首页 > 最新文献

Nitric oxide : biology and chemistry最新文献

英文 中文
Nitric oxide and mitochondrial function in cardiovascular diseases 心血管疾病中的一氧化氮和线粒体功能
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 DOI: 10.1016/j.niox.2024.11.007
Haoqi Li , Zijie Cheng , Dan Wu , Qingxun Hu
Nitric oxide (NO) has been highlighted as an important factor in cardiovascular system. As a signaling molecule in the cardiovascular system, NO can relax blood vessels, lower blood pressure, and prevent platelet aggregation. Mitochondria serve as a central hub for cellular metabolism and intracellular signaling, and their dysfunction can lead to a variety of diseases. Accumulating evidence suggests that NO can act as a regulator of mitochondria, affecting mitochondrial function and cellular activity, which in turn mediates the onset and progression of disease. However, there is a lack of comprehensive understanding of how NO regulates mitochondrial function in the cardiovascular system. This review aims to summarize the regulation of mitochondrial function by nitric oxide in cardiovascular related diseases, as well as the multifaceted and complex roles of NO in the cardiovascular system. Understanding the mechanism of NO mediated mitochondrial function can provide new insights for the prevention and treatment of cardiovascular diseases.
一氧化氮(NO)被认为是心血管系统的一个重要因素。作为心血管系统的信号分子,一氧化氮可以放松血管、降低血压和防止血小板聚集。线粒体是细胞新陈代谢和细胞内信号传导的中枢,其功能障碍可导致多种疾病。越来越多的证据表明,氮氧化物可作为线粒体的调节剂,影响线粒体功能和细胞活性,进而介导疾病的发生和发展。然而,人们对 NO 如何调节心血管系统线粒体功能还缺乏全面的了解。本综述旨在总结一氧化氮在心血管相关疾病中对线粒体功能的调控,以及一氧化氮在心血管系统中多方面的复杂作用。了解一氧化氮介导线粒体功能的机制可为预防和治疗心血管疾病提供新的见解。
{"title":"Nitric oxide and mitochondrial function in cardiovascular diseases","authors":"Haoqi Li ,&nbsp;Zijie Cheng ,&nbsp;Dan Wu ,&nbsp;Qingxun Hu","doi":"10.1016/j.niox.2024.11.007","DOIUrl":"10.1016/j.niox.2024.11.007","url":null,"abstract":"<div><div>Nitric oxide (NO) has been highlighted as an important factor in cardiovascular system. As a signaling molecule in the cardiovascular system, NO can relax blood vessels, lower blood pressure, and prevent platelet aggregation. Mitochondria serve as a central hub for cellular metabolism and intracellular signaling, and their dysfunction can lead to a variety of diseases. Accumulating evidence suggests that NO can act as a regulator of mitochondria, affecting mitochondrial function and cellular activity, which in turn mediates the onset and progression of disease. However, there is a lack of comprehensive understanding of how NO regulates mitochondrial function in the cardiovascular system. This review aims to summarize the regulation of mitochondrial function by nitric oxide in cardiovascular related diseases, as well as the multifaceted and complex roles of NO in the cardiovascular system. Understanding the mechanism of NO mediated mitochondrial function can provide new insights for the prevention and treatment of cardiovascular diseases.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"154 ","pages":"Pages 42-50"},"PeriodicalIF":3.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of ERO1α and reduces neuronal death in secondary traumatic brain injury 增强 S-亚硝基谷胱甘肽还原酶可降低ERO1α的 S-亚硝基化并减少继发性创伤性脑损伤的神经元死亡
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-19 DOI: 10.1016/j.niox.2024.11.005
Guangjie Liu , Dengfeng Lu , Jie Wu , Shixin Wang , Aojie Duan , Yubo Ren , Yu Zhang , Lei Meng , Renjie Shou , Haiying Li , Zhong Wang , Zongqi Wang , Xiaoou Sun
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, along with high mortality and disability rates. Pathological conversion of excess nitric oxide (NO) to S-nitrosoglutathion (GSNO) after TBI leads to high S-nitrosylation of intracellular proteins, causing nitrative stress. GSNO reductase (GSNOR) plays an important role by regulating GSNO and SNO-proteins (PSNOs) and as a redox regulator of the nervous system. However, the effect of GSNOR on protein S-nitrosylation in secondary brain injury after TBI is not clear. In vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Neuron-targeted GSNOR-overexpression adeno-associated virus (AAV) was constructed and administered to mice by stereotactic cortical injection. The results showed that NO, GSNO, neuronal protein S-nitrosylation and neuronal death increased after TBI, while the level and activity of GSNOR decreased. Overexpression of GSNOR by AAV decreased GSNO and NO and improved short-term neurobehavioral outcomes in mice. GSNOR overexpression can reduce endoplasmic reticulum stress and neuronal death by reducing the S-nitrosylation of ERO1α via H2O2 generation and plays a neuroprotective role. In conclusion, our results suggest that GSNOR regulating S-nitrosylation of ERO1α may participate in neuronal death, and overexpression of GSNOR in neurons after experimental brain injury alleviates secondary brain injury. Our research provides a potential therapeutic approach for the treatment of TBI.
在所有常见的神经系统疾病中,创伤性脑损伤(TBI)的发病率最高,死亡率和致残率也很高。创伤性脑损伤后,过量的一氧化氮(NO)病理性转化为 S-亚硝基谷胱甘肽(GSNO),导致细胞内蛋白质高度 S-亚硝基化,从而引起硝化应激。GSNO 还原酶(GSNOR)通过调节 GSNO 和 SNO 蛋白(PSNO)以及作为神经系统的氧化还原调节器发挥着重要作用。然而,GSNOR 对创伤后继发性脑损伤中蛋白质 S-亚硝基化的影响尚不清楚。通过可控皮质冲击(CCI)在雄性 C57BL/6 小鼠中建立了体内 TBI 模型。构建了神经元靶向 GSNOR 表达的腺相关病毒(AAV),并通过立体定向皮层注射给小鼠。结果表明,创伤性脑损伤后,NO、GSNO、神经元蛋白S-亚硝基化和神经元死亡增加,而GSNOR的水平和活性降低。通过AAV过表达GSNOR可降低GSNO和NO,并改善小鼠的短期神经行为结果。过表达GSNOR可通过产生H2O2减少ERO1α的S-亚硝基化,从而降低内质网应激和神经元死亡,起到神经保护作用。总之,我们的研究结果表明,GSNOR调节ERO1α的S-亚硝基化可能参与了神经元死亡,而在实验性脑损伤后的神经元中过表达GSNOR可减轻继发性脑损伤。我们的研究为治疗创伤性脑损伤提供了一种潜在的治疗方法。
{"title":"Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of ERO1α and reduces neuronal death in secondary traumatic brain injury","authors":"Guangjie Liu ,&nbsp;Dengfeng Lu ,&nbsp;Jie Wu ,&nbsp;Shixin Wang ,&nbsp;Aojie Duan ,&nbsp;Yubo Ren ,&nbsp;Yu Zhang ,&nbsp;Lei Meng ,&nbsp;Renjie Shou ,&nbsp;Haiying Li ,&nbsp;Zhong Wang ,&nbsp;Zongqi Wang ,&nbsp;Xiaoou Sun","doi":"10.1016/j.niox.2024.11.005","DOIUrl":"10.1016/j.niox.2024.11.005","url":null,"abstract":"<div><div>Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, along with high mortality and disability rates. Pathological conversion of excess nitric oxide (NO) to S-nitrosoglutathion (GSNO) after TBI leads to high S-nitrosylation of intracellular proteins, causing nitrative stress. GSNO reductase (GSNOR) plays an important role by regulating GSNO and SNO-proteins (PSNOs) and as a redox regulator of the nervous system. However, the effect of GSNOR on protein S-nitrosylation in secondary brain injury after TBI is not clear. <em>In vivo</em> TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Neuron-targeted GSNOR-overexpression adeno-associated virus (AAV) was constructed and administered to mice by stereotactic cortical injection. The results showed that NO, GSNO, neuronal protein S-nitrosylation and neuronal death increased after TBI, while the level and activity of GSNOR decreased. Overexpression of GSNOR by AAV decreased GSNO and NO and improved short-term neurobehavioral outcomes in mice. GSNOR overexpression can reduce endoplasmic reticulum stress and neuronal death by reducing the S-nitrosylation of ERO1α via H<sub>2</sub>O<sub>2</sub> generation and plays a neuroprotective role. In conclusion, our results suggest that GSNOR regulating S-nitrosylation of ERO1α may participate in neuronal death, and overexpression of GSNOR in neurons after experimental brain injury alleviates secondary brain injury. Our research provides a potential therapeutic approach for the treatment of TBI.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"154 ","pages":"Pages 29-41"},"PeriodicalIF":3.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the susceptibility of clinical infection loads to nitric oxide antibacterial treatment 临床感染负荷对一氧化氮抗菌治疗敏感性的调查。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-17 DOI: 10.1016/j.niox.2024.11.003
