Pub Date : 2024-12-01Epub Date: 2024-06-05DOI: 10.1007/s12264-024-01234-x
Xinhu Jin, Lei Zhang, Guowei Wu, Xiuyi Wang, Yi Du
Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.
在嘈杂环境中,音乐训练可以抵消与年龄相关的语音感知能力下降。然而,目前还不清楚老年非音乐家和音乐家是依靠功能补偿还是功能保存来抵消衰老的不利影响。本研究利用静息态功能连接(FC)来研究老年音乐家(OM)、老年非音乐家(ONM)和年轻非音乐家(YNM)的功能侧化这一基本组织特征。结果显示,老年音乐家的表现优于老年非音乐家,在噪声语音和言语语音任务中的表现与青年非音乐家相当。在脑盖内FC侧化指数(LI)和语言网络(LAN)侧化指数(LI_he)方面,ONM的侧化程度低于YNM。相反,与ONM相比,OM在CON、LAN、前顶叶网络(FPN)、背侧注意网络(DAN)和默认模式网络(DMN)中表现出更高的神经一致性(即更相似的侧化模式),这表明由于音乐经验的积累,类似青年的侧化模式得以保留。此外,在ONM中,躯体运动网络(SMN)中的LI_intra和DMN中的DAN和LI_he的左外侧化更强且对青年的对齐度更低,这与更好的言语表现相关,表明存在功能补偿机制。相反,FPN 和 DAN 中更强的右侧化 LI_intra 和 LAN 中更高的 LI_he align-to-young 与更好的 OM 表现相关,表明这是一种功能保留机制。这些发现凸显了有音乐专长和无音乐专长的老年人在噪声中的语音感知中侧化功能保存和补偿的不同作用,从侧化功能和语音感知的角度为成功老化理论提供了启示。
{"title":"Compensation or Preservation? Different Roles of Functional Lateralization in Speech Perception of Older Non-musicians and Musicians.","authors":"Xinhu Jin, Lei Zhang, Guowei Wu, Xiuyi Wang, Yi Du","doi":"10.1007/s12264-024-01234-x","DOIUrl":"10.1007/s12264-024-01234-x","url":null,"abstract":"<p><p>Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1843-1857"},"PeriodicalIF":5.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.
{"title":"Microglial EPOR Contribute to Sevoflurane-induced Developmental Fine Motor Deficits Through Synaptic Pruning in Mice.","authors":"Danyi He, Xiaotong Shi, Lirong Liang, Youyi Zhao, Sanxing Ma, Shuhui Cao, Bing Liu, Zhenzhen Gao, Xiao Zhang, Ze Fan, Fang Kuang, Hui Zhang","doi":"10.1007/s12264-024-01248-5","DOIUrl":"10.1007/s12264-024-01248-5","url":null,"abstract":"<p><p>Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1858-1874"},"PeriodicalIF":5.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-09DOI: 10.1007/s12264-024-01252-9
Ying-Dan Zhang, Dong-Dong Shi, Zhen Wang
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
{"title":"Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models.","authors":"Ying-Dan Zhang, Dong-Dong Shi, Zhen Wang","doi":"10.1007/s12264-024-01252-9","DOIUrl":"10.1007/s12264-024-01252-9","url":null,"abstract":"<p><p>Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1975-1994"},"PeriodicalIF":5.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-21DOI: 10.1007/s12264-024-01286-z
Yue Hu, Yun Wang, Lingjing Zhang, Mengqiang Luo, Yingwei Wang
General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.
{"title":"Neural Network Mechanisms Underlying General Anesthesia: Cortical and Subcortical Nuclei.","authors":"Yue Hu, Yun Wang, Lingjing Zhang, Mengqiang Luo, Yingwei Wang","doi":"10.1007/s12264-024-01286-z","DOIUrl":"10.1007/s12264-024-01286-z","url":null,"abstract":"<p><p>General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1995-2011"},"PeriodicalIF":5.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Closed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data. We verified the performance of EPN on pre-recorded data, simulated EEG data, and a real-time experiment. Compared with widely used state-of-the-art models (optimized multi-layer filter architecture, auto-regress, and educated temporal prediction), EPN achieved the lowest variance and the greatest accuracy. Thus, the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.
