Pub Date : 2024-05-26DOI: 10.1016/j.niox.2024.05.001
George J. Dugbartey , Deborah Nanteer , Ivy Osae
Intestinal transplantation is a complex technical procedure that provides patients suffering from end-stage intestinal failure an opportunity to enjoy improved quality of life, nutrition and survival. Compared to other types of organ transplants, it is a relatively new advancement in the field of organ transplantation. Nevertheless, great advances have been made over the past few decades to the present era, including the use of ischemic preconditioning, gene therapy, and addition of pharmacological supplements to preservation solutions. However, despite these strides, intestinal transplantation is still a challenging endeavor due to several factors. Notable among them is ischemia-reperfusion injury (IRI), which results in loss of cellular integrity and mucosal barrier function. In addition, IRI causes graft failure, delayed graft function, and decreased graft and recipient survival. This has necessitated the search for novel therapeutic avenues and improved transplantation protocols to prevent or attenuate intestinal IRI. Among the many candidate agents that are being investigated to combat IRI and its associated complications, nitric oxide (NO). NO is an endogenously produced gaseous signaling molecule with several therapeutic properties. The purpose of this mini-review is to discuss IRI and its related complications in intestinal transplantation, and NO as an emerging pharmacological tool against this challenging pathological condition. i
肠道移植是一项复杂的技术程序,它为患有终末期肠道功能衰竭的患者提供了一个改善生活质量、营养和存活率的机会。与其他类型的器官移植相比,肠道移植是器官移植领域相对较新的进展。尽管如此,从过去几十年到现在,我们已经取得了巨大的进步,包括使用缺血预处理、基因治疗以及在保存液中添加药理补充剂。然而,尽管取得了这些进步,由于多种因素的影响,肠道移植仍然是一项具有挑战性的工作。其中值得注意的是缺血再灌注损伤(IRI),它会导致细胞完整性和粘膜屏障功能丧失。此外,IRI 还会导致移植物失败、移植物功能延迟以及移植物和受体存活率降低。因此,有必要寻找新的治疗途径和改进的移植方案,以预防或减轻肠道 IRI。在许多正在研究的抗肠道 IRI 及其相关并发症的候选药物中,包括一氧化氮(NO)。一氧化氮是一种内源性产生的气体信号分子,具有多种治疗特性。本微型综述旨在讨论肠道移植中的 IRI 及其相关并发症,以及一氧化氮作为一种新出现的药理工具对这一具有挑战性的病理条件的作用。
{"title":"Nitric oxide protects intestinal mucosal barrier function and prevents acute graft rejection after intestinal transplantation: A mini-review","authors":"George J. Dugbartey , Deborah Nanteer , Ivy Osae","doi":"10.1016/j.niox.2024.05.001","DOIUrl":"10.1016/j.niox.2024.05.001","url":null,"abstract":"<div><p>Intestinal transplantation is a complex technical procedure that provides patients suffering from end-stage intestinal failure an opportunity to enjoy improved quality of life, nutrition and survival. Compared to other types of organ transplants, it is a relatively new advancement in the field of organ transplantation. Nevertheless, great advances have been made over the past few decades to the present era, including the use of ischemic preconditioning, gene therapy, and addition of pharmacological supplements to preservation solutions. However, despite these strides, intestinal transplantation is still a challenging endeavor due to several factors. Notable among them is ischemia-reperfusion injury (IRI), which results in loss of cellular integrity and mucosal barrier function. In addition, IRI causes graft failure, delayed graft function, and decreased graft and recipient survival. This has necessitated the search for novel therapeutic avenues and improved transplantation protocols to prevent or attenuate intestinal IRI. Among the many candidate agents that are being investigated to combat IRI and its associated complications, nitric oxide (NO). NO is an endogenously produced gaseous signaling molecule with several therapeutic properties. The purpose of this mini-review is to discuss IRI and its related complications in intestinal transplantation, and NO as an emerging pharmacological tool against this challenging pathological condition. i</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"149 ","pages":"Pages 1-6"},"PeriodicalIF":3.9,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.niox.2024.04.010
Chenguang Wei, Anni Vanhatalo, Matthew I. Black, Jamie R. Blackwell, Raghini Rajaram, Stefan Kadach, Andrew M. Jones
Dietary nitrate (NO3−) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO2−]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO3−, NO2−, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO3− supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO3−-rich beetroot juice (BR) (∼12.8 mmol NO3−) and NO3−-depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5–3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (−2 ± 3 mmHg, P = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0–30 ms (39 ± 57 N m s−1, P = 0.03) and 0–50 ms (79 ± 99 N m s−1, P = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO2−] was correlated with lower diastolic BP (r = −0.68, P = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO3−] was correlated with greater RTD at 0–30 ms (r = 0.64, P=0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO3−] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO3− ingestion in humans.
