Dietary specialization between insect stages can reduce intraspecific food competition. The involvement of gut bacteria and the mechanisms underlying this phenomenon received limited attention. Plagiodera versicolora is a pest harming Salicaceae trees. Here, we confirmed dietary specialization in P. versicolora, wherein adults prefer new leaves, while larvae predominantly consume mature leaves when both types are available. We demonstrated the larval preference for mature leaves confers ecological advantages by promoting growth, development and immunity and this advantage is contingent upon the presence of gut bacteria. Gut microbiota in larvae revealed a significant enrichment of Pantoea when feeding new leaves, with P. anthophila exhibiting the most pronounced inhibitory effect on larval development. Further exploration identified specific metabolites, such as Tyrosyl-valine, with higher content in new leaves, which serve as substrates for the entomopathogenic gut bacterium to facilitate its proliferation. This study provides a fresh perspective on the ecological role of gut bacteria.
昆虫不同阶段之间的食物专一性可以减少种内食物竞争。肠道细菌的参与和这一现象的内在机制受到的关注有限。Plagiodera versicolora 是一种危害水杨科树木的害虫。在这里,我们证实了 P. versicolora 的食物专一性,即成虫偏爱新叶,而幼虫在两种叶片都有的情况下则主要食用成熟叶片。我们证明,幼虫偏爱成熟树叶能促进生长、发育和免疫,从而带来生态优势,而这种优势取决于肠道细菌的存在。幼虫的肠道微生物群显示,在取食新叶时,盘菌显著富集,其中嗜蚁盘菌对幼虫的发育有最明显的抑制作用。进一步研究发现,新叶中的酪氨酰-缬氨酸等特定代谢物含量较高,可作为昆虫病原肠道细菌的底物,促进其增殖。这项研究为肠道细菌的生态作用提供了一个全新的视角。
{"title":"Gut bacteria facilitate leaf beetles in adapting to dietary specialization by enhancing larval fitness.","authors":"Meiqi Ma, Jing Luo, Xiaotong Chen, Chong Li, Siqun Li, Jianghua Sun, Letian Xu","doi":"10.1038/s41522-024-00587-5","DOIUrl":"https://doi.org/10.1038/s41522-024-00587-5","url":null,"abstract":"<p><p>Dietary specialization between insect stages can reduce intraspecific food competition. The involvement of gut bacteria and the mechanisms underlying this phenomenon received limited attention. Plagiodera versicolora is a pest harming Salicaceae trees. Here, we confirmed dietary specialization in P. versicolora, wherein adults prefer new leaves, while larvae predominantly consume mature leaves when both types are available. We demonstrated the larval preference for mature leaves confers ecological advantages by promoting growth, development and immunity and this advantage is contingent upon the presence of gut bacteria. Gut microbiota in larvae revealed a significant enrichment of Pantoea when feeding new leaves, with P. anthophila exhibiting the most pronounced inhibitory effect on larval development. Further exploration identified specific metabolites, such as Tyrosyl-valine, with higher content in new leaves, which serve as substrates for the entomopathogenic gut bacterium to facilitate its proliferation. This study provides a fresh perspective on the ecological role of gut bacteria.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"110"},"PeriodicalIF":7.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-20DOI: 10.1038/s41522-024-00581-x
Miguel de Celis, Oskar Modin, Lucía Arregui, Frank Persson, Antonio Santos, Ignacio Belda, Britt-Marie Wilén, Raquel Liébana
Aerobic granular sludge is a compact and efficient biofilm process used for wastewater treatment which has received much attention and is currently being implemented worldwide. The microbial associations and their ecological implications occurring during granule development, especially those involving inter-kingdom interactions, are poorly understood. In this work, we monitored the prokaryote and eukaryote community composition and structure during the granulation of activated sludge for 343 days in a sequencing batch reactor (SBR) and investigated the influence of abiotic and biotic factors on the granule development. Sludge granulation was accomplished with low-wash-out dynamics at long settling times, allowing for the microbial communities to adapt to the SBR environmental conditions. The sludge granulation and associated changes in microbial community structure could be divided into three stages: floccular, intermediate, and granular. The eukaryotic and prokaryotic communities showed parallel successional dynamics, with three main sub-communities identified for each kingdom, dominating in each stage of sludge granulation. Although inter-kingdom interactions were shown to affect community succession during the whole experiment, during granule development random factors like the availability of settlement sites or drift acquired increasing importance. The prokaryotic community was more affected by deterministic factors, including reactor conditions, while the eukaryotic community was to a larger extent shaped by biotic interactions (including inter-kingdom interactions) and stochasticity.
