Pub Date : 2024-07-06DOI: 10.1016/j.niox.2024.07.002
Ritu Kumari , Preedhi Kapoor , Bilal Ahmad Mir , Maninder Singh , Zubair Ahmad Parrey , Gurseen Rakhra , Parul Parihar , M. Nasir Khan , Gurmeen Rakhra
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
在植物中,一氧化氮(NO)已成为一种多功能信号分子,在各种生物和非生物胁迫条件下,它对介导广泛的生理过程至关重要。一氧化氮在各种胁迫情况下的基本功能导致了一种范式的转变,即一氧化氮现在既被视为从氧化代谢的有毒产物中释放出来的自由基,也被视为一种有助于植物生存的物质。大量有关 NO 生物学的研究表明,NO 是萌芽、叶片衰老、光合作用、植物生长、花粉生长和其他过程的重要信号。它还参与植物对病原体的防御反应,以及植物对盐度、干旱和极端温度等环境线索的适应反应,这表明它具有多方面的作用。NO 可以通过多种方式发挥其生物作用,包括与蛋白激酶相互作用、改变基因表达和释放次级信使。除了这些信号事件,NO 还可能负责染色质修饰、硝化和 S-亚硝基化引起的靶蛋白翻译后修饰(PTM)。破译其重要功能背后的分子机制对于揭示控制植物对各种环境刺激做出反应的调控网络至关重要。考虑到氮氧化物的多功能作用,人们努力根据翻译后修饰来解释其作用模式,并收集了一些关于生长参数增加和基因表达改变的证据。
{"title":"Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress","authors":"Ritu Kumari , Preedhi Kapoor , Bilal Ahmad Mir , Maninder Singh , Zubair Ahmad Parrey , Gurseen Rakhra , Parul Parihar , M. Nasir Khan , Gurmeen Rakhra","doi":"10.1016/j.niox.2024.07.002","DOIUrl":"10.1016/j.niox.2024.07.002","url":null,"abstract":"<div><p>In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"150 ","pages":"Pages 1-17"},"PeriodicalIF":3.2,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1016/j.niox.2024.07.001
Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.
{"title":"Role of hydrogen sulfide in dermatological diseases","authors":"","doi":"10.1016/j.niox.2024.07.001","DOIUrl":"10.1016/j.niox.2024.07.001","url":null,"abstract":"<div><p>Hydrogen sulfide (H<sub>2</sub>S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H<sub>2</sub>S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H<sub>2</sub>S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H<sub>2</sub>S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H<sub>2</sub>S in normal skin, the role of altering H<sub>2</sub>S metabolism in dermatological diseases, and the therapeutic potential of diverse H<sub>2</sub>S donors for the treatment of dermatological diseases.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"150 ","pages":"Pages 18-26"},"PeriodicalIF":3.2,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1016/j.niox.2024.06.005
Yixian Mu , Xinlei Yang , Yinhong Xie , Jie Luo , Sui Wu , JinMing Yang , Wei Zhao , Junying Chen , Yajun Weng
Healing of chronic wounds has been critically limited by prolonged inflammation. Carbon monoxide (CO) is a biologically active molecule with high potential based on its efficacy in modulating inflammation, promoting wound healing and tissue remodeling. Strategies to use CO as a gaseous drug to chronic wounds have emerged, but controlling the sustained release of CO at the wound site remains a major challenge. In this work, a porphyrin-Fe based metal organic frameworks, TPyP-FeMOFs was prepared. The synthesized TPyP-FeMOFs was high-temperature vacuum activated (AcTPyP-FeMOFs) and AcTPyP-FeMOFs had a relatively high Fe (II) content. CO sorption isotherms showed that AcTPyP-FeMOFs chemisorbed CO and thus CO release was sustained and prolonged. In vitro evaluation results showed that CO@TPyP-FeMOFs reduced the inflammatory level of lipopolysaccharide (LPS) activated macrophages, polarized macrophages to M2 anti-inflammatory phenotype, and promoted the proliferation of fibroblasts by altering the pathological microenvironment. In vivo study confirmed CO@TPyP-FeMOFs promoted healing in a LPS model of delayed cutaneous wound repair and reduced macrophages and neutrophils recruitment. Both in vitro and in vivo studies verified that CO@TPyP-FeMOFs acted on macrophages by modulating phenotype and inflammatory factor expression. Thus, CO release targeting macrophages and pathological microenvironment modulation presented a promising strategy for wound healing.