{"title":"Relationships between nitric oxide biomarkers and physiological outcomes following dietary nitrate supplementation","authors":"Chenguang Wei, Anni Vanhatalo, Matthew I. Black, Jamie R. Blackwell, Raghini Rajaram, Stefan Kadach, Andrew M. Jones","doi":"10.1016/j.niox.2024.04.010","DOIUrl":"10.1016/j.niox.2024.04.010","url":null,"abstract":"<div><p>Dietary nitrate (NO<sub>3</sub><sup>−</sup>) supplementation can increase nitric oxide (NO) bioavailability, reduce blood pressure (BP) and improve muscle contractile function in humans. Plasma nitrite concentration (plasma [NO<sub>2</sub><sup>−</sup>]) is the most oft-used biomarker of NO bioavailability. However, it is unclear which of several NO biomarkers (NO<sub>3</sub><sup>−</sup>, NO<sub>2</sub><sup>−</sup>, S-nitrosothiols (RSNOs)) in plasma, whole blood (WB), red blood cells (RBC) and skeletal muscle correlate with the physiological effects of acute and chronic dietary NO<sub>3</sub><sup>−</sup> supplementation. Using a randomized, double-blind, crossover design, 12 participants (9 males) consumed NO<sub>3</sub><sup>−</sup>-rich beetroot juice (BR) (∼12.8 mmol NO<sub>3</sub><sup>−</sup>) and NO<sub>3</sub><sup>−</sup>-depleted placebo beetroot juice (PL) acutely and then chronically (for two weeks). Biological samples were collected, resting BP was assessed, and 10 maximal voluntary isometric contractions of the knee extensors were performed at 2.5–3.5 h following supplement ingestion on day 1 and day 14. Diastolic BP was significantly lower in BR (−2 ± 3 mmHg, <em>P</em> = 0.03) compared to PL following acute supplementation, while the absolute rate of torque development (RTD) was significantly greater in BR at 0–30 ms (39 ± 57 N m s<sup>−1</sup>, <em>P</em> = 0.03) and 0–50 ms (79 ± 99 N m s<sup>−1</sup>, <em>P</em> = 0.02) compared to PL following two weeks supplementation. Greater WB [RSNOs] rather than plasma [NO<sub>2</sub><sup>−</sup>] was correlated with lower diastolic BP (<em>r</em> = −0.68, <em>P</em> = 0.02) in BR compared to PL following acute supplementation, while greater skeletal muscle [NO<sub>3</sub><sup>−</sup>] was correlated with greater RTD at 0–30 ms (<em>r</em> = 0.64<em>, P=</em>0.03) in BR compared to PL following chronic supplementation. We conclude that [RSNOs] in blood, and [NO<sub>3</sub><sup>−</sup>] in skeletal muscle, are relevant biomarkers of NO bioavailability which are related to the reduction of BP and the enhanced muscle contractile function following dietary NO<sub>3</sub><sup>−</sup> ingestion in humans.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"148 ","pages":"Pages 23-33"},"PeriodicalIF":3.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S108986032400065X/pdfft?md5=aef4e36cffba5496c4beadf4d7c9713d&pid=1-s2.0-S108986032400065X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1016/j.niox.2024.04.009
Katherine A. Kelly , Cristine L. Heaps , Guoyao Wu , Vinod Labhasetwar , Cynthia J. Meininger
Endothelial dysfunction, underlying the vascular complications of diabetes and other cardiovascular disorders, may result from uncoupling of endothelial nitric oxide synthase (eNOS) activity due to decreased levels of tetrahydrobiopterin (BH4), a critical co-factor for eNOS. Some clinical trials attempting to deliver exogenous BH4 as a potential therapeutic strategy in vascular disease states have failed due to oxidation of BH4 in the circulation. We sought to develop a means of protecting BH4 from oxidation while delivering it to dysfunctional endothelial cells. Polymeric and solid lipid nanoparticles (NPs) loaded with BH4 were delivered by injection or oral gavage, respectively, to streptozotocin-induced diabetic rats. BH4 was measured in coronary endothelial cells and endothelium-dependent vascular reactivity was assessed in vascular rings. Lymphatic uptake of orally delivered lipid NPs was verified by sampling mesenteric lymph. BH4-loaded polymeric NPs maintained nitric oxide production by cultured endothelial cells under conditions of oxidative stress. BH4-loaded NPs, delivered via injection or ingestion, increased coronary endothelial BH4 concentration and improved endothelium-dependent vasorelaxation in diabetic rats. Pharmacodynamics assessment indicated peak concentration of solid lipid NPs in the systemic bloodstream 6 hours after ingestion, with disappearance noted by 48 hours. These studies support the feasibility of utilizing NPs to deliver BH4 to dysfunctional endothelial cells to increase nitric oxide bioavailability. BH4-loaded NPs could provide an innovative tool to restore redox balance in blood vessels and modulate eNOS-mediated vascular function to reverse or retard vascular disease in diabetes.