{"title":"A Novel Real-time Phase Prediction Network in EEG Rhythm.","authors":"Hao Liu, Zihui Qi, Yihang Wang, Zhengyi Yang, Lingzhong Fan, Nianming Zuo, Tianzi Jiang","doi":"10.1007/s12264-024-01321-z","DOIUrl":"https://doi.org/10.1007/s12264-024-01321-z","url":null,"abstract":"<p><p>Closed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data. We verified the performance of EPN on pre-recorded data, simulated EEG data, and a real-time experiment. Compared with widely used state-of-the-art models (optimized multi-layer filter architecture, auto-regress, and educated temporal prediction), EPN achieved the lowest variance and the greatest accuracy. Thus, the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1007/s12264-024-01323-x
Zhuoran Ma, Yan Xu, Piaopiao Lian, Yi Wu, Ke Liu, Zhaoyuan Zhang, Zhicheng Tang, Xiaoman Yang, Xuebing Cao
Depression (Dep) is one of the most common concomitant symptoms of Parkinson's disease (PD), but there is a lack of detailed pathologic evidence for the occurrence of PD-Dep. Currently, the management of symptoms from both conditions using conventional pharmacological interventions remains a formidable task. In this study, we found impaired activation of extracellular signal-related kinase (ERK), reduced levels of transcription and translation, and decreased expression of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) of PD-Dep rats. We demonstrated that the abnormal phosphorylation of α-synuclein (pS129) induced tropomyosin-related kinase receptor type B (TrkB) retention at the neuronal cell membrane, leading to BDNF/TrkB signaling dysfunction. We chose SEW2871 as an ameliorator to upregulate ERK phosphorylation. The results showed that PD-Dep rats exhibited improvement in behavioral manifestations of PD and depression. In addition, a reduction in pS129 was accompanied by a restoration of the function of the BDNF/ERK signaling loop in the mPFC of PD-Dep rats.
{"title":"Alpha-synuclein Fibrils Inhibit Activation of the BDNF/ERK Signaling Loop in the mPFC to Induce Parkinson's Disease-like Alterations with Depression.","authors":"Zhuoran Ma, Yan Xu, Piaopiao Lian, Yi Wu, Ke Liu, Zhaoyuan Zhang, Zhicheng Tang, Xiaoman Yang, Xuebing Cao","doi":"10.1007/s12264-024-01323-x","DOIUrl":"https://doi.org/10.1007/s12264-024-01323-x","url":null,"abstract":"<p><p>Depression (Dep) is one of the most common concomitant symptoms of Parkinson's disease (PD), but there is a lack of detailed pathologic evidence for the occurrence of PD-Dep. Currently, the management of symptoms from both conditions using conventional pharmacological interventions remains a formidable task. In this study, we found impaired activation of extracellular signal-related kinase (ERK), reduced levels of transcription and translation, and decreased expression of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) of PD-Dep rats. We demonstrated that the abnormal phosphorylation of α-synuclein (pS129) induced tropomyosin-related kinase receptor type B (TrkB) retention at the neuronal cell membrane, leading to BDNF/TrkB signaling dysfunction. We chose SEW2871 as an ameliorator to upregulate ERK phosphorylation. The results showed that PD-Dep rats exhibited improvement in behavioral manifestations of PD and depression. In addition, a reduction in pS129 was accompanied by a restoration of the function of the BDNF/ERK signaling loop in the mPFC of PD-Dep rats.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1007/s12264-024-01327-7
Bing-Ying Wang, Bo Wang, Bo Cao, Ling-Ling Gu, Jiayu Chen, Hua He, Zheng Zhao, Fujun Chen, Zhiru Wang
Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal CA1 hippocampus (dCA1). Local field-potential recording combined with selective optogenetic inhibition first revealed an increase of dCA1 synaptic responses to the conditioned stimulus (CS) induced during conditioning at both Schaffer collaterals to the stratum radiatum (Rad) and temporoammonic input to the lacunosum moleculare (LMol). At these dCA1 inputs, synaptic potentiation of CS-responding excitatory synapses was further demonstrated by locally blocking NMDA receptors during conditioning and whole-cell recording sensory-evoked synaptic responses in dCA1 neurons from naive animals. An overall similar time course of the induction of synaptic potentiation was found in the Rad and LMol by multiple-site recording; this emerged later and saturated earlier than conditioned behavioral responses. Our experiments demonstrate a cued memory-associated dCA1 synaptic plasticity induced at both Schaffer collaterals and temporoammonic pathways.