Lori M. Estes Bright , Arnab Mondal , Vicente Pinon , Anil Kumar , Stephen Thompson , Elizabeth J. Brisbois , Hitesh Handa
The persistent infection of medical devices by opportunistic pathogens has led to the development of antimicrobial medical device polymers. Nitric oxide (NO) is an endogenous antimicrobial molecule that is released through the degradation of synthetic donor molecules such as S-nitroso-N-acetylpenicillamine (SNAP) embedded into polymer membranes. It is hypothesized that the clinical success of these polymers is enhanced by the physiological release of NO and the consequent prevention of infection. However, such NO-releasing materials have never been evaluated against microbial loads that are commensurate with clinical infection levels. This study aimed to develop a standardized polymer film impregnated with SNAP that consistently releases NO and evaluates its efficacy against bacterial loads that represent clinical infection parameters. Microbial loads of 103, 105, and 108 (colony-forming units) CFU mL−1 were exposed to the NO-releasing polymer, corresponding to bloodstream infections, catheter-associated urinary tract infections, and standard laboratory exposure levels that have been reported in the scientific literature. By 24 h, SNAP films led to >1 log reduction of adhered and viable E. coli at all tested microbial loads compared to control polydimethylsiloxane (PDMS). Further, SNAP films displayed no viable adhered S. aureus at the 103 microbial level for the entire study and showed total planktonic killing by 8 h. NO localization within bacterial cells adhering to the films was evaluated, revealing higher NO uptake and consequent bacterial killing by SNAP samples. This unique study shows that NO-releasing polymers not only kill bacteria adhered to the polymer surface, but localized delivery leads to environmental planktonic bacterial killing that prevents adhesion from occurring. Furthermore, the promising findings of NO-releasing polymers in scientific research indicate their potential for successful application in clinical settings to prevent infections.
机会性病原体对医疗器械的持续感染促使人们开发抗菌医疗器械聚合物。一氧化氮(NO)是一种内源性抗菌气体,可通过嵌入聚合物膜的合成供体分子(如 S-亚硝基-N-乙酰青霉胺(SNAP))的降解释放出来。据推测,NO 的生理性释放可提高这些聚合物的临床疗效,从而预防感染。然而,此类释放 NO 的材料从未针对与临床感染水平相当的微生物负荷进行过评估。本研究旨在开发一种能持续释放 NO 的浸渍 SNAP 标准聚合物薄膜,并评估其对代表临床感染参数的细菌载量的功效。将 103、105 和 108(菌落形成单位)CFU mL-1 的微生物量暴露在释放 NO 的聚合物上,这与科学文献中报道的血流感染、导管相关性尿路感染和标准实验室暴露水平相对应。与对照组聚二甲基硅氧烷(PDMS)相比,在 24 小时内,SNAP 薄膜可使所有测试微生物负荷下的附着和存活大肠杆菌减少 > 1 log。此外,在整个研究过程中,SNAP 薄膜在 103 个微生物水平上没有显示出存活的粘附金黄色葡萄球菌,并在 8 小时内显示出完全的浮游杀菌效果。对粘附在薄膜上的细菌细胞内的 NO 定位情况进行了评估,结果表明 SNAP 样品对 NO 的吸收率更高,从而杀死了更多细菌。这项独特的研究表明,释放 NO 的聚合物不仅能杀死粘附在聚合物表面的细菌,而且局部递送还能杀死环境中的浮游细菌,防止发生粘附。此外,氮氧化物释放聚合物在科学研究中取得的令人鼓舞的成果表明,它们有望成功应用于临床环境,预防感染。
{"title":"Investigation of the susceptibility of clinical infection loads to nitric oxide antibacterial treatment","authors":"Lori M. Estes Bright ,&nbsp;Arnab Mondal ,&nbsp;Vicente Pinon ,&nbsp;Anil Kumar ,&nbsp;Stephen Thompson ,&nbsp;Elizabeth J. Brisbois ,&nbsp;Hitesh Handa","doi":"10.1016/j.niox.2024.11.003","DOIUrl":"10.1016/j.niox.2024.11.003","url":null,"abstract":"<div><div>The persistent infection of medical devices by opportunistic pathogens has led to the development of antimicrobial medical device polymers. Nitric oxide (NO) is an endogenous antimicrobial molecule that is released through the degradation of synthetic donor molecules such as <em>S</em>-nitroso-<em>N</em>-acetylpenicillamine (SNAP) embedded into polymer membranes. It is hypothesized that the clinical success of these polymers is enhanced by the physiological release of NO and the consequent prevention of infection. However, such NO-releasing materials have never been evaluated against microbial loads that are commensurate with clinical infection levels. This study aimed to develop a standardized polymer film impregnated with SNAP that consistently releases NO and evaluates its efficacy against bacterial loads that represent clinical infection parameters. Microbial loads of 10<sup>3</sup>, 10<sup>5</sup>, and 10<sup>8</sup> (colony-forming units) CFU mL<sup>−1</sup> were exposed to the NO-releasing polymer, corresponding to bloodstream infections, catheter-associated urinary tract infections, and standard laboratory exposure levels that have been reported in the scientific literature. By 24 h, SNAP films led to &gt;1 log reduction of adhered and viable <em>E. coli</em> at all tested microbial loads compared to control polydimethylsiloxane (PDMS). Further, SNAP films displayed no viable adhered <em>S. aureus</em> at the 10<sup>3</sup> microbial level for the entire study and showed total planktonic killing by 8 h. NO localization within bacterial cells adhering to the films was evaluated, revealing higher NO uptake and consequent bacterial killing by SNAP samples. This unique study shows that NO-releasing polymers not only kill bacteria adhered to the polymer surface, but localized delivery leads to environmental planktonic bacterial killing that prevents adhesion from occurring. Furthermore, the promising findings of NO-releasing polymers in scientific research indicate their potential for successful application in clinical settings to prevent infections.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"154 ","pages":"Pages 19-28"},"PeriodicalIF":3.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous sodium nitroprusside exhibits multiple positive roles in alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.) 外源性硝普钠在缓解烟草(Nicotiana tabacum L.)镉毒性中发挥多重积极作用
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-14 DOI: 10.1016/j.niox.2024.11.002
Kejin Song , Hongwei Li , Kunjian Yang , Tengfei Ma , Yingying Hu , Ji Chen , Shunqin Zhu , Wanhong Liu
As a donor of the gaseous signaling molecule nitric oxide (NO), sodium nitroprusside (SNP) has been shown to play a positive role in enhancing plant resistance to abiotic stress. However, its role in alleviating cadmium (Cd) toxicity in tobacco (Nicotiana tabacum L.) is not fully understood. This study found that Cd stress significantly inhibited tobacco growth. At the same time, 150 μM SNP was the most effective concentration in alleviating Cd toxicity in seedlings, restoring three stress tolerance indicators—MDA, H2O2, and proline—to control levels. Exogenous SNP mitigated Cd-induced oxidative stress by promoting the accumulation of non-enzymatic antioxidants (total phenolics and flavonoids) and activating key antioxidant enzymes (SOD, CAT, POD, APX, and GR) along with their gene expression. SNP also facilitated Cd accumulation in the root cell wall and prevented Cd translocation from roots to shoots. Additionally, SNP altered Cd's subcellular distribution, promoting its sequestration in vacuoles and cell walls, which may be related to the NO-mediated upregulation of the metallothionein gene NtMT2F and the phytochelatin gene NtPCS2. The addition of SNP significantly increased the proportion of Cd in less toxic chemical forms, with the residual Cd fraction in the Cd + SNP group reaching 7.30 %, higher than the 4.86 % in the Cd-only group. Furthermore, exogenous SNP counteracted Cd's inhibition of nitrate reductase (NR) activity, promoting endogenous NO production. This study systematically reveals the positive roles of exogenous SNP in mitigating Cd toxicity in tobacco, offering valuable insights for producing low-Cd tobacco.