{"title":"Nanoparticle-mediated delivery of tetrahydrobiopterin restores endothelial function in diabetic rats","authors":"Katherine A. Kelly , Cristine L. Heaps , Guoyao Wu , Vinod Labhasetwar , Cynthia J. Meininger","doi":"10.1016/j.niox.2024.04.009","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.009","url":null,"abstract":"<div><p>Endothelial dysfunction, underlying the vascular complications of diabetes and other cardiovascular disorders, may result from uncoupling of endothelial nitric oxide synthase (eNOS) activity due to decreased levels of tetrahydrobiopterin (BH4), a critical co-factor for eNOS. Some clinical trials attempting to deliver exogenous BH4 as a potential therapeutic strategy in vascular disease states have failed due to oxidation of BH4 in the circulation. We sought to develop a means of protecting BH4 from oxidation while delivering it to dysfunctional endothelial cells. Polymeric and solid lipid nanoparticles (NPs) loaded with BH4 were delivered by injection or oral gavage, respectively, to streptozotocin-induced diabetic rats. BH4 was measured in coronary endothelial cells and endothelium-dependent vascular reactivity was assessed in vascular rings. Lymphatic uptake of orally delivered lipid NPs was verified by sampling mesenteric lymph. BH4-loaded polymeric NPs maintained nitric oxide production by cultured endothelial cells under conditions of oxidative stress. BH4-loaded NPs, delivered via injection or ingestion, increased coronary endothelial BH4 concentration and improved endothelium-dependent vasorelaxation in diabetic rats. Pharmacodynamics assessment indicated peak concentration of solid lipid NPs in the systemic bloodstream 6 hours after ingestion, with disappearance noted by 48 hours. These studies support the feasibility of utilizing NPs to deliver BH4 to dysfunctional endothelial cells to increase nitric oxide bioavailability. BH4-loaded NPs could provide an innovative tool to restore redox balance in blood vessels and modulate eNOS-mediated vascular function to reverse or retard vascular disease in diabetes.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"148 ","pages":"Pages 13-22"},"PeriodicalIF":3.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1089860324000521/pdfft?md5=1538ec9258168d27a80e05ecb4b33592&pid=1-s2.0-S1089860324000521-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1016/j.niox.2024.04.007
Tarciso A. Sellani , Samanta L. Tomaz , Jéssica M. Gonçalves , Adriana Lima , Carolina C. de Amat Herbozo , Gabrielli N. Silva , Mônica Gambero , Ieda M. Longo-Maugéri , Karin A. Simon , Hugo P. Monteiro , Elaine G. Rodrigues
Epidemiological studies show a strong correlation between diabetes and the increased risk of developing different cancers, including melanoma. In the present study, we investigated the impact of a streptozotocin (STZ)-induced hyperglycemic environment on B16F10-Nex2 murine melanoma development. Hyperglycemic male C57Bl/6 mice showed increased subcutaneous tumor development, partially inhibited by metformin. Tumors showed increased infiltrating macrophages, and augmented IL-10 and nitric oxide (NO) concentrations. In vivo neutralization of IL-10, NO synthase inhibition, and depletion of macrophages reduced tumor development. STZ-treated TLR4 KO animals showed delayed tumor development; the transfer of hyperglycemic C57Bl/6 macrophages to TLR4 KO reversed this effect. Increased concentrations of IL-10 present in tumor homogenates of hyperglycemic mice induced a higher number of pre-angiogenic structures in vitro, and B16F10-Nex2 cells incubated with different glucose concentrations in vitro produced increased levels of IL-10. In summary, our findings show that a hyperglycemic environment stimulates murine melanoma B16F10-Nex2 primary tumor growth, and this effect is dependent on tumor cell stimulation, increased numbers of macrophages, and augmented IL-10 and NO concentrations. These findings show the involvement of tumor cells and other components of the tumor microenvironment in the development of subcutaneous melanoma under hyperglycemic conditions, defining novel targets for melanoma control in diabetic patients.