{"title":"Carbon monoxide-releasing Vehicle CO@TPyP-FeMOFs modulating macrophages phenotype in inflammatory wound healing","authors":"Yixian Mu , Xinlei Yang , Yinhong Xie , Jie Luo , Sui Wu , JinMing Yang , Wei Zhao , Junying Chen , Yajun Weng","doi":"10.1016/j.niox.2024.06.005","DOIUrl":"10.1016/j.niox.2024.06.005","url":null,"abstract":"<div><p>Healing of chronic wounds has been critically limited by prolonged inflammation. Carbon monoxide (CO) is a biologically active molecule with high potential based on its efficacy in modulating inflammation, promoting wound healing and tissue remodeling. Strategies to use CO as a gaseous drug to chronic wounds have emerged, but controlling the sustained release of CO at the wound site remains a major challenge. In this work, a porphyrin-Fe based metal organic frameworks, TPyP-FeMOFs was prepared. The synthesized TPyP-FeMOFs was high-temperature vacuum activated (AcTPyP-FeMOFs) and AcTPyP-FeMOFs had a relatively high Fe (II) content. CO sorption isotherms showed that AcTPyP-FeMOFs chemisorbed CO and thus CO release was sustained and prolonged. In vitro evaluation results showed that CO@TPyP-FeMOFs reduced the inflammatory level of lipopolysaccharide (LPS) activated macrophages, polarized macrophages to M2 anti-inflammatory phenotype, and promoted the proliferation of fibroblasts by altering the pathological microenvironment. In vivo study confirmed CO@TPyP-FeMOFs promoted healing in a LPS model of delayed cutaneous wound repair and reduced macrophages and neutrophils recruitment. Both in vitro and in vivo studies verified that CO@TPyP-FeMOFs acted on macrophages by modulating phenotype and inflammatory factor expression. Thus, CO release targeting macrophages and pathological microenvironment modulation presented a promising strategy for wound healing.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 49-59"},"PeriodicalIF":3.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1016/j.niox.2024.06.004
Si-Miao Tang , Guo-Zhong Lu , Xiao-Yong Lei , Xiao-Yan Yang , Guo-Tao Tang , Jia Yu , Zhi-Zhong Xie
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
{"title":"Sodium thiosulfate: A donor or carrier signaling molecule for hydrogen sulfide?","authors":"Si-Miao Tang , Guo-Zhong Lu , Xiao-Yong Lei , Xiao-Yan Yang , Guo-Tao Tang , Jia Yu , Zhi-Zhong Xie","doi":"10.1016/j.niox.2024.06.004","DOIUrl":"10.1016/j.niox.2024.06.004","url":null,"abstract":"<div><p>Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H<sub>2</sub>S), emerging findings suggest that it is the executive signaling molecule for H<sub>2</sub>S and that its effects may not be dependent on H<sub>2</sub>S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms <em>in vivo</em>. We also discussed the interplay of sodium thiosulfate and H<sub>2</sub>S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 67-74"},"PeriodicalIF":3.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.niox.2024.06.003
Nikolay O. Kamenshchikov , Bijan Safaee Fakhr , Igor V. Kravchenko , Andrey Yu Dish , Yuri K. Podoksenov , Boris N. Kozlov , Tatiana P. Kalashnikova , Mark A. Tyo , Nina D. Anfinogenova , Alla A. Boshchenko , Lorenzo Berra
Background
Inhaled nitric oxide (iNO) showed to improve oxygenation at low doses by reducing intrapulmonary shunt and to display antiviral properties at high doses. To assess the safety and potential benefits, we designed an exploratory clinical trial comparing low-dose with intermittent high-dose iNO to only intermittent high-dose iNO in hypoxemic COVID-19 patients.
