首页 > 最新文献

Neuron最新文献

英文 中文
Potentiation of active locomotor state by spinal-projecting serotonergic neurons 脊髓投射的血清素能神经元对活跃运动状态的增强作用
IF 16.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-06 DOI: 10.1016/j.neuron.2025.12.008
Sara J. Fenstermacher, Ann N. Vonasek, Anne E. Cavanagh, Hannah C. Gattuso, Corryn Chaimowitz, Thomas M. Jessell, Susan M. Dymecki, Jeremy S. Dasen
{"title":"Potentiation of active locomotor state by spinal-projecting serotonergic neurons","authors":"Sara J. Fenstermacher, Ann N. Vonasek, Anne E. Cavanagh, Hannah C. Gattuso, Corryn Chaimowitz, Thomas M. Jessell, Susan M. Dymecki, Jeremy S. Dasen","doi":"10.1016/j.neuron.2025.12.008","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.008","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"23 1","pages":""},"PeriodicalIF":16.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural population activity for memory: Properties, computations, and codes. 记忆的神经群体活动:属性、计算和编码。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 Epub Date: 2025-12-22 DOI: 10.1016/j.neuron.2025.11.007
David Dupret, Stefano Fusi, Stefano Panzeri

The brain's memory function involves patterns of neural population spiking activity, shaped by experience and recurring over time. These neural population patterns are typically studied with respect to the three stages of acquisition, retention, and retrieval. Despite intensive investigation, the relationship between the features of population activity and the properties, computations, and codes for memory remains elusive. In this perspective, we synthesize recent advances in the study of memory from the viewpoint of brain network physiology, aiming for a comprehensive mapping between the properties and computations of memory and the features of population-activity codes. We propose that brain memory circuits implement trade-offs between conflicting demands on population codes. We anticipate that an important challenge for both discovery and translational neuroscience of memory is to study these trade-offs, delineating a safe zone in the population-activity space where neuronal circuits operate efficiently.

大脑的记忆功能涉及神经群尖峰活动的模式,这种模式由经验塑造,并随着时间的推移而反复出现。这些神经群体模式的典型研究涉及三个阶段:习得、保留和检索。尽管进行了深入的研究,但种群活动特征与记忆的性质、计算和编码之间的关系仍然难以捉摸。在这方面,我们从脑网络生理学的角度综合了近年来记忆研究的进展,旨在全面映射记忆的性质和计算与人口-活动代码的特征。我们提出,大脑记忆回路在人口编码的冲突需求之间实现了权衡。我们预计,对于记忆的发现和转化神经科学来说,一个重要的挑战是研究这些权衡,在神经元回路有效运作的人口活动空间中划定一个安全区。
{"title":"Neural population activity for memory: Properties, computations, and codes.","authors":"David Dupret, Stefano Fusi, Stefano Panzeri","doi":"10.1016/j.neuron.2025.11.007","DOIUrl":"10.1016/j.neuron.2025.11.007","url":null,"abstract":"<p><p>The brain's memory function involves patterns of neural population spiking activity, shaped by experience and recurring over time. These neural population patterns are typically studied with respect to the three stages of acquisition, retention, and retrieval. Despite intensive investigation, the relationship between the features of population activity and the properties, computations, and codes for memory remains elusive. In this perspective, we synthesize recent advances in the study of memory from the viewpoint of brain network physiology, aiming for a comprehensive mapping between the properties and computations of memory and the features of population-activity codes. We propose that brain memory circuits implement trade-offs between conflicting demands on population codes. We anticipate that an important challenge for both discovery and translational neuroscience of memory is to study these trade-offs, delineating a safe zone in the population-activity space where neuronal circuits operate efficiently.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"390-407"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond blood pressure: Angiotensin II drives early brain injury. 除了血压:血管紧张素II驱动早期脑损伤。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2026.01.005
Madigan M Reid, Andrew C Yang

The mechanisms linking hypertension to cognitive decline remain unclear. Schaeffer et al. show that angiotensin II damages endothelium, oligodendrocyte precursors, and interneurons via AT1 signaling, independent of blood pressure. Targeting this pathway may protect the brain beyond pressure control alone.1.