流行病学研究表明,糖尿病与罹患不同癌症(包括黑色素瘤)的风险增加密切相关。在本研究中,我们调查了链脲菌素(STZ)诱导的高血糖环境对 B16F10-Nex2 小鼠黑色素瘤发展的影响。高血糖雄性 C57Bl/6 小鼠皮下肿瘤生长速度加快,二甲双胍可部分抑制肿瘤生长。肿瘤显示浸润巨噬细胞增加,IL-10和一氧化氮(NO)浓度升高。体内中和IL-10、抑制一氧化氮合成酶和清除巨噬细胞可减少肿瘤的发展。STZ 处理的 TLR4 KO 动物显示肿瘤发生延迟;将高血糖的 C57Bl/6 巨噬细胞转移给 TLR4 KO 可逆转这种效应。高血糖小鼠肿瘤匀浆中IL-10浓度的增加诱导了更多的体外前血管生成结构,体外与不同葡萄糖浓度培养的B16F10-Nex2细胞产生了更高水平的IL-10。总之,我们的研究结果表明,高血糖环境会刺激小鼠黑色素瘤 B16F10-Nex2 原发性肿瘤的生长,而这种效应依赖于肿瘤细胞的刺激、巨噬细胞数量的增加以及 IL-10 和 NO 浓度的增加。这些研究结果表明,在高血糖条件下,肿瘤细胞和肿瘤微环境的其他成分参与了皮下黑色素瘤的发展,为糖尿病患者控制黑色素瘤确定了新的靶点。
{"title":"Macrophages, IL-10, and nitric oxide increase, induced by hyperglycemic conditions, impact the development of murine melanoma B16F10-Nex2","authors":"Tarciso A. Sellani , Samanta L. Tomaz , Jéssica M. Gonçalves , Adriana Lima , Carolina C. de Amat Herbozo , Gabrielli N. Silva , Mônica Gambero , Ieda M. Longo-Maugéri , Karin A. Simon , Hugo P. Monteiro , Elaine G. Rodrigues","doi":"10.1016/j.niox.2024.04.007","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.007","url":null,"abstract":"<div><p>Epidemiological studies show a strong correlation between diabetes and the increased risk of developing different cancers, including melanoma. In the present study, we investigated the impact of a streptozotocin (STZ)-induced hyperglycemic environment on B16F10-Nex2 murine melanoma development. Hyperglycemic male C57Bl/6 mice showed increased subcutaneous tumor development, partially inhibited by metformin. Tumors showed increased infiltrating macrophages, and augmented IL-10 and nitric oxide (NO) concentrations. <em>In vivo</em> neutralization of IL-10, NO synthase inhibition, and depletion of macrophages reduced tumor development. STZ-treated TLR4 KO animals showed delayed tumor development; the transfer of hyperglycemic C57Bl/6 macrophages to TLR4 KO reversed this effect. Increased concentrations of IL-10 present in tumor homogenates of hyperglycemic mice induced a higher number of pre-angiogenic structures <em>in vitro</em>, and B16F10-Nex2 cells incubated with different glucose concentrations <em>in vitro</em> produced increased levels of IL-10. In summary, our findings show that a hyperglycemic environment stimulates murine melanoma B16F10-Nex2 primary tumor growth, and this effect is dependent on tumor cell stimulation, increased numbers of macrophages, and augmented IL-10 and NO concentrations. These findings show the involvement of tumor cells and other components of the tumor microenvironment in the development of subcutaneous melanoma under hyperglycemic conditions, defining novel targets for melanoma control in diabetic patients.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"148 ","pages":"Pages 1-12"},"PeriodicalIF":3.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1016/j.niox.2024.04.008
Tanveer A. Tabish , Jiamin Xu , Christopher K. Campbell , Manzar Abbas , William K. Myers , Pravin Didwal , Dario Carugo , Fang Xie , Mark J. Crabtree , Eleanor Stride , Craig A. Lygate
Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 μM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.