作为气态信号分子一氧化氮(NO)的供体,硝普钠(SNP)已被证明在增强植物对非生物胁迫的抵抗力方面发挥了积极作用。然而,它在减轻烟草(Nicotiana tabacum L.)镉(Cd)毒性方面的作用还不完全清楚。本研究发现,镉胁迫会明显抑制烟草的生长。同时,150 μM SNP 是缓解烟苗镉毒性的最有效浓度,它能将三项胁迫耐受性指标--MDA、H2O2 和脯氨酸恢复到控制水平。外源 SNP 可促进非酶抗氧化剂(总酚类和类黄酮)的积累,激活关键抗氧化酶(SOD、CAT、POD、APX 和 GR)及其基因表达,从而减轻镉诱导的氧化应激。SNP 还能促进镉在根细胞壁中的积累,阻止镉从根向芽的转移。此外,SNP 还改变了镉的亚细胞分布,促进了镉在液泡和细胞壁中的螯合,这可能与 NO 介导的金属硫蛋白基因 NtMT2F 和植物螯合素基因 NtPCS2 的上调有关。加入 SNP 后,镉以毒性较低的化学形式存在的比例明显增加,Cd + SNP 组的残余镉比例达到 7.30%,高于纯 Cd 组的 4.86%。此外,外源性 SNP 抵消了镉对硝酸还原酶(NR)活性的抑制,促进了内源性 NO 的产生。这项研究系统地揭示了外源 SNP 在减轻烟草镉毒性方面的积极作用,为生产低镉烟草提供了宝贵的启示。
{"title":"Exogenous sodium nitroprusside exhibits multiple positive roles in alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.)","authors":"Kejin Song ,&nbsp;Hongwei Li ,&nbsp;Kunjian Yang ,&nbsp;Tengfei Ma ,&nbsp;Yingying Hu ,&nbsp;Ji Chen ,&nbsp;Shunqin Zhu ,&nbsp;Wanhong Liu","doi":"10.1016/j.niox.2024.11.002","DOIUrl":"10.1016/j.niox.2024.11.002","url":null,"abstract":"<div><div>As a donor of the gaseous signaling molecule nitric oxide (NO), sodium nitroprusside (SNP) has been shown to play a positive role in enhancing plant resistance to abiotic stress. However, its role in alleviating cadmium (Cd) toxicity in tobacco (<em>Nicotiana tabacum</em> L.) is not fully understood. This study found that Cd stress significantly inhibited tobacco growth. At the same time, 150 μM SNP was the most effective concentration in alleviating Cd toxicity in seedlings, restoring three stress tolerance indicators—MDA, H<sub>2</sub>O<sub>2</sub>, and proline—to control levels. Exogenous SNP mitigated Cd-induced oxidative stress by promoting the accumulation of non-enzymatic antioxidants (total phenolics and flavonoids) and activating key antioxidant enzymes (SOD, CAT, POD, APX, and GR) along with their gene expression. SNP also facilitated Cd accumulation in the root cell wall and prevented Cd translocation from roots to shoots. Additionally, SNP altered Cd's subcellular distribution, promoting its sequestration in vacuoles and cell walls, which may be related to the NO-mediated upregulation of the metallothionein gene <em>NtMT2F</em> and the phytochelatin gene <em>NtPCS2</em>. The addition of SNP significantly increased the proportion of Cd in less toxic chemical forms, with the residual Cd fraction in the Cd + SNP group reaching 7.30 %, higher than the 4.86 % in the Cd-only group. Furthermore, exogenous SNP counteracted Cd's inhibition of nitrate reductase (NR) activity, promoting endogenous NO production. This study systematically reveals the positive roles of exogenous SNP in mitigating Cd toxicity in tobacco, offering valuable insights for producing low-Cd tobacco.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"154 ","pages":"Pages 8-18"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Downregulation of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus in Ins2Akita-type-1 diabetic mice contributes to sympatho-excitation Ins2Akita-1型糖尿病小鼠室旁核内神经元一氧化氮合酶(nNOS)的下调有助于交感神经兴奋。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-07 DOI: 10.1016/j.niox.2024.11.001
Tapan A. Patel , Lie Gao , Shane H. Boomer , Xuefei Liu , Kaushik P. Patel , Hong Zheng
Activation of both renin-angiotensin system (RAS) and the sympathetic system is the primary etiologic event in developing cardiovascular complications in diabetes mellitus (DM). However, the precise mechanisms for sympathetic activation in DM have not been elucidated. Here we attempted to investigate diabetes-linked cardiovascular dysregulation due to angiotensin II (Ang II)-mediated reduction in neuronal nitric oxide (NO) synthase (nNOS) within the paraventricular neuleus (PVN). In the present study, we used Ins2+/−Akita (a spontaneous, insulin-dependent genetic diabetic non-obese murine model) and wild-type (WT) littermates mice as controls. At 14 weeks of age, we found the Akita mice had increased renal sympathetic nerve activity and elevated levels of plasma norepinephrine. There was decreased expression of nNOS protein (Akita 0.43 ± 0.11 vs. WT 0.75 ± 0.05, P < 0.05) in the PVN of Akita mice. Akita mice had increased expression of angiotensin-converting enzyme (ACE) (Akita 0.58 ± 0.05 vs. WT 0.34 ± 0.04, P < 0.05) and Ang II type 1 receptor (Akita 0.49 ± 0.03 vs. WT 0.29 ± 0.09, P < 0.05), decreased expressions of ACE2 (Akita 0.17 ± 0.05 vs. WT 0.27 ± 0.03, P < 0.05) and angiotensin (1–7) Mas receptor (Akita 0.46 ± 0.02 vs. WT 0.77 ± 0.07, P < 0.05). Futher, there were increased protein levels of protein inhibitor of nNOS (PIN) (Akita 1.75 ± 0.08 vs. WT 0.71 ± 0.09, P < 0.05) with concomitantly decreased catalytically active dimers of nNOS (Akita 0.11 ± 0.04 vs. WT 0.19 ± 0.02, P < 0.05) in the PVN in Akita mice. Our studies suggest that activation of the excitatory arm of RAS, leads to a decrease NO, causing an over-activation of the sympathetic drive in DM.