高血压与认知能力下降之间的联系机制尚不清楚。Schaeffer等人表明,血管紧张素II通过AT1信号破坏内皮、少突胶质细胞前体和中间神经元,不依赖于血压。针对这一途径可能会保护大脑,而不仅仅是控制压力。
{"title":"Beyond blood pressure: Angiotensin II drives early brain injury.","authors":"Madigan M Reid, Andrew C Yang","doi":"10.1016/j.neuron.2026.01.005","DOIUrl":"https://doi.org/10.1016/j.neuron.2026.01.005","url":null,"abstract":"<p><p>The mechanisms linking hypertension to cognitive decline remain unclear. Schaeffer et al. show that angiotensin II damages endothelium, oligodendrocyte precursors, and interneurons via AT1 signaling, independent of blood pressure. Targeting this pathway may protect the brain beyond pressure control alone.<sup>1</sup>.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"375-377"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial C5aR1 defines a pathogenic inflammatory axis driving cerebral edema. 小胶质细胞C5aR1定义了驱动脑水肿的致病性炎症轴。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2025.12.036
Amnah Al-Sayyar, Rejane Rua

Zhou et al.1 identify a C5aR1+ microglial subtype that amplifies neuroinflammation after traumatic brain injury and intracerebral hemorrhage. The mechanism reveals microglial-astrocyte-neutrophil crosstalk driving cerebral edema, highlighting C5aR1 as a therapeutic target and raising new questions about complement-glial interactions.

Zhou等人1发现了一种C5aR1+小胶质细胞亚型,可在创伤性脑损伤和脑出血后放大神经炎症。该机制揭示了小胶质细胞-星形胶质细胞-中性粒细胞串音驱动脑水肿,突出了C5aR1作为治疗靶点,并提出了补体-胶质相互作用的新问题。
{"title":"Microglial C5aR1 defines a pathogenic inflammatory axis driving cerebral edema.","authors":"Amnah Al-Sayyar, Rejane Rua","doi":"10.1016/j.neuron.2025.12.036","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.036","url":null,"abstract":"<p><p>Zhou et al.<sup>1</sup> identify a C5aR1+ microglial subtype that amplifies neuroinflammation after traumatic brain injury and intracerebral hemorrhage. The mechanism reveals microglial-astrocyte-neutrophil crosstalk driving cerebral edema, highlighting C5aR1 as a therapeutic target and raising new questions about complement-glial interactions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"378-380"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thalamic gating of nutrient-specific food consumption. 丘脑控制特定营养物质的食物消耗。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2025.12.046
Xiaoning Liu, Yu Fu

In this issue of Neuron, Zheng et al.1 show how separate neural ensembles in the paraventricular thalamus respond to and gate fat and sugar consumption. Moreover, they revealed the role of histamine receptor 3 in gating fat-specific neural response and consumption.

在本期《神经元》杂志上,郑等人1展示了室旁丘脑中不同的神经系统如何对脂肪和糖的消耗做出反应和控制。此外,他们还揭示了组胺受体3在控制脂肪特异性神经反应和消耗中的作用。
{"title":"Thalamic gating of nutrient-specific food consumption.","authors":"Xiaoning Liu, Yu Fu","doi":"10.1016/j.neuron.2025.12.046","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.046","url":null,"abstract":"<p><p>In this issue of Neuron, Zheng et al.<sup>1</sup> show how separate neural ensembles in the paraventricular thalamus respond to and gate fat and sugar consumption. Moreover, they revealed the role of histamine receptor 3 in gating fat-specific neural response and consumption.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"384-386"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The visceral logic of sympathetic ganglia. 交感神经节的内在逻辑。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2026.01.009
Andrea F M Salvador, Jing Huang, Christoph A Thaiss

Traditionally considered as a uniform broadcaster of the "fight-or-flight" response, the sympathetic nervous system is emerging as an amalgamation of distinct and functionally complementary neuronal units. In this issue of Neuron, Wei, Ma et al.1 uncover new aspects of the organizational principles of the sympathetic celiac-superior mesenteric ganglion.