一个多世纪以来,有机硝酸盐等一氧化氮(NO)供体药物一直被用于治疗心血管疾病。这些供体主要在全身产生一氧化氮。然而,有时需要控制 NO 的释放量、释放位置和释放时间。我们介绍了一种新型 pH 值敏感型 NO 释放系统的设计,该系统是通过弱分子相互作用合成二肽二苯丙氨酸(FF)和氧化石墨烯(GO)共组装混合纳米片(称为 FF@GO)来实现的。通过 X 射线衍射、拉曼光谱、傅立叶变换红外光谱、zeta 电位测量、X 射线光电子能谱、扫描和透射电子显微镜对这些混合纳米片进行了表征。由于 GO 和二肽结构单元上存在羧酸和胺官能团,弱分子相互作用(包括静电、氢键和 π-π 堆积)对 pH 值非常敏感。在这里,我们证明了这种制剂可以装载 NO 气体,二肽在中性 pH 值下作为抑制剂抑制 NO 的猝发释放;但在酸性 pH 值下,它能够以每分钟高达 0.6 μM 的速度释放 NO,与健康内皮产生的 NO 量相当。总之,二肽与石墨烯的创新共轭可以在生理相关浓度下以 pH 值响应的方式储存和释放 NO 气体。 pH 值响应型 NO 释放有机无机纳米混合物可能被证明有助于治疗心血管疾病和其他病症。
{"title":"pH-sensitive release of nitric oxide gas using peptide-graphene co-assembled hybrid nanosheets","authors":"Tanveer A. Tabish , Jiamin Xu , Christopher K. Campbell , Manzar Abbas , William K. Myers , Pravin Didwal , Dario Carugo , Fang Xie , Mark J. Crabtree , Eleanor Stride , Craig A. Lygate","doi":"10.1016/j.niox.2024.04.008","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.008","url":null,"abstract":"<div><p>Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 μM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"147 ","pages":"Pages 42-50"},"PeriodicalIF":3.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S108986032400051X/pdfft?md5=3dd8deb85683d1ce4afd8e1ac3e471e9&pid=1-s2.0-S108986032400051X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-11DOI: 10.1016/j.niox.2024.04.006
Naiara Cristina Bessas , Evelyn Christine de Souza Arantes , Natasha Marques Cassani , Uriel Enrique Aquino Ruiz , Igor Andrade Santos , Daniel Oliveira Silva Martins , Ana Laura Costa Oliveira , Giovanna André Antoniucci , Arthur Henrique Cavalcante de Oliveira , Gilson DeFreitas-Silva , Ana Carolina Gomes Jardim , Renata Galvão de Lima
Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6′,2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA–[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA–[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA–[RuII(bd)(NO2)(tpy)]+ and fs-DNA–[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA–[RuII(bd)(NO2)(tpy)]+ and fs-DNA–[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.