肾素-血管紧张素系统(RAS)和交感神经系统的激活是糖尿病(DM)心血管并发症的主要病因。然而,DM 中交感神经激活的确切机制尚未阐明。在此,我们试图研究血管紧张素 II(Ang II)介导的室旁神经节(PVN)内神经元一氧化氮(NO)合成酶(nNOS)减少导致的糖尿病相关心血管失调。在本研究中,我们使用 Ins2+/-Akita(一种自发性、胰岛素依赖型遗传糖尿病非肥胖小鼠模型)和野生型(WT)小鼠作为对照。我们发现秋田小鼠在 14 周龄时,肾交感神经活性增加,血浆去甲肾上腺素水平升高。秋田小鼠PVN中的nNOS蛋白表达量减少(秋田小鼠为0.43 ± 0.11,WT小鼠为0.75 ± 0.05,P < 0.05)。秋田小鼠血管紧张素转换酶(ACE)(秋田 0.58 ± 0.05 vs. WT 0.34 ± 0.04,P < 0.05)和 Ang II 1 型受体(秋田 0.49 ± 0.03 vs. WT 0.29 ± 0.09,P < 0.05),ACE2(秋田 0.17 ± 0.05 vs. WT 0.27 ± 0.03,P < 0.05)和血管紧张素(1-7)Mas 受体(秋田 0.46 ± 0.02 vs. WT 0.77 ± 0.07,P < 0.05)的表达减少。此外,秋田小鼠 PVN 中 nNOS 蛋白抑制剂(PIN)的蛋白水平升高(秋田 1.75 ± 0.08 vs. WT 0.71 ± 0.09,P < 0.05),同时 nNOS 催化活性二聚体的水平降低(秋田 0.11 ± 0.04 vs. WT 0.19 ± 0.02,P < 0.05)。我们的研究表明,RAS 兴奋臂的激活导致 NO 减少,从而引起 DM 中交感神经驱动的过度激活。
{"title":"Downregulation of neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus in Ins2Akita-type-1 diabetic mice contributes to sympatho-excitation","authors":"Tapan A. Patel ,&nbsp;Lie Gao ,&nbsp;Shane H. Boomer ,&nbsp;Xuefei Liu ,&nbsp;Kaushik P. Patel ,&nbsp;Hong Zheng","doi":"10.1016/j.niox.2024.11.001","DOIUrl":"10.1016/j.niox.2024.11.001","url":null,"abstract":"<div><div>Activation of both renin-angiotensin system (RAS) and the sympathetic system is the primary etiologic event in developing cardiovascular complications in diabetes mellitus (DM). However, the precise mechanisms for sympathetic activation in DM have not been elucidated. Here we attempted to investigate diabetes-linked cardiovascular dysregulation due to angiotensin II (Ang II)-mediated reduction in neuronal nitric oxide (NO) synthase (nNOS) within the paraventricular neuleus (PVN). In the present study, we used Ins2<sup>+/−</sup>Akita (a spontaneous, insulin-dependent genetic diabetic non-obese murine model) and wild-type (WT) littermates mice as controls. At 14 weeks of age, we found the Akita mice had increased renal sympathetic nerve activity and elevated levels of plasma norepinephrine. There was decreased expression of nNOS protein (Akita 0.43 ± 0.11 vs. WT 0.75 ± 0.05, P &lt; 0.05) in the PVN of Akita mice. Akita mice had increased expression of angiotensin-converting enzyme (ACE) (Akita 0.58 ± 0.05 vs. WT 0.34 ± 0.04, P &lt; 0.05) and Ang II type 1 receptor (Akita 0.49 ± 0.03 vs. WT 0.29 ± 0.09, P &lt; 0.05), decreased expressions of ACE2 (Akita 0.17 ± 0.05 vs. WT 0.27 ± 0.03, P &lt; 0.05) and angiotensin (1–7) Mas receptor (Akita 0.46 ± 0.02 vs. WT 0.77 ± 0.07, P &lt; 0.05). Futher, there were increased protein levels of protein inhibitor of nNOS (PIN) (Akita 1.75 ± 0.08 vs. WT 0.71 ± 0.09, P &lt; 0.05) with concomitantly decreased catalytically active dimers of nNOS (Akita 0.11 ± 0.04 vs. WT 0.19 ± 0.02, P &lt; 0.05) in the PVN in Akita mice. Our studies suggest that activation of the excitatory arm of RAS, leads to a decrease NO, causing an over-activation of the sympathetic drive in DM.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"154 ","pages":"Pages 1-7"},"PeriodicalIF":3.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurogenic-derived 6-nitrodopamine is the most potent endogenous modulator of the mouse urinary bladder relaxation 神经源性 6-硝基多巴胺是小鼠膀胱松弛最有效的内源性调节剂
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.niox.2024.10.010
Mariana Gonçalves de Oliveira , José Britto-Junior , Douglas Rafael Martins Dias , Luise Gabriela Santos Pereira , Silvana Chiavegatto , Idam Hermawan , Hiroaki Shimokawa , Masato Tsutsui , Edson Antunes , Gilberto De Nucci
6-Nitrodopamine (6-ND) modulates vas deferens, seminal vesicles, and corpus cavernosum contractility; however, its role on the lower urinary tract organs has not been evaluated. Investigations of isolated urinary bladders from wild-type (WT) mice revealed 6-ND release was comparable to that of dopamine and adrenaline, whereas noradrenaline was hardly detected, as assessed by liquid chromatography coupled to tandem mass spectrometry. In vitro, 6-ND induced concentration-dependent relaxations in carbachol pre-contracted bladders with high potency (pEC50: 8.04 ± 0.86), independently of eNOS/sGC activity. Co-incubation of 6-ND (1–10 μM) antagonizes the contractile effects of acetylcholine (p < 0.05). Experiments using nitric oxide synthase (NOS) knockout mice demonstrated that 6-ND release from isolated urinary bladder was significantly reduced by neuronal NOS (nNOS−/−) deletion and abolished by triple NOSs deletion (n/i/eNOS−/−), while no significant changes were observed in endothelial (eNOS−/−) or inducible (iNOS−/−) knockout mice. Incubation with tetrodotoxin resulted in a significant decrease in 6-ND release in bladders obtained from WT, but not in nNOS−/− mice. The bladders from nNOS−/− and n/i/eNOS−/− mice exhibited significantly higher contractile responses to electric field stimulation (EFS), compared to eNOS−/−, iNOS−/−, or WT bladders. The hyperreactivity observed in triple NOS knockouts was reversed by the incubation with bladder mucosal layer obtained from a donor WT mice, but not with the muscular layer. These findings clearly demonstrate 6-ND is the most potent endogenous relaxing agent of urinary bladder, and inhibition of its release is associated with bladder hyperreactivity.