{"title":"Associative Learning-Induced Synaptic Potentiation at the Two Major Hippocampal CA1 Inputs for Cued Memory Acquisition.","authors":"Bing-Ying Wang, Bo Wang, Bo Cao, Ling-Ling Gu, Jiayu Chen, Hua He, Zheng Zhao, Fujun Chen, Zhiru Wang","doi":"10.1007/s12264-024-01327-7","DOIUrl":"https://doi.org/10.1007/s12264-024-01327-7","url":null,"abstract":"<p><p>Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal CA1 hippocampus (dCA1). Local field-potential recording combined with selective optogenetic inhibition first revealed an increase of dCA1 synaptic responses to the conditioned stimulus (CS) induced during conditioning at both Schaffer collaterals to the stratum radiatum (Rad) and temporoammonic input to the lacunosum moleculare (LMol). At these dCA1 inputs, synaptic potentiation of CS-responding excitatory synapses was further demonstrated by locally blocking NMDA receptors during conditioning and whole-cell recording sensory-evoked synaptic responses in dCA1 neurons from naive animals. An overall similar time course of the induction of synaptic potentiation was found in the Rad and LMol by multiple-site recording; this emerged later and saturated earlier than conditioned behavioral responses. Our experiments demonstrate a cued memory-associated dCA1 synaptic plasticity induced at both Schaffer collaterals and temporoammonic pathways.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1007/s12264-024-01325-9
Mengbing Huang, Jian Bao, Xiaoqing Tao, Yifan Niu, Kaiwei Li, Ji Wang, Xiaokang Gong, Rong Yang, Yuran Gui, Hongyan Zhou, Yiyuan Xia, Youhua Yang, Binlian Sun, Wei Liu, Xiji Shu
Growth arrest DNA damage-inducible protein 45 β (GADD45B) has been reported to be a regulatory factor for active DNA demethylation and is implicated in the modulation of synaptic plasticity and chronic stress-related psychopathological processes. However, its precise role and mechanism of action in stress susceptibility remain elusive. In this study, we found a significant reduction in GADD45B expression specifically in the ventral, but not the dorsal hippocampal CA1 (dCA1) of stress-susceptible mice. Furthermore, we demonstrated that GADD45B negatively regulates susceptibility to social stress and NMDA receptor-dependent long-term potentiation (LTP) in the ventral hippocampal CA1 (vCA1). Importantly, through pharmacological inhibition using the NMDA receptor antagonist MK801, we provided further evidence supporting the hypothesis that GADD45B potentially modulates susceptibility to social stress by influencing NMDA receptor-mediated LTP. Collectively, these results suggested that modulation of NMDA receptor-mediated synaptic plasticity is a pivotal mechanism underlying the regulation of susceptibility to social stress by GADD45B.
{"title":"Ventral Hippocampal CA1 GADD45B Regulates Susceptibility to Social Stress by Influencing NMDA Receptor-Mediated Synaptic Plasticity.","authors":"Mengbing Huang, Jian Bao, Xiaoqing Tao, Yifan Niu, Kaiwei Li, Ji Wang, Xiaokang Gong, Rong Yang, Yuran Gui, Hongyan Zhou, Yiyuan Xia, Youhua Yang, Binlian Sun, Wei Liu, Xiji Shu","doi":"10.1007/s12264-024-01325-9","DOIUrl":"https://doi.org/10.1007/s12264-024-01325-9","url":null,"abstract":"<p><p>Growth arrest DNA damage-inducible protein 45 β (GADD45B) has been reported to be a regulatory factor for active DNA demethylation and is implicated in the modulation of synaptic plasticity and chronic stress-related psychopathological processes. However, its precise role and mechanism of action in stress susceptibility remain elusive. In this study, we found a significant reduction in GADD45B expression specifically in the ventral, but not the dorsal hippocampal CA1 (dCA1) of stress-susceptible mice. Furthermore, we demonstrated that GADD45B negatively regulates susceptibility to social stress and NMDA receptor-dependent long-term potentiation (LTP) in the ventral hippocampal CA1 (vCA1). Importantly, through pharmacological inhibition using the NMDA receptor antagonist MK801, we provided further evidence supporting the hypothesis that GADD45B potentially modulates susceptibility to social stress by influencing NMDA receptor-mediated LTP. Collectively, these results suggested that modulation of NMDA receptor-mediated synaptic plasticity is a pivotal mechanism underlying the regulation of susceptibility to social stress by GADD45B.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142731149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeMGABA), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice. In addition, activation of CeMGABA axonal terminals projecting to the nucleus tractus solitarius (NTS) significantly reduces blood pressure. These CeMGABA neurons form synaptic connections with NTS neurons, allowing for the modulation of cardiovascular responses by influencing the caudal or rostral ventrolateral medulla. Furthermore, CeMGABA neurons targeting the NTS receive dense inputs from the CeL. Consequently, stimulation of CeMGABA neurons elicits hypotension through the CeM-NTS circuit, offering deeper insights into the cardiovascular responses associated with emotions and behaviors.