{"title":"Influence of diimine bidentate ligand in the nitrosyl and nitro terpyridine ruthenium complex on the HSA/DNA interaction and antiviral activity","authors":"Naiara Cristina Bessas , Evelyn Christine de Souza Arantes , Natasha Marques Cassani , Uriel Enrique Aquino Ruiz , Igor Andrade Santos , Daniel Oliveira Silva Martins , Ana Laura Costa Oliveira , Giovanna André Antoniucci , Arthur Henrique Cavalcante de Oliveira , Gilson DeFreitas-Silva , Ana Carolina Gomes Jardim , Renata Galvão de Lima","doi":"10.1016/j.niox.2024.04.006","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.006","url":null,"abstract":"<div><p>Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [Ru<sup>II</sup>(L)(NO<sub>2</sub>)(tpy)]PF<sub>6</sub> where tpy = 2,2':6′,2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or <em>o</em>-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [Ru<sup>II</sup>(L)(NO<sub>2</sub>)(tpy)]<sup>+</sup> were evaluated. The <em>K</em><sub>a</sub> values for the HSA–[Ru<sup>II</sup>(bdq)(NO<sub>2</sub>)(tpy)]<sup>+</sup> is 10 times bigger than HSA–[Ru<sup>II</sup>(bd)(NO<sub>2</sub>)(tpy)]<sup>+</sup>. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [Ru<sup>II</sup>(bdq)(NO<sub>2</sub>)(tpy)]<sup>+</sup> is found close to the Trp-241 residue, while the [Ru<sup>II</sup>(bd)(NO<sub>2</sub>)(tpy)]<sup>+</sup> complex is close to Tyr residues. The interaction with fish sperm <em>fs</em>-DNA using direct spectrophotometric titration (K<sub>b</sub>) and ethidium bromide replacement (K<sub>SV</sub> and K<sub>app</sub>) showed weak interaction in the system <em>fs</em>-DNA-[Ru<sup>II</sup>(bdq)(NO)(tpy)]<sup>+</sup>. Furthermore, <em>fs</em>-DNA–[Ru<sup>II</sup>(bd)(NO<sub>2</sub>)(tpy)]<sup>+</sup> and <em>fs</em>-DNA–[Ru<sup>II</sup>(bd)(NO)(tpy)]<sup>3+</sup> system showed higher intercalation constant. Circular dichroism spectra for <em>fs</em>-DNA–[Ru<sup>II</sup>(bd)(NO<sub>2</sub>)(tpy)]<sup>+</sup> and <em>fs</em>-DNA–[Ru<sup>II</sup>(bd)(NO)(tpy)]<sup>3+</sup>, suggest semi-intercalative accompanied by major groove binding interaction modes. The [Ru<sup>II</sup>(bd)(NO<sub>2</sub>)(tpy)]<sup>+</sup> and [Ru<sup>II</sup>(bd)(NO)(tpy)]<sup>3+</sup> inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under <em>S</em>-nitrosylation reaction with cysteine viral.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"147 ","pages":"Pages 26-41"},"PeriodicalIF":3.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-07DOI: 10.1016/j.niox.2024.04.005
Jesse D. Roberts Jr.
In the developing lung, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling are essential in regulating lung formation and vascular tone. Animal studies have linked many anatomical and pathophysiological features of newborn lung disease to abnormalities in the NO/cGMP signaling system. They have demonstrated that driving this system with agonists and antagonists alleviates many of them. This research has spurred the rapid clinical development, testing, and application of several NO/cGMP-targeting therapies with the hope of treating and potentially preventing significant pediatric lung diseases. However, there are instances when the therapeutic effectiveness of these agents is limited. Studies indicate that injury-induced disruption of several critical components within the signaling system may hinder the promise of some of these therapies. Recent research has identified basic mechanisms that suppress NO/cGMP signaling in the injured newborn lung. They have also pinpointed biomarkers that offer insight into the activation of these pathogenic mechanisms and their influence on the NO/cGMP signaling system's integrity in vivo. Together, these will guide the development of new therapies to protect NO/cGMP signaling and safeguard newborn lung development and function. This review summarizes the important role of the NO/cGMP signaling system in regulating pulmonary development and function and our evolving understanding of how it is disrupted by newborn lung injury.