6-硝基多巴胺(6-ND)可调节输精管、精囊和海绵体的收缩能力,但其对下尿路器官的作用尚未得到评估。对野生型(WT)小鼠离体膀胱的调查显示,6-ND 的释放量与多巴胺和肾上腺素相当,而通过液相色谱耦合串联质谱法评估,几乎检测不到去甲肾上腺素。在体外,6-ND 可诱导卡巴胆碱预收缩膀胱的浓度依赖性松弛,且效力很高(pEC50:8.04 ± 0.86),与 eNOS/sGC 活性无关。与 6-ND(1-10 μM)共孵育可拮抗乙酰胆碱(p-/-)缺失的收缩效应,三重 NOSs 缺失(n/i/eNOS-/-)则可取消这种效应,而在内皮细胞(eNOS-/-)或诱导型(iNOS-/-)基因敲除小鼠中则未观察到显著变化。用河豚毒素孵育会导致 WT 小鼠膀胱中 6-ND 的释放量明显减少,而 nNOS-/- 小鼠则不会。与 eNOS-/-、iNOS-/- 或 WT 膀胱相比,nNOS-/- 和 n/i/eNOS-/- 小鼠膀胱对电场刺激(EFS)的收缩反应明显更高。与供体 WT 小鼠的膀胱粘膜层一起孵育可逆转三重 NOS 敲除小鼠的高反应性,但与肌肉层一起孵育则不会。这些发现清楚地表明 6-ND 是膀胱最有效的内源性松弛剂,抑制其释放与膀胱过度反应有关。
{"title":"Neurogenic-derived 6-nitrodopamine is the most potent endogenous modulator of the mouse urinary bladder relaxation","authors":"Mariana Gonçalves de Oliveira ,&nbsp;José Britto-Junior ,&nbsp;Douglas Rafael Martins Dias ,&nbsp;Luise Gabriela Santos Pereira ,&nbsp;Silvana Chiavegatto ,&nbsp;Idam Hermawan ,&nbsp;Hiroaki Shimokawa ,&nbsp;Masato Tsutsui ,&nbsp;Edson Antunes ,&nbsp;Gilberto De Nucci","doi":"10.1016/j.niox.2024.10.010","DOIUrl":"10.1016/j.niox.2024.10.010","url":null,"abstract":"<div><div>6-Nitrodopamine (6-ND) modulates vas deferens, seminal vesicles, and corpus cavernosum contractility; however, its role on the lower urinary tract organs has not been evaluated. Investigations of isolated urinary bladders from wild-type (WT) mice revealed 6-ND release was comparable to that of dopamine and adrenaline, whereas noradrenaline was hardly detected, as assessed by liquid chromatography coupled to tandem mass spectrometry. <em>In vitro</em>, 6-ND induced concentration-dependent relaxations in carbachol pre-contracted bladders with high potency (pEC<sub>50</sub>: 8.04 ± 0.86), independently of eNOS/sGC activity. Co-incubation of 6-ND (1–10 μM) antagonizes the contractile effects of acetylcholine (p &lt; 0.05). Experiments using nitric oxide synthase (NOS) knockout mice demonstrated that 6-ND release from isolated urinary bladder was significantly reduced by neuronal NOS (nNOS<sup>−/−</sup>) deletion and abolished by triple NOSs deletion (n/i/eNOS<sup>−/−</sup>), while no significant changes were observed in endothelial (eNOS<sup>−/−</sup>) or inducible (iNOS<sup>−/−</sup>) knockout mice. Incubation with tetrodotoxin resulted in a significant decrease in 6-ND release in bladders obtained from WT, but not in nNOS<sup>−/−</sup> mice. The bladders from nNOS<sup>−/−</sup> and n/i/eNOS<sup>−/−</sup> mice exhibited significantly higher contractile responses to electric field stimulation (EFS), compared to eNOS<sup>−/−</sup>, iNOS<sup>−/−</sup>, or WT bladders. The hyperreactivity observed in triple NOS knockouts was reversed by the incubation with bladder mucosal layer obtained from a donor WT mice, but not with the muscular layer. These findings clearly demonstrate 6-ND is the most potent endogenous relaxing agent of urinary bladder, and inhibition of its release is associated with bladder hyperreactivity.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"153 ","pages":"Pages 98-105"},"PeriodicalIF":3.2,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation and characterization of a conditional eNOS knock out mouse model for cell-specific reactivation of eNOS in gain-of-function studies 生成条件性 eNOS 基因敲除小鼠模型并确定其特征,以便在功能增益研究中对 eNOS 进行细胞特异性再激活。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.niox.2024.10.009
Anthea LoBue , Zhixin Li , Sophia K. Heuser , Junjie Li , Francesca Leo , Lukas Vornholz , Luke S. Dunaway , Tatsiana Suvorava , Brant E. Isakson , Miriam M. Cortese-Krott
Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) in the vessel wall regulates blood pressure and cardiovascular hemodynamics. In this study, we generated conditional eNOS knock out (KO) mice characterized by a duplicated/inverted exon 2 flanked with two pairs of loxP regions (eNOSinv/inv); a Cre-recombinase activity induces cell-specific reactivation of eNOS, as a result of a flipping of the inverted exon 2 (eNOSfl). This work aimed to test the efficiency of the Cre-mediated cell-specific recombination and the resulting eNOS expression/function. As proof of concept, we crossed eNOSinv/inv mice with DeleterCrepos (DelCrepos) mice, expressing Cre recombinase in all cells. We generated heterozygous eNOSfl/inv or homozygous eNOSfl/fl mice, and eNOSinv/inv littermate mice. We found that both eNOSfl/fl and eNOSfl/inv mice express eNOS and the overall expression level depends on the number of mutated alleles, while eNOSinv/inv mice did not show any eNOS expression. Vascular endothelial function was restored in eNOSfl/fl and eNOSfl/inv mice, as determined by ACh-dependent vasodilation of aortic rings. Cre-dependent reactivation of eNOS in eNOSfl/fl and eNOSfl/inv mice rescued eNOSinv/inv (phenotypically global eNOS KO) mice from hypertension. These findings demonstrate that eNOS expression is restored in eNOSfl/fl mice at comparable physiological levels of WT mice, and its functional activity is independent on the number of the reactivated alleles. Therefore, eNOSinv/inv mice are a useful model for studying the effects of conditional reactivation of eNOS and gene dosage effects in specific cells for gain-of-function studies.