传统上,交感神经系统被认为是“战斗或逃跑”反应的统一传播者,它是由不同的、功能互补的神经元单位融合而成的。在这一期的《神经元》杂志上,Wei, Ma等人揭示了交感腹腔-肠系膜上神经节组织原理的新方面。
{"title":"The visceral logic of sympathetic ganglia.","authors":"Andrea F M Salvador, Jing Huang, Christoph A Thaiss","doi":"10.1016/j.neuron.2026.01.009","DOIUrl":"https://doi.org/10.1016/j.neuron.2026.01.009","url":null,"abstract":"<p><p>Traditionally considered as a uniform broadcaster of the \"fight-or-flight\" response, the sympathetic nervous system is emerging as an amalgamation of distinct and functionally complementary neuronal units. In this issue of Neuron, Wei, Ma et al.<sup>1</sup> uncover new aspects of the organizational principles of the sympathetic celiac-superior mesenteric ganglion.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"381-383"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urgency with integrity: Why the profound autism community needs brain organoids now. 紧迫性与完整性:为什么深刻的自闭症社区现在需要脑类器官。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2026.01.016
Alison Singer

The profound autism community must support brain organoid research, and scientists must hurry up and build ethical guardrails so that this new technology can be put to work to improve lives.

深刻的自闭症群体必须支持类大脑器官的研究,科学家们必须抓紧时间,建立道德护栏,这样这项新技术才能用于改善生活。
{"title":"Urgency with integrity: Why the profound autism community needs brain organoids now.","authors":"Alison Singer","doi":"10.1016/j.neuron.2026.01.016","DOIUrl":"https://doi.org/10.1016/j.neuron.2026.01.016","url":null,"abstract":"<p><p>The profound autism community must support brain organoid research, and scientists must hurry up and build ethical guardrails so that this new technology can be put to work to improve lives.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"387-389"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neural circuit framework for economic choice: From building blocks of valuation to compositionality in multitasking. 经济选择的神经回路框架:从评估的构建块到多任务处理中的组合性。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2025.12.010
Aldo Battista, Camillo Padoa-Schioppa, Xiao-Jing Wang

Value-guided decisions are a cornerstone of cognition, yet the underlying circuit-level mechanisms remain elusive. We used reinforcement learning to train recurrent neural network models endowed with Dale's law on a battery of economic choice tasks, which revealed a two-stage computational framework. First, value estimation occurs at the input level, where learned weights store subjective preferences and approximate the non-linear multiplication of reward magnitude and probability to yield expected values. This feedforward mechanism enables generalization to novel choice options. Second, option values are compared within the recurrent network, where specific connectivity patterns mediate robust winner-take-all decisions, with both excitatory and inhibitory neurons exhibiting value and choice selectivity. By training a single network on multiple tasks, we show compositional representations combining a shared computational schema with specialized neural modules. Reproducing key neurophysiological findings from the primate orbitofrontal cortex, our model unifies value computation, comparison, and generalization into a coherent framework with testable predictions.

价值导向的决策是认知的基石,然而潜在的回路级机制仍然难以捉摸。在一系列经济选择任务中,我们使用强化学习来训练具有戴尔定律的递归神经网络模型,这揭示了一个两阶段的计算框架。首先,价值估计发生在输入层面,其中学习的权重存储主观偏好,并近似奖励大小和概率的非线性乘法以产生期望值。这种前馈机制使新的选择选项普遍化。其次,在循环网络中比较选项值,其中特定的连接模式介导了强大的赢家通吃决策,兴奋性和抑制性神经元都表现出价值和选择选择性。通过在多个任务上训练单个网络,我们展示了将共享计算模式与专用神经模块相结合的组合表示。我们的模型再现了灵长类动物眼窝额叶皮层的关键神经生理学发现,将值计算、比较和概括统一到一个具有可测试预测的连贯框架中。
{"title":"A neural circuit framework for economic choice: From building blocks of valuation to compositionality in multitasking.","authors":"Aldo Battista, Camillo Padoa-Schioppa, Xiao-Jing Wang","doi":"10.1016/j.neuron.2025.12.010","DOIUrl":"10.1016/j.neuron.2025.12.010","url":null,"abstract":"<p><p>Value-guided decisions are a cornerstone of cognition, yet the underlying circuit-level mechanisms remain elusive. We used reinforcement learning to train recurrent neural network models endowed with Dale's law on a battery of economic choice tasks, which revealed a two-stage computational framework. First, value estimation occurs at the input level, where learned weights store subjective preferences and approximate the non-linear multiplication of reward magnitude and probability to yield expected values. This feedforward mechanism enables generalization to novel choice options. Second, option values are compared within the recurrent network, where specific connectivity patterns mediate robust winner-take-all decisions, with both excitatory and inhibitory neurons exhibiting value and choice selectivity. By training a single network on multiple tasks, we show compositional representations combining a shared computational schema with specialized neural modules. Reproducing key neurophysiological findings from the primate orbitofrontal cortex, our model unifies value computation, comparison, and generalization into a coherent framework with testable predictions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synapse-specific and plasticity-regulated AMPA receptor mobility tunes synaptic integration. 突触特异性和可塑性调节的AMPA受体迁移调节突触整合。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2025.12.004
Agata Nowacka, Angela M Getz, Hanna L Zieger, Maxime Malivert, Diogo Bessa-Neto, Elisabete Augusto, Christelle Breillat, Sophie Daburon, Cécile Lemoigne, Sébastien Marais, Mathieu Ducros, Alexandre Favereaux, Andrew C Penn, Richard Naud, Matthieu Sainlos, Daniel Choquet