{"title":"Nitric oxide regulation of fetal and newborn lung development and function","authors":"Jesse D. Roberts Jr.","doi":"10.1016/j.niox.2024.04.005","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.005","url":null,"abstract":"<div><p>In the developing lung, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling are essential in regulating lung formation and vascular tone. Animal studies have linked many anatomical and pathophysiological features of newborn lung disease to abnormalities in the NO/cGMP signaling system. They have demonstrated that driving this system with agonists and antagonists alleviates many of them. This research has spurred the rapid clinical development, testing, and application of several NO/cGMP-targeting therapies with the hope of treating and potentially preventing significant pediatric lung diseases. However, there are instances when the therapeutic effectiveness of these agents is limited. Studies indicate that injury-induced disruption of several critical components within the signaling system may hinder the promise of some of these therapies. Recent research has identified basic mechanisms that suppress NO/cGMP signaling in the injured newborn lung. They have also pinpointed biomarkers that offer insight into the activation of these pathogenic mechanisms and their influence on the NO/cGMP signaling system's integrity in vivo. Together, these will guide the development of new therapies to protect NO/cGMP signaling and safeguard newborn lung development and function. This review summarizes the important role of the NO/cGMP signaling system in regulating pulmonary development and function and our evolving understanding of how it is disrupted by newborn lung injury.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"147 ","pages":"Pages 13-25"},"PeriodicalIF":3.9,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1016/j.niox.2024.04.004
Timothy G. Gaulton , Yi Xin , Marcus Victor , Alice Nova , Maurizio Cereda
Acute respiratory distress syndrome (ARDS) is characterized by a redistribution of regional lung perfusion that impairs gas exchange. While speculative, experimental evidence suggests that perfusion redistribution may contribute to regional inflammation and modify disease progression. Unfortunately, tools to visualize and quantify lung perfusion in patients with ARDS are lacking. This review explores recent advances in perfusion imaging techniques that aim to understand the pulmonary circulation in ARDS. Dynamic contrast-enhanced computed tomography captures first-pass kinetics of intravenously injected dye during continuous scan acquisitions. Different contrast characteristics and kinetic modeling have improved its topographic measurement of pulmonary perfusion with high spatial and temporal resolution. Dual-energy computed tomography can map the pulmonary blood volume of the whole lung with limited radiation exposure, enabling its application in clinical research. Electrical impedance tomography can obtain serial topographic assessments of perfusion at the bedside in response to treatments such as inhaled nitric oxide and prone position. Ongoing technological improvements and emerging techniques will enhance lung perfusion imaging and aid its incorporation into the care of patients with ARDS.
{"title":"Imaging the pulmonary vasculature in acute respiratory distress syndrome","authors":"Timothy G. Gaulton , Yi Xin , Marcus Victor , Alice Nova , Maurizio Cereda","doi":"10.1016/j.niox.2024.04.004","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.004","url":null,"abstract":"<div><p>Acute respiratory distress syndrome (ARDS) is characterized by a redistribution of regional lung perfusion that impairs gas exchange. While speculative, experimental evidence suggests that perfusion redistribution may contribute to regional inflammation and modify disease progression. Unfortunately, tools to visualize and quantify lung perfusion in patients with ARDS are lacking. This review explores recent advances in perfusion imaging techniques that aim to understand the pulmonary circulation in ARDS. Dynamic contrast-enhanced computed tomography captures first-pass kinetics of intravenously injected dye during continuous scan acquisitions. Different contrast characteristics and kinetic modeling have improved its topographic measurement of pulmonary perfusion with high spatial and temporal resolution. Dual-energy computed tomography can map the pulmonary blood volume of the whole lung with limited radiation exposure, enabling its application in clinical research. Electrical impedance tomography can obtain serial topographic assessments of perfusion at the bedside in response to treatments such as inhaled nitric oxide and prone position. Ongoing technological improvements and emerging techniques will enhance lung perfusion imaging and aid its incorporation into the care of patients with ARDS.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"147 ","pages":"Pages 6-12"},"PeriodicalIF":3.9,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1016/j.niox.2024.04.003
Brian Strickland , N. Stuart Harris
Nitric oxide was first identified as a novel and effective treatment for persistent pulmonary hypertension of the newborn (PPHN), and has since been found to be efficacious in treating acute respiratory distress syndrome (ARDS) and pulmonary hypertension. Physicians and researchers have also found it shows promise in resource-constrained settings, both within and outside of the hospital, such as in high altitude pulmonary edema (HAPE) and COVID-19. The treatment has been well tolerated in these settings, and is both efficacious and versatile when studied across a variety of clinical environments. Advancements in inhaled nitric oxide continue, and the gas is worthy of investigation as physicians contend with new respiratory and cardiovascular illnesses, as well as unforeseen logistical challenges.