血管壁内皮一氧化氮合酶(eNOS)产生的一氧化氮(NO)调节血压和心血管血液动力学。在这项研究中,我们产生了条件性 eNOS 基因敲除(KO)小鼠,其特征是外显子 2 复制/倒置,侧翼有两对 loxP 区域(eNOSinv/inv);由于倒置的外显子 2 翻转(eNOSfl),Cre-重组酶活性诱导细胞特异性重新激活 eNOS。这项工作旨在测试 Cre 介导的细胞特异性重组的效率以及由此产生的 eNOS 表达/功能。作为概念验证,我们将 eNOSinv/inv 小鼠与 DeleterCrepos(DelCrepos)小鼠杂交,在所有细胞中表达 Cre 重组酶。我们产生了杂合子 eNOSfl/inv 或同合子 eNOSfl/fl 小鼠,以及 eNOSinv/inv 同窝小鼠。我们发现:(1)eNOSfl/fl 和 eNOSfl/inv 小鼠均表达 eNOS,总体表达水平取决于突变等位基因的数量,而 eNOSinv/inv 小鼠没有任何 eNOS 表达。(2)eNOSfl/fl 和 eNOSfl/inv 小鼠的血管内皮功能得到恢复,这是由主动脉环的 ACh 依赖性血管扩张决定的。(3)eNOSfl/fl 和 eNOSfl/inv 小鼠中 eNOS 的 Cre 依赖性再激活可挽救 eNOSinv/inv(表型上全局 eNOS KO)小鼠的高血压。这些研究结果表明,eNOSfl/fl 小鼠的 eNOS 表达恢复到了与 WT 小鼠相当的生理水平,而且其功能活性与重新激活的等位基因数量无关。因此,eNOSinv/inv 小鼠是研究 eNOS 条件性再激活效应和特定细胞中基因剂量效应的有用模型,可用于功能增益研究。
{"title":"Generation and characterization of a conditional eNOS knock out mouse model for cell-specific reactivation of eNOS in gain-of-function studies","authors":"Anthea LoBue ,&nbsp;Zhixin Li ,&nbsp;Sophia K. Heuser ,&nbsp;Junjie Li ,&nbsp;Francesca Leo ,&nbsp;Lukas Vornholz ,&nbsp;Luke S. Dunaway ,&nbsp;Tatsiana Suvorava ,&nbsp;Brant E. Isakson ,&nbsp;Miriam M. Cortese-Krott","doi":"10.1016/j.niox.2024.10.009","DOIUrl":"10.1016/j.niox.2024.10.009","url":null,"abstract":"<div><div>Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) in the vessel wall regulates blood pressure and cardiovascular hemodynamics. In this study, we generated conditional eNOS knock out (KO) mice characterized by a duplicated/inverted exon 2 flanked with two pairs of loxP regions (eNOS<sup>inv/inv</sup>); a Cre-recombinase activity induces cell-specific reactivation of eNOS, as a result of a flipping of the inverted exon 2 (eNOS<sup>fl</sup>). This work aimed to test the efficiency of the Cre-mediated cell-specific recombination and the resulting eNOS expression/function. As proof of concept, we crossed eNOS<sup>inv/inv</sup> mice with DeleterCre<sup>pos</sup> (DelCre<sup>pos</sup>) mice, expressing Cre recombinase in all cells. We generated heterozygous eNOS<sup>fl/inv</sup> or homozygous eNOS<sup>fl/fl</sup> mice, and eNOS<sup>inv/inv</sup> littermate mice. We found that both eNOS<sup>fl/fl</sup> and eNOS<sup>fl/inv</sup> mice express eNOS and the overall expression level depends on the number of mutated alleles, while eNOS<sup>inv/inv</sup> mice did not show any eNOS expression. Vascular endothelial function was restored in eNOS<sup>fl/fl</sup> and eNOS<sup>fl/inv</sup> mice, as determined by ACh-dependent vasodilation of aortic rings. Cre-dependent reactivation of eNOS in eNOS<sup>fl/fl</sup> and eNOS<sup>fl/inv</sup> mice rescued eNOS<sup>inv/inv</sup> (phenotypically global eNOS KO) mice from hypertension. These findings demonstrate that eNOS expression is restored in eNOS<sup>fl/fl</sup> mice at comparable physiological levels of WT mice, and its functional activity is independent on the number of the reactivated alleles. Therefore, eNOS<sup>inv/inv</sup> mice are a useful model for studying the effects of conditional reactivation of eNOS and gene dosage effects in specific cells for gain-of-function studies.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"153 ","pages":"Pages 106-113"},"PeriodicalIF":3.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review and dose‒response meta-analysis of the association between nitrate & nitrite intake and gastroesophageal cancer risk 硝酸盐和亚硝酸盐摄入量与胃食管癌风险之间关系的系统回顾和剂量反应荟萃分析。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-12 DOI: 10.1016/j.niox.2024.10.007
Mohammadreza Ghasemi , Mohammad Bahrami koutenaei , Alireza Ghasemi , Reza Alizadeh-navaei , Mahmood Moosazadeh

Objective

The objective of this systematic review and dose‒response meta-analysis was to assess the associations between the dietary consumption of nitrate and nitrite and the risk of gastric and esophageal cancer.

Methods

MEDLINE, Scopus, Embase, Web of Science, Proquest, and Google Scholar were searched until April 1, 2024. Articles were selected by two independent researchers on the basis of the inclusion and exclusion criteria. Data regarding the study design, type of exposure and outcomes, intervals of intake of nitrate or nitrite in each layer, OR/RR/HR of the relationship for each layer of intake, total sample size, and number of cases of gastric or esophageal cancer were extracted. The certainty of the evidence was rated via the GRADE method. The pooled odds ratios, risk ratios, and dose‒response analyses were calculated via Stata version 17.0. The best-fit dose‒response model was assessed by the P value for linearity and nonlinearity. Study heterogeneity was assessed via the I2 and Q tests.

Results

We found 2124 nonredundant studies, 234 of which were potentially relevant. Eighteen articles met the inclusion criteria and were included in the review. The results of the meta-analysis revealed a significant positive association between nitrite intake and gastric cancer in both case‒control studies (OR = 1.29, 95 % CI = 1.09–1.52, P value = 0.001, I2 = 1.91 %) and cohort studies (RR = 1.17, 95 % CI = 1.00–1.37, P value = 0.04, I2 = 0.00 %). In addition, case‒control studies revealed a nonsignificant inverse association between nitrate intake and gastric cancer incidence (OR = 0.71, 95 % CI = 0.50–1.01, P value = 0.06, I2 = 74.89 %), and cohort studies (RR = 0.89, 95 % CI = 0.73–1.09, P value = 0.27, I2 = 0.00 %). Case‒control studies also revealed no significant correlation between nitrite intake and esophageal cancer incidence (OR = 1.48, 95 % CI = 0.91 to 2.42, P value = 0.12, I2 = 0.001 %). Nitrites correlated linearly with gastric cancer (linearity P value = 0.001). The most appropriate fit models for the relationship between nitrate and gastric cancer were both piecewise linear and natural polynomial regression (quadratic) models (P values = 0.003 and 0.005, respectively). There was no significant publication bias.

Conclusion

According to this meta-analysis, high consumption of nitrites was associated with an increased risk of gastric cancer in case‒control and cohort studies with a linear regression model, and dietary nitrate intake was not associated with the risk of gastric cancer in either case‒control or cohort studies. These findings are inconclusive and require confirmation in future prospective studies with robust methodologies and adjustments for potential confounders.