{"title":"Activation of Centromedial Amygdala GABAergic Neurons Produces Hypotension in Mice.","authors":"Xiaoyi Wang, Ziteng Yue, Luo Shi, Wei He, Liuqi Shao, Yuhang Liu, Jinye Zhang, Shangyu Bi, Tianjiao Deng, Fang Yuan, Sheng Wang","doi":"10.1007/s12264-024-01317-9","DOIUrl":"https://doi.org/10.1007/s12264-024-01317-9","url":null,"abstract":"<p><p>The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeM<sup>GABA</sup>), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice. In addition, activation of CeM<sup>GABA</sup> axonal terminals projecting to the nucleus tractus solitarius (NTS) significantly reduces blood pressure. These CeM<sup>GABA</sup> neurons form synaptic connections with NTS neurons, allowing for the modulation of cardiovascular responses by influencing the caudal or rostral ventrolateral medulla. Furthermore, CeM<sup>GABA</sup> neurons targeting the NTS receive dense inputs from the CeL. Consequently, stimulation of CeM<sup>GABA</sup> neurons elicits hypotension through the CeM-NTS circuit, offering deeper insights into the cardiovascular responses associated with emotions and behaviors.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1007/s12264-024-01319-7
Zijing Guan, Xiaofei Zhang, Weichen Huang, Kendi Li, Di Chen, Weiming Li, Jiaqi Sun, Lei Chen, Yimiao Mao, Huijun Sun, Xiongzi Tang, Liping Cao, Yuanqing Li
Depression is increasingly prevalent among adolescents and can profoundly impact their lives. However, the early detection of depression is often hindered by the time-consuming diagnostic process and the absence of objective biomarkers. In this study, we propose a novel approach for depression detection based on an affective brain-computer interface (aBCI) and the resting-state electroencephalogram (EEG). By fusing EEG features associated with both emotional and resting states, our method captures comprehensive depression-related information. The final depression detection model, derived through decision fusion with multiple independent models, further enhances detection efficacy. Our experiments involved 40 adolescents with depression and 40 matched controls. The proposed model achieved an accuracy of 86.54% on cross-validation and 88.20% on the independent test set, demonstrating the efficiency of multimodal fusion. In addition, further analysis revealed distinct brain activity patterns between the two groups across different modalities. These findings hold promise for new directions in depression detection and intervention.
{"title":"A Method for Detecting Depression in Adolescence Based on an Affective Brain-Computer Interface and Resting-State Electroencephalogram Signals.","authors":"Zijing Guan, Xiaofei Zhang, Weichen Huang, Kendi Li, Di Chen, Weiming Li, Jiaqi Sun, Lei Chen, Yimiao Mao, Huijun Sun, Xiongzi Tang, Liping Cao, Yuanqing Li","doi":"10.1007/s12264-024-01319-7","DOIUrl":"https://doi.org/10.1007/s12264-024-01319-7","url":null,"abstract":"<p><p>Depression is increasingly prevalent among adolescents and can profoundly impact their lives. However, the early detection of depression is often hindered by the time-consuming diagnostic process and the absence of objective biomarkers. In this study, we propose a novel approach for depression detection based on an affective brain-computer interface (aBCI) and the resting-state electroencephalogram (EEG). By fusing EEG features associated with both emotional and resting states, our method captures comprehensive depression-related information. The final depression detection model, derived through decision fusion with multiple independent models, further enhances detection efficacy. Our experiments involved 40 adolescents with depression and 40 matched controls. The proposed model achieved an accuracy of 86.54% on cross-validation and 88.20% on the independent test set, demonstrating the efficiency of multimodal fusion. In addition, further analysis revealed distinct brain activity patterns between the two groups across different modalities. These findings hold promise for new directions in depression detection and intervention.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}