{"title":"Community successional patterns and inter-kingdom interactions during granular biofilm development.","authors":"Miguel de Celis, Oskar Modin, Lucía Arregui, Frank Persson, Antonio Santos, Ignacio Belda, Britt-Marie Wilén, Raquel Liébana","doi":"10.1038/s41522-024-00581-x","DOIUrl":"10.1038/s41522-024-00581-x","url":null,"abstract":"<p><p>Aerobic granular sludge is a compact and efficient biofilm process used for wastewater treatment which has received much attention and is currently being implemented worldwide. The microbial associations and their ecological implications occurring during granule development, especially those involving inter-kingdom interactions, are poorly understood. In this work, we monitored the prokaryote and eukaryote community composition and structure during the granulation of activated sludge for 343 days in a sequencing batch reactor (SBR) and investigated the influence of abiotic and biotic factors on the granule development. Sludge granulation was accomplished with low-wash-out dynamics at long settling times, allowing for the microbial communities to adapt to the SBR environmental conditions. The sludge granulation and associated changes in microbial community structure could be divided into three stages: floccular, intermediate, and granular. The eukaryotic and prokaryotic communities showed parallel successional dynamics, with three main sub-communities identified for each kingdom, dominating in each stage of sludge granulation. Although inter-kingdom interactions were shown to affect community succession during the whole experiment, during granule development random factors like the availability of settlement sites or drift acquired increasing importance. The prokaryotic community was more affected by deterministic factors, including reactor conditions, while the eukaryotic community was to a larger extent shaped by biotic interactions (including inter-kingdom interactions) and stochasticity.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"109"},"PeriodicalIF":7.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1038/s41522-024-00585-7
Cong Lu, Dan Liu, Qiao Wu, Jie Zeng, Yan Xiong, Tiantian Luo
Coronary artery disease (CAD), a critical condition resulting from systemic inflammation, metabolic dysfunction, and gut microbiota dysbiosis, poses a global public health challenge. ALW-II-41-27, a specific inhibitor of the EphA2 receptor, has shown anti-inflammatory prosperities. However, the impact of ALW-II-41-27 on atherosclerosis has not been elucidated. This study aimed to examine the roles of pharmacologically inhibiting EphA2 and the underlying mechanism in ameliorating atherosclerosis. ALW-II-41-27 was administered to apoE-/- mice fed a high-fat diet via intraperitoneal injection. We first discovered that ALW-II-41-27 led to a significant reduction in atherosclerotic plaques, evidenced by reduced lipid and macrophage accumulation, alongside an increase in collagen and smooth muscle cell content. ALW-II-41-27 also significantly lowered plasma and hepatic cholesterol levels, as well as the colonic inflammation. Furthermore, gut microbiota was analyzed by metagenomics and plasma metabolites by untargeted metabolomics. ALW-II-41-27-treated mice enriched Enterococcus, Akkermansia, Eggerthella and Lactobaccilus, accompanied by enhanced secondary bile acids production. To explore the causal link between ALW-II-41-27-associated gut microbiota and atherosclerosis, fecal microbiota transplantation was employed. Mice that received ALW-II-41-27-treated mouse feces exhibited the attenuated atherosclerotic plaque. In clinical, lower plasma DCA and HDCA levels were determined in CAD patients using quantitative metabolomics and exhibited a negative correlation with higher monocytes EphA2 expression. Our findings underscore the potential of ALW-II-41-27 as a novel therapeutic agent for atherosclerosis, highlighting its capacity to modulate gut microbiota composition and bile acid metabolism, thereby offering a promising avenue for CAD.
{"title":"EphA2 blockage ALW-II-41-27 alleviates atherosclerosis by remodeling gut microbiota to regulate bile acid metabolism.","authors":"Cong Lu, Dan Liu, Qiao Wu, Jie Zeng, Yan Xiong, Tiantian Luo","doi":"10.1038/s41522-024-00585-7","DOIUrl":"10.1038/s41522-024-00585-7","url":null,"abstract":"<p><p>Coronary artery disease (CAD), a critical condition resulting from systemic inflammation, metabolic dysfunction, and gut microbiota dysbiosis, poses a global public health challenge. ALW-II-41-27, a specific inhibitor of the EphA2 receptor, has shown anti-inflammatory prosperities. However, the impact of ALW-II-41-27 on atherosclerosis has not been elucidated. This study aimed to examine the roles of pharmacologically inhibiting EphA2 and the underlying mechanism in ameliorating atherosclerosis. ALW-II-41-27 was administered to apoE<sup>-/-</sup> mice fed a high-fat diet via intraperitoneal injection. We first discovered that ALW-II-41-27 led to a significant reduction in atherosclerotic plaques, evidenced by reduced lipid and macrophage