Methods
In this single-center interventional non-inferiority randomized trial (ClinicalTrials.gov, NCT04476992), twenty oxygen-dependent COVID-19 patients were randomly assigned to the high-dose (200 ppm for 30 min) + continuous low-dose (20 ppm) iNO group (iNO200/20) or the high-dose iNO group (iNO200). Methemoglobinemia (MetHb) assessed 48 h after iNO initiation was the primary endpoint. Reverse-transcription polymerase chain reaction for SARS-CoV-2, inflammatory markers during hospitalization, and heart ultrasounds during the iNO200 treatments were evaluated.
Results
MetHb difference between iNO groups remained within the non-inferiority limit of 3 %, indicating comparable treatments despite being statistically different (p-value<0.01). Both groups presented similar SpO2/FiO2 ratio at 48 h (iNO200 vs. iNO200/20 341[334–356] vs. 359 [331–380], respectively, p-value = 0.436). Both groups showed the same time to SARS-CoV-2 negativization, hospital length of stay, and recovery time. iNO-treated patients showed quicker SARS-CoV-2 negativization compared to a similar group of non-iNO patients (HR 2.57, 95%CI 1.04–6.33). During the 228 treatments, iNO200 and iNO200/20 groups were comparable for safety, hemodynamic stability, and respiratory function improvement.
Conclusions
iNO200/20 and iNO200 are equally safe in non-intubated patients with COVID-19-induced respiratory failure with regards to MetHb and NO2. Larger studies should investigate whether iNO200/20 leads to better outcomes compared to non-iNO treated patients.
{"title":"Assessment of continuous low-dose and high-dose burst of inhaled nitric oxide in spontaneously breathing COVID-19 patients: A randomized controlled trial","authors":"Nikolay O. Kamenshchikov , Bijan Safaee Fakhr , Igor V. Kravchenko , Andrey Yu Dish , Yuri K. Podoksenov , Boris N. Kozlov , Tatiana P. Kalashnikova , Mark A. Tyo , Nina D. Anfinogenova , Alla A. Boshchenko , Lorenzo Berra","doi":"10.1016/j.niox.2024.06.003","DOIUrl":"10.1016/j.niox.2024.06.003","url":null,"abstract":"<div><h3>Background</h3><p>Inhaled nitric oxide (iNO) showed to improve oxygenation at low doses by reducing intrapulmonary shunt and to display antiviral properties at high doses. To assess the safety and potential benefits, we designed an exploratory clinical trial comparing low-dose with intermittent high-dose iNO to only intermittent high-dose iNO in hypoxemic COVID-19 patients.</p></div><div><h3>Methods</h3><p>In this single-center interventional non-inferiority randomized trial (<span>ClinicalTrials.gov</span><svg><path></path></svg>, NCT04476992), twenty oxygen-dependent COVID-19 patients were randomly assigned to the high-dose (200 ppm for 30 min) + continuous low-dose (20 ppm) iNO group (iNO<sub>200/20</sub>) or the high-dose iNO group (iNO<sub>200</sub>). Methemoglobinemia (MetHb) assessed 48 h after iNO initiation was the primary endpoint. Reverse-transcription polymerase chain reaction for SARS-CoV-2, inflammatory markers during hospitalization, and heart ultrasounds during the iNO<sub>200</sub> treatments were evaluated.</p></div><div><h3>Results</h3><p>MetHb difference between iNO groups remained within the non-inferiority limit of 3 %, indicating comparable treatments despite being statistically different (p-value<0.01). Both groups presented similar SpO<sub>2</sub>/FiO<sub>2</sub> ratio at 48 h (iNO<sub>200</sub> vs. iNO<sub>200/20</sub> 341[334–356] vs. 359 [331–380], respectively, p-value = 0.436). Both groups showed the same time to SARS-CoV-2 negativization, hospital length of stay, and recovery time. iNO-treated patients showed quicker SARS-CoV-2 negativization compared to a similar group of non-iNO patients (HR 2.57, 95%CI 1.04–6.33). During the 228 treatments, iNO<sub>200</sub> and iNO<sub>200/20</sub> groups were comparable for safety, hemodynamic stability, and respiratory function improvement.