目的本系统综述和剂量反应荟萃分析旨在评估硝酸盐和亚硝酸盐的膳食摄入量与胃癌和食道癌风险之间的关系:方法:检索MEDLINE、Scopus、Embase、Web of Science、Proquest和Google Scholar,检索期至2024年4月1日。文章由两名独立研究人员根据纳入和排除标准进行筛选。提取的数据包括研究设计、暴露类型和结果、每层硝酸盐或亚硝酸盐的摄入间隔、每层摄入量关系的 OR/RR/HR、总样本量以及胃癌或食管癌病例数。通过 GRADE 方法对证据的确定性进行评级。汇总的几率比、风险比和剂量反应分析是通过 Stata 17.0 版计算得出的。最佳拟合剂量反应模型通过线性和非线性的 P 值进行评估。研究异质性通过 I2 和 Q 检验进行评估:我们发现了 2124 项非冗余研究,其中 234 项可能相关。有 18 篇文章符合纳入标准并被纳入综述。荟萃分析结果显示,在病例对照研究(OR = 1.29,95 % CI = 1.09-1.52,P 值 = 0.001,I2 = 1.91 %)和队列研究(RR = 1.17,95 % CI = 1.00-1.37,P 值 = 0.04,I2 = 0.00 %)中,亚硝酸盐摄入量与胃癌之间存在显著的正相关关系。此外,病例对照研究显示,硝酸盐摄入量与胃癌发病率之间存在不显著的反比关系(OR = 0.71,95 % CI = 0.50-1.01,P 值 = 0.06,I2 = 74.89 %),队列研究显示,硝酸盐摄入量与胃癌发病率之间存在不显著的反比关系(RR = 0.89,95 % CI = 0.73-1.09,P 值 = 0.27,I2 = 0.00 %)。病例对照研究也表明,亚硝酸盐摄入量与食管癌发病率之间无明显相关性(OR = 1.48,95 % CI = 0.91 至 2.42,P 值 = 0.12,I2 = 0.001 %)。亚硝酸盐与胃癌呈线性相关(线性 P 值 = 0.001)。硝酸盐与胃癌关系的最合适拟合模型是片断线性模型和自然多项式回归(二次)模型(P 值分别为 0.003 和 0.005)。没有明显的发表偏倚:根据这项荟萃分析,在采用线性回归模型的病例对照和队列研究中,亚硝酸盐摄入量高与胃癌风险增加有关,而在病例对照或队列研究中,膳食硝酸盐摄入量与胃癌风险无关。这些研究结果尚无定论,需要在未来的前瞻性研究中通过可靠的方法和对潜在混杂因素的调整加以证实。
{"title":"A systematic review and dose‒response meta-analysis of the association between nitrate & nitrite intake and gastroesophageal cancer risk","authors":"Mohammadreza Ghasemi ,&nbsp;Mohammad Bahrami koutenaei ,&nbsp;Alireza Ghasemi ,&nbsp;Reza Alizadeh-navaei ,&nbsp;Mahmood Moosazadeh","doi":"10.1016/j.niox.2024.10.007","DOIUrl":"10.1016/j.niox.2024.10.007","url":null,"abstract":"<div><h3>Objective</h3><div>The objective of this systematic review and dose‒response meta-analysis was to assess the associations between the dietary consumption of nitrate and nitrite and the risk of gastric and esophageal cancer.</div></div><div><h3>Methods</h3><div>MEDLINE, Scopus, Embase, Web of Science, Proquest, and Google Scholar were searched until April 1, 2024. Articles were selected by two independent researchers on the basis of the inclusion and exclusion criteria. Data regarding the study design, type of exposure and outcomes, intervals of intake of nitrate or nitrite in each layer, OR/RR/HR of the relationship for each layer of intake, total sample size, and number of cases of gastric or esophageal cancer were extracted. The certainty of the evidence was rated via the GRADE method. The pooled odds ratios, risk ratios, and dose‒response analyses were calculated via Stata version 17.0. The best-fit dose‒response model was assessed by the P value for linearity and nonlinearity. Study heterogeneity was assessed via the I<sup>2</sup> and Q tests.</div></div><div><h3>Results</h3><div>We found 2124 nonredundant studies, 234 of which were potentially relevant. Eighteen articles met the inclusion criteria and were included in the review. The results of the meta-analysis revealed a significant positive association between nitrite intake and gastric cancer in both case‒control studies (OR = 1.29, 95 % CI = 1.09–1.52, P value = 0.001, I<sup>2</sup> = 1.91 %) and cohort studies (RR = 1.17, 95 % CI = 1.00–1.37, P value = 0.04, I<sup>2</sup> = 0.00 %). In addition, case‒control studies revealed a nonsignificant inverse association between nitrate intake and gastric cancer incidence (OR = 0.71, 95 % CI = 0.50–1.01, P value = 0.06, I<sup>2</sup> = 74.89 %), and cohort studies (RR = 0.89, 95 % CI = 0.73–1.09, P value = 0.27, I<sup>2</sup> = 0.00 %). Case‒control studies also revealed no significant correlation between nitrite intake and esophageal cancer incidence (OR = 1.48, 95 % CI = 0.91 to 2.42, P value = 0.12, I<sup>2</sup> = 0.001 %). Nitrites correlated linearly with gastric cancer (linearity P value = 0.001). The most appropriate fit models for the relationship between nitrate and gastric cancer were both piecewise linear and natural polynomial regression (quadratic) models (P values = 0.003 and 0.005, respectively). There was no significant publication bias.</div></div><div><h3>Conclusion</h3><div>According to this meta-analysis, high consumption of nitrites was associated with an increased risk of gastric cancer in case‒control and cohort studies with a linear regression model, and dietary nitrate intake was not associated with the risk of gastric cancer in either case‒control or cohort studies. These findings are inconclusive and require confirmation in future prospective studies with robust methodologies and adjustments for potential confounders.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"153 ","pages":"Pages 61-71"},"PeriodicalIF":3.2,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen sulfide ameliorated endothelial dysfunction in hyperhomocysteinemia rats: Mechanism of IRE1α/JNK pathway-mediated autophagy 硫化氢可改善高同型半胱氨酸血症大鼠的内皮功能障碍:IRE1α/JNK通路介导的自噬机制
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-11 DOI: 10.1016/j.niox.2024.10.008
Yuan Gao , Jiao Xu , Kaichuan He , Qi Guo , Lin Xiao , Sheng Jin , Danyang Tian , Xu Teng , Cuixia An , Hongmei Xue , Yuming Wu
Previous studies showed that hyperhomocysteinemia (HHcy) induced endothelial dysfunction by endoplasmic reticulum (ER) stress induction and autophagy stimulation. This study aimed to determine the effect of hydrogen sulfide (H2S) in homocysteine (Hcy)-induced endothelial dysfunction and observe the possible mechanism involved. Male Wistar rats (160–180g) were used and randomly divided into four groups: Control group, HHcy group, HHcy+Sodium hydrosulfide (NaHS) group and NaHS group. Rats were fed with 2% high methionine diet for 8 weeks to set up HHcy model. Plasma concentration of Hcy was measured by ELISA. Endothelium-dependent and non-endothelium-dependent vasodilation of rat renal arteries were determined by myograph. The protein expression of cystathionine-γ-lyase (CSE), ER stress- and autophagy-related proteins in renal arteries or human umbilical vein endothelial cells (HUVECs) were analyzed by western blotting. The endothelial function was impaired in HHcy rats and HUVECs. NaHS supplementation could improve the ACh-induced vasodilation, however it was eliminated by ER stress inducer Tunicamycin (TM) or autophagy inducer Rapamycin. Western blotting in renal arteries showed that Glucose-regulated protein 78 (GRP78) and three branches of ER stress (p-IRE1α, p-PERK, ATF6) , p-JNK1+p-JNK2 were downregulated, simultaneously the autophagy marker Beclin1, LC3BII/LC3BI ratio were decreased and p62 was increased with NaHS treatment in HHcy rats. In HUVECs, IRE1α-JNK induced autophagy was involved in HHcy-induced endothelial dysfunction, while NaHS stimulation reversed the protein expression in IRE1α/JNK-autophagy pathway with Hcy incubation. This study might suggest that endothelial dysfunction induced by HHcy might be correlated with IRE1α-JNK-autophagy axis pathway, which was suppressed by exogenous supplementation of H2S donor, NaHS.