Synaptic responses adapt on millisecond-to-second timescales through short-term plasticity (STP), a key process that filters and transforms neuronal information. While STP is classically ascribed to presynaptic release mechanisms, postsynaptic receptor properties-particularly desensitization and surface diffusion-also shape synaptic responses. Here, we dissect pre- and postsynaptic contributions to synaptic adaptation using molecular tools to visualize glutamate release and manipulate AMPA receptor (AMPAR) diffusion in intact circuits. We find that synaptic gain during STP is tuned by synapse-specific regulation of AMPAR biophysics and diffusion-trapping. These features are determined constitutively by auxiliary subunit profiles and dynamically by activity-dependent signaling engaged during long-term plasticity. With modeling, we quantified how short-term synaptic dynamics are impacted by postsynaptic regulation of filtering properties, which broadened heterogeneity of filtering timescales to refine temporal selectivity in synaptic networks. By augmenting desensitization-mediated synaptic depression, AMPAR diffusion-trapping emerges as a fundamental regulatory mechanism of postsynaptic integration and circuit-level information processing.

突触反应通过短期可塑性(STP)在毫秒到秒的时间尺度上进行适应,这是过滤和转换神经元信息的关键过程。虽然STP通常被认为是突触前释放机制,但突触后受体的特性——特别是脱敏和表面扩散——也会影响突触反应。在这里,我们剖析突触前和突触后对突触适应的贡献,使用分子工具可视化谷氨酸释放和操纵AMPA受体(AMPAR)在完整电路中的扩散。我们发现STP期间的突触增益是通过AMPAR生物物理和扩散捕获的突触特异性调节来调节的。这些特征是由辅助亚基剖面组成的,并动态地由长期可塑性期间参与的活动依赖信号决定。通过建模,我们量化了短期突触动力学是如何受到突触后过滤特性调节的影响的,这扩大了过滤时间尺度的异质性,从而改善了突触网络的时间选择性。通过增强脱敏介导的突触抑制,AMPAR扩散捕获成为突触后整合和电路级信息处理的基本调节机制。
{"title":"Synapse-specific and plasticity-regulated AMPA receptor mobility tunes synaptic integration.","authors":"Agata Nowacka, Angela M Getz, Hanna L Zieger, Maxime Malivert, Diogo Bessa-Neto, Elisabete Augusto, Christelle Breillat, Sophie Daburon, Cécile Lemoigne, Sébastien Marais, Mathieu Ducros, Alexandre Favereaux, Andrew C Penn, Richard Naud, Matthieu Sainlos, Daniel Choquet","doi":"10.1016/j.neuron.2025.12.004","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.004","url":null,"abstract":"<p><p>Synaptic responses adapt on millisecond-to-second timescales through short-term plasticity (STP), a key process that filters and transforms neuronal information. While STP is classically ascribed to presynaptic release mechanisms, postsynaptic receptor properties-particularly desensitization and surface diffusion-also shape synaptic responses. Here, we dissect pre- and postsynaptic contributions to synaptic adaptation using molecular tools to visualize glutamate release and manipulate AMPA receptor (AMPAR) diffusion in intact circuits. We find that synaptic gain during STP is tuned by synapse-specific regulation of AMPAR biophysics and diffusion-trapping. These features are determined constitutively by auxiliary subunit profiles and dynamically by activity-dependent signaling engaged during long-term plasticity. With modeling, we quantified how short-term synaptic dynamics are impacted by postsynaptic regulation of filtering properties, which broadened heterogeneity of filtering timescales to refine temporal selectivity in synaptic networks. By augmenting desensitization-mediated synaptic depression, AMPAR diffusion-trapping emerges as a fundamental regulatory mechanism of postsynaptic integration and circuit-level information processing.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C9orf72 hexanucleotide repeat RNA drives transcriptional dysregulation through genome-wide DNA:RNA hybrid G-quadruplexes. C9orf72六核苷酸重复RNA通过全基因组DNA驱动转录失调:RNA杂交g -四联体。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2025.12.005
Honghe Liu, Mingming Liu, Yang Liu, Gege Gui, Tapas Paul, Yu-Ning Lu, Zhiyuan Huang, Haocheng Wang, Yatao Xiao, Zhongfan Zheng, Goran Periz, Yingxiao Shi, Justin K Ichida, Sua Myong, Hongkai Ji, Jiou Wang