</p></div><div><h3>Conclusions</h3><p>iNO<sub>200/20</sub> and iNO<sub>200</sub> are equally safe in non-intubated patients with COVID-19-induced respiratory failure with regards to MetHb and NO<sub>2</sub>. Larger studies should investigate whether iNO<sub>200/20</sub> leads to better outcomes compared to non-iNO treated patients.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 41-48"},"PeriodicalIF":3.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity is commonly linked with white adipose tissue (WAT) dysfunction, setting off inflammation and oxidative stress, both key contributors to the cardiometabolic complications associated with obesity. To improve metabolic and cardiovascular health, countering these inflammatory and oxidative signaling processes is crucial. Offering potential in this context, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by nitro-fatty acids (NO2-FA) promote diverse anti-inflammatory signaling and counteract oxidative stress. Additionally, we previously highlighted that nitro-oleic acid (NO2-OA) preferentially accumulates in WAT and provides protection against already established high fat diet (HFD)-mediated impaired glucose tolerance. The precise mechanism accounting for these protective effects remained largely unexplored until now. Herein, we reveal that protective effects of improved glucose tolerance by NO2-OA is absent when Nrf2 is specifically ablated in adipocytes (ANKO mice). NO2-OA treatment did not alter body weight between ANKO and littermate controls (Nrf2fl/fl) mice on both the HFD and low-fat diet (LFD). As expected, at day 76 (before NO2-OA treatment) and notably at day 125 (daily treatment of 15 mg/kg NO2-OA for 48 days), both HFD-fed Nrf2fl/fl and ANKO mice exhibited increased fat mass and reduced lean mass compared to LFD controls. However, throughout the NO2-OA treatment, no distinction was observed between Nrf2fl/fl and ANKO in the HFD-fed mice as well as in the Nrf2fl/fl mice fed a LFD. Glucose tolerance tests revealed impaired glucose tolerance in HFD-fed Nrf2fl/fl and ANKO compared to LFD-fed Nrf2fl/fl mice. Notably, NO2-OA treatment improved glucose tolerance in HFD-fed Nrf2fl/fl but did not yield the same improvement in ANKO mice at days 15, 30, and 55 of treatment. Unraveling the pathways linked to NO2-OA's protective effects in obesity-mediated impairment in glucose tolerance is pivotal within the realm of precision medicine, crucially propelling future applications and refining novel drug-based strategies.
{"title":"Adipocyte-specific Nrf2 deletion negates nitro-oleic acid benefits on glucose tolerance in diet-induced obesity","authors":"D.V. Chartoumpekis , I. Chen , S.R. Salvatore , F.J. Schopfer , B.A. Freeman , N.K.H. Khoo","doi":"10.1016/j.niox.2024.06.002","DOIUrl":"10.1016/j.niox.2024.06.002","url":null,"abstract":"<div><p>Obesity is commonly linked with white adipose tissue (WAT) dysfunction, setting off inflammation and oxidative stress, both key contributors to the cardiometabolic complications associated with obesity. To improve metabolic and cardiovascular health, countering these inflammatory and oxidative signaling processes is crucial. Offering potential in this context, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by nitro-fatty acids (NO<sub>2</sub>-FA) promote diverse anti-inflammatory signaling and counteract oxidative stress. Additionally, we previously highlighted that nitro-oleic acid (NO<sub>2</sub>-OA) preferentially accumulates in WAT and provides protection against already established high fat diet (HFD)-mediated