先前的研究表明,高同型半胱氨酸血症(HHcy)通过内质网(ER)应激诱导和自噬刺激诱导内皮功能障碍。本研究旨在确定硫化氢(H2S)对同型半胱氨酸(Hcy)诱导的内皮功能障碍的影响,并观察其可能的机制。采用雄性 Wistar 大鼠(160-180 克),随机分为四组:对照组、HHcy 组、HHcy+硫氢化钠(NaHS)组和 NaHS 组。用 2% 高蛋氨酸饮食喂养大鼠 8 周,建立 HHcy 模型。用 ELISA 法检测血浆中 Hcy 的浓度。用肌电图测定大鼠肾动脉的内皮依赖性和非内皮依赖性血管扩张。蛋白印迹法分析了肾动脉或人脐静脉内皮细胞(HUVECs)中胱硫醚-γ-裂解酶(CSE)、ER应激和自噬相关蛋白的表达。结果表明,HHcy 大鼠和 HUVECs 的内皮功能受损。补充 NaHS 可改善 ACh 诱导的血管扩张,但 ER 应激诱导剂 Tunicamycin(TM)或自噬诱导剂雷帕霉素可消除这种扩张。肾动脉中的 Western 印迹显示,NaHS 处理 HHcy 大鼠后,葡萄糖调节蛋白 78(GRP78)和ER 应激的三个分支(p-IRE1α、p-PERK、ATF6)、p-JNK1+p-JNK2 下调,同时自噬标志物 Beclin1、LC3BII/LC3BI 比值降低,p62 升高。在HUVECs中,IRE1α-JNK诱导的自噬参与了HHcy诱导的内皮功能障碍,而NaHS刺激可逆转Hcy孵育下IRE1α/JNK-自噬通路的蛋白表达。这项研究可能表明,HHcy诱导的内皮功能障碍可能与IRE1α-JNK-自噬轴通路有关,而外源性补充H2S供体NaHS可抑制该通路的表达。
{"title":"Hydrogen sulfide ameliorated endothelial dysfunction in hyperhomocysteinemia rats: Mechanism of IRE1α/JNK pathway-mediated autophagy","authors":"Yuan Gao ,&nbsp;Jiao Xu ,&nbsp;Kaichuan He ,&nbsp;Qi Guo ,&nbsp;Lin Xiao ,&nbsp;Sheng Jin ,&nbsp;Danyang Tian ,&nbsp;Xu Teng ,&nbsp;Cuixia An ,&nbsp;Hongmei Xue ,&nbsp;Yuming Wu","doi":"10.1016/j.niox.2024.10.008","DOIUrl":"10.1016/j.niox.2024.10.008","url":null,"abstract":"<div><div>Previous studies showed that hyperhomocysteinemia (HHcy) induced endothelial dysfunction by endoplasmic reticulum (ER) stress induction and autophagy stimulation. This study aimed to determine the effect of hydrogen sulfide (H<sub>2</sub>S) in homocysteine (Hcy)-induced endothelial dysfunction and observe the possible mechanism involved. Male Wistar rats (160–180g) were used and randomly divided into four groups: Control group, HHcy group, HHcy+Sodium hydrosulfide (NaHS) group and NaHS group. Rats were fed with 2% high methionine diet for 8 weeks to set up HHcy model. Plasma concentration of Hcy was measured by ELISA. Endothelium-dependent and non-endothelium-dependent vasodilation of rat renal arteries were determined by myograph. The protein expression of cystathionine-γ-lyase (CSE), ER stress- and autophagy-related proteins in renal arteries or human umbilical vein endothelial cells (HUVECs) were analyzed by western blotting. The endothelial function was impaired in HHcy rats and HUVECs. NaHS supplementation could improve the ACh-induced vasodilation, however it was eliminated by ER stress inducer Tunicamycin (TM) or autophagy inducer Rapamycin. Western blotting in renal arteries showed that Glucose-regulated protein 78 (GRP78) and three branches of ER stress (p-IRE1α, p-PERK, ATF6) , p-JNK1+p-JNK2 were downregulated, simultaneously the autophagy marker Beclin1, LC3BII/LC3BI ratio were decreased and p62 was increased with NaHS treatment in HHcy rats. In HUVECs, IRE1α-JNK induced autophagy was involved in HHcy-induced endothelial dysfunction, while NaHS stimulation reversed the protein expression in IRE1α/JNK-autophagy pathway with Hcy incubation. This study might suggest that endothelial dysfunction induced by HHcy might be correlated with IRE1α-JNK-autophagy axis pathway, which was suppressed by exogenous supplementation of H<sub>2</sub>S donor, NaHS.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"153 ","pages":"Pages 72-81"},"PeriodicalIF":3.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An updated mechanistic overview of nitric oxide in drought tolerance of plants 一氧化氮在植物耐旱性中的最新机理概述。
IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-10 DOI: 10.1016/j.niox.2024.10.006
Sakshi Saini , Priyanka Sharma , Pooja Pooja , Asha Sharma
Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.
干旱胁迫是气候变化不可避免的全球性问题,它阻碍了植物的生长和产量。一氧化氮(NO)是一种微小的气态信号化合物,由于其在改善包括干旱在内的各种非生物胁迫方面具有无与伦比的机制,目前正受到植物科学界的广泛关注。在干旱条件下,由于氮氧化物与多种分子的结合,它能极大地影响植物的其他各种生理生化过程,如根系结构、光合作用、渗透溶质的累积和种子的形成。根系发育的产生和抑制主要取决于 NO 的浓度和/或实验条件。作为一种亲脂性游离气体递质,NO 很容易与游离金属和氧物种发生反应,并已被证明能增强或降低植物的氧化还原平衡,这取决于是以慢性还是急性模式发挥作用。氮氧化物很容易改变酶、蛋白质活性以及基因组转录和翻译后修饰,从而帮助植物从水胁迫中恢复功能。尽管目前正在取得进展,但要描述这种充满活力的分子在植物耐旱性中的正确靶点和机理方法,仍有许多工作要做。这篇详细的综述通过分子方法全面而清晰地介绍了 NO 在干旱胁迫中的机理潜力,并提出了克服干旱负面影响的有效生理和生化策略。我们探讨了氮氧化物提高作物产量的潜力,从而确保干旱多发地区的全球粮食安全。在气候条件无情的时代,氮氧化物的影响为可持续耕作提供了一种前景广阔的方法,为未来的作物生产提供了希望的灯塔。
{"title":"An updated mechanistic overview of nitric oxide in drought tolerance of plants","authors":"Sakshi Saini ,&nbsp;Priyanka Sharma ,&nbsp;Pooja Pooja ,&nbsp;Asha Sharma","doi":"10.1016/j.niox.2024.10.006","DOIUrl":"10.1016/j.niox.2024.10.006","url":null,"abstract":"<div><div>Drought stress, an inevitable global issue due to climate change, hinders plant growth and yield. Nitric oxide (NO), a tiny gaseous signaling compound is now gaining massive attention from the plant science community due to its unparalleled array of mechanisms for ameliorating various abiotic stresses, including drought. Supplementation of NO has shown its astounding effect in improving drought tolerance by prominently influencing its tendency to modulate stomatal movement and reduce oxidative stress; it can enormously affect the various other physio-biochemical processes such as root structure, photosynthesis, osmolyte cumulation, and seed establishment of plants due to its amalgamation with a wide range of molecules during drought conditions. The production and inhibition of root development majorly depend on NO concentration and/or experimental conditions. As a lipophilic free gasotransmitter, NO readily reacts with free metals and oxygen species and has been shown to enhance or reduce the redox homeostasis of plants, depending on whether acting in a chronic or acute mode. NO can easily alter the enzymes, protein activities, and genomic transcriptional and post-translational modifications that assist functional retrieval from water stress. Although progress is ongoing, much work remains to be done to describe the proper target site and mechanistic approach of this vibrant molecule in plant drought tolerance. This detailed review navigates through the comprehensive and clear picture of the mechanistic potential of NO in drought stress following molecular approaches and suggests effective physiological and biochemical strategies to overcome the negative impacts of drought. We explore its potential to increase crop production, thereby ensuring global food security in drought-prone areas. In an era marked by unrelenting climatic conditions, the implications of NO show a promising approach to sustainable farming, providing a beacon of hope for future crop productivity.</div></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"153 ","pages":"Pages 82-97"},"PeriodicalIF":3.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nitric oxide : biology and chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1