYNGAP1是人类神经元新生所必需的自主细胞,它在人类特异性发育机制和ID/ASD之间提供了新的联系。
{"title":"SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo.","authors":"Ben Vermaercke, Ryohei Iwata, Keimpe Wierda, Leïla Boubakar, Paula Rodriguez, Martyna Ditkowska, Vincent Bonin, Pierre Vanderhaeghen","doi":"10.1016/j.neuron.2024.07.007","DOIUrl":"10.1016/j.neuron.2024.07.007","url":null,"abstract":"<p><p>Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3058-3068.e8"},"PeriodicalIF":14.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuron
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1