impaired glucose tolerance. The precise mechanism accounting for these protective effects remained largely unexplored until now. Herein, we reveal that protective effects of improved glucose tolerance by NO<sub>2</sub>-OA is absent when Nrf2 is specifically ablated in adipocytes (ANKO mice). NO<sub>2</sub>-OA treatment did not alter body weight between ANKO and littermate controls (Nrf2<sup>fl/fl</sup>) mice on both the HFD and low-fat diet (LFD). As expected, at day 76 (before NO<sub>2</sub>-OA treatment) and notably at day 125 (daily treatment of 15 mg/kg NO<sub>2</sub>-OA for 48 days), both HFD-fed Nrf2<sup>fl/fl</sup> and ANKO mice exhibited increased fat mass and reduced lean mass compared to LFD controls. However, throughout the NO<sub>2</sub>-OA treatment, no distinction was observed between Nrf2<sup>fl/fl</sup> and ANKO in the HFD-fed mice as well as in the Nrf2<sup>fl/fl</sup> mice fed a LFD. Glucose tolerance tests revealed impaired glucose tolerance in HFD-fed Nrf2<sup>fl/fl</sup> and ANKO compared to LFD-fed Nrf2<sup>fl/fl</sup> mice. Notably, NO<sub>2</sub>-OA treatment improved glucose tolerance in HFD-fed Nrf2<sup>fl/fl</sup> but did not yield the same improvement in ANKO mice at days 15, 30, and 55 of treatment. Unraveling the pathways linked to NO<sub>2</sub>-OA's protective effects in obesity-mediated impairment in glucose tolerance is pivotal within the realm of precision medicine, crucially propelling future applications and refining novel drug-based strategies.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 75-84"},"PeriodicalIF":3.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1089860324000776/pdfft?md5=ad2f79fdb7ebaa2e2587ac6ddb7537ad&pid=1-s2.0-S1089860324000776-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.niox.2024.06.001
S. Zaigham , R.J. Bertelsen , S.C. Dharmage , V. Schlünssen , N.O. Jögi , L. Palacios Gomez , M. Holm , A. Oudin , M.J. Abramson , T. Sigsgaard , R. Jõgi , C. Svanes , A.C. Olin , B. Forsberg , C. Janson , E. Nerpin , A. Johannessen , A. Malinovschi
Background
Parental allergic diseases and smoking influence respiratory disease in the offspring but it is not known whether they influence fractional exhaled nitric oxide (FeNO) in the offspring. We investigated whether parental allergic diseases, parental smoking and FeNO levels in parents were associated with FeNO levels in their offspring.
Methods
We studied 609 offspring aged 16–47 years from the Respiratory Health in Northern Europe, Spain and Australia generation (RHINESSA) study with parental information from the Respiratory Health in Northern Europe (RHINE) III study and the European Community Respiratory Health Survey (ECRHS) III. Linear regression models were used to assess the association between offspring FeNO and parental FeNO, allergic rhinitis, asthma and smoking, while adjusting for potential confounding factors.
Results
Parental allergic rhinitis was significantly associated with higher FeNO in the offspring, both on the paternal and maternal side (percent change: 20.3 % [95%CI 5.0–37.7], p = 0.008, and 13.8 % [0.4–28.9], p = 0.043, respectively). Parental allergic rhinitis with asthma in any parent was also significantly associated with higher offspring FeNO (16.2 % [0.9–33.9], p = 0.037). However, parental asthma alone and smoking were not associated with offspring FeNO. Parental FeNO was not associated with offspring FeNO after full adjustments for offspring and parental factors.
Conclusions
Parental allergic rhinitis but not parental asthma was associated with higher levels of FeNO in offspring. These findings suggest that parental allergic rhinitis status should be considered when interpreting FeNO levels in offspring beyond childhood.
