To investigate the protective mechanisms of hydrogen sulfide (H2S) in sepsis-induced acute kidney injury (SAKI), we conducted an in vivo study using a SAKI mouse model induced by intraperitoneal lipopolysaccharide (LPS) injection. Following 6 h of LPS injection, levels of tumor necrosis factor-alpha (TNF-α) and blood urea nitrogen (Bun) were significantly elevated in mouse plasma. In the kidneys of SAKI mice, expression of H2S-generating enzymes cysteinyl-tRNA synthetase (CARS), cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) was markedly downregulated, while glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), phosphorylated protein kinase R-like endoplasmic reticulum kinase/protein kinase R-like endoplasmic reticulum kinase (p-PERK/PERK), and B-cell lymphoma-2 recombinant protein X/B-cell lymphoma-2 (Bax/Bcl2) expression was significantly upregulated. H2S improved renal function and attenuated renal histopathological changes in SAKI mice, thereby alleviating LPS-induced endoplasmic reticulum stress (ERS). Additionally, it inhibited the expression of p-PERK/PERK and Bax/Bcl2. After inhibiting CSE activity with dl-propargylglycine (PPG i. p.), the renal tissue pathology in LPS-induced AKI mice was further exacerbated, leading to enhanced activation of the PERK/Bax-Bcl2 pathway. Our findings suggest that endogenous H2S influences the pathogenesis of SAKI, while exogenous H2S protects against LPS-induced AKI by inhibiting the PERK/Bax-Bcl2 pathway involved in ERS.
Hydrogen sulfide (H2S) has emerged as a potent therapeutic agent with diverse physiological functions, including vasodilation, anti-inflammation, and cytoprotection. However, its clinical application is limited due to its volatility and potential toxicity at high concentrations. To address these challenges, researchers have developed various H2S prodrugs that release H2S in a controlled and targeted manner. The review underscores the importance of targeting and delivery strategies in maximizing the therapeutic potential of H2S, a gasotransmitter with diverse physiological functions and therapeutic effects. By summarizing recent advancements, the review provides valuable insights for researchers and clinicians interested in harnessing the therapeutic benefits of H2S while minimizing off-target effects and toxicity. The integration of novel targeting and delivery approaches not only enhances the efficacy of H2S-based therapeutics but also expands the scope of potential applications, offering promising avenues for the development of new treatments for a variety of diseases and disorders.
Nitroglycerin has been of considerable interest as a treatment for ischaemic stroke. Recent clinical trials with nitroglycerin transdermal patches during the acute phase of stroke failed to improve functional outcomes. Systematic review and meta-analysis of the effectiveness of nitroglycerin in preclinical models of ischaemic stroke has not previously been reported, despite several clinical trials.
To conduct a systematic review and meta-analysis of preclinical evidence regarding the effect of nitroglycerin on infarct volume in animal models of ischaemic stroke.
The protocol was registered in PROSPERO (CRD42023432644). Our search identified 238 publications. Three publications met inclusion criteria (including 10 comparisons of infarct size). Study quality was modest (median 6 out of 9), with no evidence of publication bias. Nitroglycerin did not significantly reduce infarct volume (NMD point estimate 20.2 % reduction, 95 % CI −1.52–52.7 %, p = 0.068). Subgroup analysis suggested greater efficacy of nitroglycerin with direct intracarotid administration to the ischaemic territory at the time of reperfusion.
A small number of studies (three) were included in this review. Overall, nitroglycerin did not reduce infarct volume in experimental stroke models. However, nitroglycerin may be of benefit when administered directly into the ischaemic territory. Given nitroglycerin's short half-life, we propose this route may minimise harmful reduction of cerebral perfusion pressure resulting from hypotension following systemic administration.