{"title":"Adapting nitric oxide: A review of its foundation, uses in austere medical conditions, and emerging applications","authors":"Brian Strickland , N. Stuart Harris","doi":"10.1016/j.niox.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.003","url":null,"abstract":"<div><p>Nitric oxide was first identified as a novel and effective treatment for persistent pulmonary hypertension of the newborn (PPHN), and has since been found to be efficacious in treating acute respiratory distress syndrome (ARDS) and pulmonary hypertension. Physicians and researchers have also found it shows promise in resource-constrained settings, both within and outside of the hospital, such as in high altitude pulmonary edema (HAPE) and COVID-19. The treatment has been well tolerated in these settings, and is both efficacious and versatile when studied across a variety of clinical environments. Advancements in inhaled nitric oxide continue, and the gas is worthy of investigation as physicians contend with new respiratory and cardiovascular illnesses, as well as unforeseen logistical challenges.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"146 ","pages":"Pages 58-63"},"PeriodicalIF":3.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.niox.2024.04.002
Shamima Akhtar , Komal Sagar , Aishwarya Singh , Milind P. Hote , Ambuj Roy , Alpana Sharma
Aim
The mechanism of NO bioavailability in endothelial dysfunction, the trigger for atherogenesis is still unclear as exogenous nitrate therapy fails to alleviate endothelial dysfunction. Recently, sialin, a nitrate transporter, has been linked to affect tissue nitrate/nitrite levels. Hence, we investigated the role of sialin in NO bioavailability in endothelial dysfunction.
Methods
Serum-starved HUVECs were stimulated with either TNFα or AT-2 for 24 h either alone or in the presence of autophagy inducer or autophagy inhibitor alone. Nitric oxide, nitrite, and nitrate levels were measured in cell supernatant and cell lysate. Quantitative real-time PCR, Annexin V-PI, and monocyte adhesion assays were performed. Immunofluorescence staining for sialin, vWF, and LC3 was performed. STRING database was used to create protein interacting partners for sialin.
Results
Sialin is strongly expressed in activated EC in vitro and atherosclerotic plaque as well as tumor neo-vessel ECs. Sialin mediates nitrate ion efflux and is negatively regulated by autophagy via mTOR pathway. Blocking sialin enhances NO bioavailability, autophagy, cell survival, and eNOS expression while decreasing monocyte adhesion. PPI shows LGALS8 to directly interact with sialin and regulate autophagy, cell-cell adhesion, and apoptosis.
Conclusion
Sialin is a potential novel therapeutic target for treating endothelial dysfunction in atherosclerosis and cancer.
{"title":"Inflammation-induced sialin mediates nitrate efflux in dysfunctional endothelium affecting NO bioavailability","authors":"Shamima Akhtar , Komal Sagar , Aishwarya Singh , Milind P. Hote , Ambuj Roy , Alpana Sharma","doi":"10.1016/j.niox.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.niox.2024.04.002","url":null,"abstract":"<div><h3>Aim</h3><p>The mechanism of NO bioavailability in endothelial dysfunction, the trigger for atherogenesis is still unclear as exogenous nitrate therapy fails to alleviate endothelial dysfunction. Recently, sialin, a nitrate transporter, has been linked to affect tissue nitrate/nitrite levels. Hence, we investigated the role of sialin in NO bioavailability in endothelial dysfunction.</p></div><div><h3>Methods</h3><p>Serum-starved HUVECs were stimulated with either TNFα or AT-2 for 24 h either alone or in the presence of autophagy inducer or autophagy inhibitor alone. Nitric oxide, nitrite, and nitrate levels were measured in cell supernatant and cell lysate. Quantitative real-time PCR, Annexin V-PI, and monocyte adhesion assays were performed. Immunofluorescence staining for sialin, vWF, and LC3 was performed. STRING database was used to create protein interacting partners for sialin.</p></div><div><h3>Results</h3><p>Sialin is strongly expressed in activated EC <em>in vitro</em> and atherosclerotic plaque as well as tumor neo-vessel ECs. Sialin mediates nitrate ion efflux and is negatively regulated by autophagy via mTOR pathway. Blocking sialin enhances NO bioavailability, autophagy, cell survival, and eNOS expression while decreasing monocyte adhesion. PPI shows LGALS8 to directly interact with sialin and regulate autophagy, cell-cell adhesion, and apoptosis.</p></div><div><h3>Conclusion</h3><p>Sialin is a potential novel therapeutic target for treating endothelial dysfunction in atherosclerosis and cancer.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":"146 ","pages":"Pages 37-47"},"PeriodicalIF":3.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}