{"title":"An observational analysis on the influence of parental allergic rhinitis, asthma and smoking on exhaled nitric oxide in offspring","authors":"S. Zaigham , R.J. Bertelsen , S.C. Dharmage , V. Schlünssen , N.O. Jögi , L. Palacios Gomez , M. Holm , A. Oudin , M.J. Abramson , T. Sigsgaard , R. Jõgi , C. Svanes , A.C. Olin , B. Forsberg , C. Janson , E. Nerpin , A. Johannessen , A. Malinovschi","doi":"10.1016/j.niox.2024.06.001","DOIUrl":"10.1016/j.niox.2024.06.001","url":null,"abstract":"<div><h3>Background</h3><p>Parental allergic diseases and smoking influence respiratory disease in the offspring but it is not known whether they influence fractional exhaled nitric oxide (FeNO) in the offspring. We investigated whether parental allergic diseases, parental smoking and FeNO levels in parents were associated with FeNO levels in their offspring.</p></div><div><h3>Methods</h3><p>We studied 609 offspring aged 16–47 years from the Respiratory Health in Northern Europe, Spain and Australia generation (RHINESSA) study with parental information from the Respiratory Health in Northern Europe (RHINE) III study and the European Community Respiratory Health Survey (ECRHS) III. Linear regression models were used to assess the association between offspring FeNO and parental FeNO, allergic rhinitis, asthma and smoking, while adjusting for potential confounding factors.</p></div><div><h3>Results</h3><p>Parental allergic rhinitis was significantly associated with higher FeNO in the offspring, both on the paternal and maternal side (percent change: 20.3 % [95%CI 5.0–37.7], p = 0.008, and 13.8 % [0.4–28.9], p = 0.043, respectively). Parental allergic rhinitis with asthma in any parent was also significantly associated with higher offspring FeNO (16.2 % [0.9–33.9], p = 0.037). However, parental asthma alone and smoking were not associated with offspring FeNO. Parental FeNO was not associated with offspring FeNO after full adjustments for offspring and parental factors.</p></div><div><h3>Conclusions</h3><p>Parental allergic rhinitis but not parental asthma was associated with higher levels of FeNO in offspring. These findings suggest that parental allergic rhinitis status should be considered when interpreting FeNO levels in offspring beyond childhood.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 60-66"},"PeriodicalIF":3.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1089860324000764/pdfft?md5=82733d116ee630e9b41a516c46b1baac&pid=1-s2.0-S1089860324000764-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.niox.2024.05.004
Huifang Liu , Yang Zheng , Fuming Li , Bin Geng , Feng Liao
Endogenous hydrogen sulfide (H2S) plays an important role in bone metabolism. However, the exact role of H2S in intestinal calcium and phosphorus absorption and its potential in preventing and treating primary osteoporosis remains unknown. Therefore, this study aimed to investigate the potential of H2S in promoting intestinal calcium and phosphorus absorption and alleviating primary osteoporosis. We measured the apparent absorptivity of calcium, femoral bone density, expression and sulfhydration of the duodenal endoplasmic reticulum protein of 57 kDa (ERp57), duodenal cystathionine γ-lyase (CSE) expression, and serum H2S content in adult and old CSE-knockout and wild-type mice. We also assessed intracellular reactive oxygen species (ROS) and Ca2+ content in CSE-overexpressing or knockout intestinal epithelial cell (IEC)-6 cells. In senile mice, CSE knockout decreased endogenous H2S, ERp57 sulfhydration, and intestinal calcium absorption and worsened osteoporosis, which were partially reversed by GYY4137, an H2S donor. CSE overexpression in IEC-6 cells increased ERp57 sulfhydration, protein kinase A and C activity, and intracellular Ca2+, whereas CSE knockout exerted the opposite effects. Furthermore, hydrogen peroxide (H2O2) stimulation had similar effects as in CSE knockout, which were reversed by pretreatment with sodium hydrosulfide before H2O2 stimulation and restored by DL-dithiothreitol. These findings suggest that H2S attenuates primary osteoporosis by preventing ROS-induced ERp57 damage in intestinal epithelial cells by enhancing ERp57 activity and promoting intestinal calcium absorption, thereby aiding in developing therapeutic interventions to prevent osteoporosis.