A hexanucleotide repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. While repeat RNAs are implicated in disease pathogenesis, their mechanisms of action remain incompletely understood. Here, we show that GGGGCC repeat RNA engages chromatin genome-wide preferentially at promoter regions in patient cells. This interaction obstructs RNA polymerase II and transcription factors with GC-rich motifs, leading to broad transcriptional repression. Biochemical assays, single-molecule imaging, and native bisulfite sequencing analyses demonstrate that GGGGCC repeat RNA intrinsically forms DNA:RNA hybrid G-quadruplexes (HQs) with cognate DNA, providing a structural basis for transcriptional interference. Stabilization of these G-quadruplex structures exacerbates neuronal vulnerability to metabolic stress in patient-derived motor neurons and cortical organoids, whereas restoring key gene dysregulation improves resistance. These findings uncover a previously unrecognized trans-acting mechanism whereby repetitive RNAs form hybrid structures with genomic DNA, disrupt gene regulation, and contribute to neurodegeneration.

C9orf72的六核苷酸重复扩增是肌萎缩侧索硬化症和额颞叶痴呆最常见的遗传原因。虽然重复rna与疾病发病机制有关,但其作用机制仍不完全清楚。在这里,我们发现GGGGCC重复RNA在患者细胞的启动子区域优先参与全基因组染色质。这种相互作用阻碍了RNA聚合酶II和富含gc基序的转录因子,导致广泛的转录抑制。生化分析、单分子成像和原生亚硫酸盐测序分析表明,GGGGCC重复RNA本质上与同源DNA形成DNA:RNA杂交g -四重复合物(HQs),为转录干扰提供了结构基础。这些g -四重结构的稳定加剧了患者源性运动神经元和皮质类器官中神经元对代谢应激的易感性,而恢复关键基因失调可提高抵抗力。这些发现揭示了一种以前未被认识到的反式作用机制,即重复rna与基因组DNA形成杂交结构,破坏基因调控,并导致神经变性。
{"title":"C9orf72 hexanucleotide repeat RNA drives transcriptional dysregulation through genome-wide DNA:RNA hybrid G-quadruplexes.","authors":"Honghe Liu, Mingming Liu, Yang Liu, Gege Gui, Tapas Paul, Yu-Ning Lu, Zhiyuan Huang, Haocheng Wang, Yatao Xiao, Zhongfan Zheng, Goran Periz, Yingxiao Shi, Justin K Ichida, Sua Myong, Hongkai Ji, Jiou Wang","doi":"10.1016/j.neuron.2025.12.005","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.005","url":null,"abstract":"<p><p>A hexanucleotide repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. While repeat RNAs are implicated in disease pathogenesis, their mechanisms of action remain incompletely understood. Here, we show that GGGGCC repeat RNA engages chromatin genome-wide preferentially at promoter regions in patient cells. This interaction obstructs RNA polymerase II and transcription factors with GC-rich motifs, leading to broad transcriptional repression. Biochemical assays, single-molecule imaging, and native bisulfite sequencing analyses demonstrate that GGGGCC repeat RNA intrinsically forms DNA:RNA hybrid G-quadruplexes (HQs) with cognate DNA, providing a structural basis for transcriptional interference. Stabilization of these G-quadruplex structures exacerbates neuronal vulnerability to metabolic stress in patient-derived motor neurons and cortical organoids, whereas restoring key gene dysregulation improves resistance. These findings uncover a previously unrecognized trans-acting mechanism whereby repetitive RNAs form hybrid structures with genomic DNA, disrupt gene regulation, and contribute to neurodegeneration.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuron
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1