{"title":"Endoplasmic reticulum protein of 57 kDa sulfhydration promotes intestinal calcium absorption to attenuate primary osteoporosis","authors":"Huifang Liu , Yang Zheng , Fuming Li , Bin Geng , Feng Liao","doi":"10.1016/j.niox.2024.05.004","DOIUrl":"10.1016/j.niox.2024.05.004","url":null,"abstract":"<div><p>Endogenous hydrogen sulfide (H<sub>2</sub>S) plays an important role in bone metabolism. However, the exact role of H<sub>2</sub>S in intestinal calcium and phosphorus absorption and its potential in preventing and treating primary osteoporosis remains unknown. Therefore, this study aimed to investigate the potential of H<sub>2</sub>S in promoting intestinal calcium and phosphorus absorption and alleviating primary osteoporosis. We measured the apparent absorptivity of calcium, femoral bone density, expression and sulfhydration of the duodenal endoplasmic reticulum protein of 57 kDa (ERp57), duodenal cystathionine γ-lyase (CSE) expression, and serum H<sub>2</sub>S content in adult and old CSE-knockout and wild-type mice. We also assessed intracellular reactive oxygen species (ROS) and Ca<sup>2+</sup> content in CSE-overexpressing or knockout intestinal epithelial cell (IEC)-6 cells. In senile mice, CSE knockout decreased endogenous H<sub>2</sub>S, ERp57 sulfhydration, and intestinal calcium absorption and worsened osteoporosis, which were partially reversed by GYY4137, an H<sub>2</sub>S donor. CSE overexpression in IEC-6 cells increased ERp57 sulfhydration, protein kinase A and C activity, and intracellular Ca<sup>2+</sup>, whereas CSE knockout exerted the opposite effects. Furthermore, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) stimulation had similar effects as in CSE knockout, which were reversed by pretreatment with sodium hydrosulfide before H<sub>2</sub>O<sub>2</sub> stimulation and restored by DL-dithiothreitol. These findings suggest that H<sub>2</sub>S attenuates primary osteoporosis by preventing ROS-induced ERp57 damage in intestinal epithelial cells by enhancing ERp57 activity and promoting intestinal calcium absorption, thereby aiding in developing therapeutic interventions to prevent osteoporosis.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 32-40"},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1089860324000752/pdfft?md5=459653b0d397adc1664e7eb514afff00&pid=1-s2.0-S1089860324000752-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of ‘redox biochemistry’ in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
{"title":"Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond","authors":"Surupa Chakraborty, Akansha Mishra , Ankita Choudhuri , Tamal Bhaumik, Rajib Sengupta","doi":"10.1016/j.niox.2024.05.002","DOIUrl":"10.1016/j.niox.2024.05.002","url":null,"abstract":"<div><p>Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of ‘redox biochemistry’ in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 18-31"},"PeriodicalIF":3.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-26DOI: 10.1016/j.niox.2024.05.003
Aline Renata Pavan , Barbara Terroni , Jean Leandro Dos Santos
Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.
镰状细胞性贫血(SCA)是一种以血红蛋白(HbS)异常为特征的遗传性血红蛋白病,是最常见的镰状细胞病(SCD)。镰状细胞病的特点是血管内皮功能障碍,这在很大程度上导致了各种临床症状,包括但不限于肺动脉高压、早搏、腿部皮肤溃疡和中风。SCA 内皮功能障碍(ED)的病理生理学是一个涉及慢性炎症和高凝状态的多方面过程。关键因素包括溶血相关因素,如精氨酸和一氧化氮(NO)可用性降低、血管粘附分子水平升高、NO 合酶的解偶联效应、精氨酸酶活性增强、以氧化应激为特征的环境(产生活性氧和氮物种)、缺血再灌注损伤的发生以及载脂蛋白 A-1 的耗竭。针对 ED 的新型干预措施的紧迫性显而易见。目前,研究的重点是破坏精氨酸-一氧化氮通路的小分子,它们具有抗炎和抗氧化特性,同时能降低细胞和血管粘附分子的水平。在这篇微型综述文章中,我们深入探讨了治疗 SCD ED 的策略所取得的进展,旨在为药物设计提供启示。
{"title":"Endothelial dysfunction in Sickle Cell Disease: Strategies for the treatment","authors":"Aline Renata Pavan , Barbara Terroni , Jean Leandro Dos Santos","doi":"10.1016/j.niox.2024.05.003","DOIUrl":"10.1016/j.niox.2024.05.003","url":null,"abstract":"<div><p>Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 7-17"},"PeriodicalIF":3.9,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}