accumulation, alongside an increase in collagen and smooth muscle cell content. ALW-II-41-27 also significantly lowered plasma and hepatic cholesterol levels, as well as the colonic inflammation. Furthermore, gut microbiota was analyzed by metagenomics and plasma metabolites by untargeted metabolomics. ALW-II-41-27-treated mice enriched Enterococcus, Akkermansia, Eggerthella and Lactobaccilus, accompanied by enhanced secondary bile acids production. To explore the causal link between ALW-II-41-27-associated gut microbiota and atherosclerosis, fecal microbiota transplantation was employed. Mice that received ALW-II-41-27-treated mouse feces exhibited the attenuated atherosclerotic plaque. In clinical, lower plasma DCA and HDCA levels were determined in CAD patients using quantitative metabolomics and exhibited a negative correlation with higher monocytes EphA2 expression. Our findings underscore the potential of ALW-II-41-27 as a novel therapeutic agent for atherosclerosis, highlighting its capacity to modulate gut microbiota composition and bile acid metabolism, thereby offering a promising avenue for CAD.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"108"},"PeriodicalIF":7.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1038/s41522-024-00579-5
Caroline E M K Dricot, Isabel Erreygers, Eline Cauwenberghs, Jocelyn De Paz, Irina Spacova, Veronique Verhoeven, Sarah Ahannach, Sarah Lebeer
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
{"title":"Riboflavin for women's health and emerging microbiome strategies.","authors":"Caroline E M K Dricot, Isabel Erreygers, Eline Cauwenberghs, Jocelyn De Paz, Irina Spacova, Veronique Verhoeven, Sarah Ahannach, Sarah Lebeer","doi":"10.1038/s41522-024-00579-5","DOIUrl":"https://doi.org/10.1038/s41522-024-00579-5","url":null,"abstract":"<p><p>Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"107"},"PeriodicalIF":7.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1038/s41522-024-00569-7
Neha Bankar, Lorenz Latta, Brigitta Loretz, Bashar Reda, Johanna Dudek, Hendrik Hähl, Matthias Hannig, Claus-Michael Lehr
Bacterial biofilms represent a prominent biological barrier against physical and chemical attacks. Disturbing the anaerobic microenvironment within biofilms by co-delivery of oxygen appears as a promising strategy to enhance the activity of an antibiotic. Here, we report the effect of oxygen-producing calcium peroxide nanoparticles (CaO2 NP) in combination with tobramycin sulfate (Tob). On Pseudomonas aeruginosa PAO1 biofilms in vitro, the additive effect of CaO2 NP towards Tob activity enhanced biofilm eradication by 2 log compared to Tob alone. For natural biofilms grown in the oral cavity of human volunteers in situ, treatment by CaO2 NP alone slightly increased the fraction of dead bacteria from 44% in various controls, including Tob alone, to 57%. However, the combination of CaO2 NP with Tob further increased the fraction of dead bacteria to 69%. These data confirm the intrinsic antimicrobial and antibiotic-potentiating effect of CaO2 NP also in a clinically relevant setting.
{"title":"Antimicrobial and antibiotic-potentiating effect of calcium peroxide nanoparticles on oral bacterial biofilms.","authors":"Neha Bankar, Lorenz Latta, Brigitta Loretz, Bashar Reda, Johanna Dudek, Hendrik Hähl, Matthias Hannig, Claus-Michael Lehr","doi":"10.1038/s41522-024-00569-7","DOIUrl":"https://doi.org/10.1038/s41522-024-00569-7","url":null,"abstract":"<p><p>Bacterial biofilms represent a prominent biological barrier against physical and chemical attacks. Disturbing the anaerobic microenvironment within biofilms by co-delivery of oxygen appears as a promising strategy to enhance the activity of an antibiotic. Here, we report the effect of oxygen-producing calcium peroxide nanoparticles (CaO<sub>2</sub> NP) in combination with tobramycin sulfate (Tob). On Pseudomonas aeruginosa PAO1 biofilms in vitro, the additive effect of CaO<sub>2</sub> NP towards Tob activity enhanced biofilm eradication by 2 log compared to Tob alone. For natural biofilms grown in the oral cavity of human volunteers in situ, treatment by CaO<sub>2</sub> NP alone slightly increased the fraction of dead bacteria from 44% in various controls, including Tob alone, to 57%. However, the combination of CaO<sub>2</sub> NP with Tob further increased the fraction of dead bacteria to 69%. These data confirm the intrinsic antimicrobial and antibiotic-potentiating effect of CaO<sub>2</sub> NP also in a clinically relevant setting.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"106"},"PeriodicalIF":7.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1038/s41522-024-00578-6
Fernanda Mandelli, Marcele Pandeló Martins, Mariana Chinaglia, Evandro Antonio de Lima, Mariana Abrahão Bueno Morais, Tatiani Brenelli Lima, Lucélia Cabral, Renan Augusto Siqueira Pirolla, Felipe Jun Fuzita, Douglas Antônio Alvaredo Paixão, Maxuel de Oliveira Andrade, Lucia Daniela Wolf, Plinio Salmazo Vieira, Gabriela Felix Persinoti, Mario Tyago Murakami
Gut microbiota members from the Bacteroidota phylum play a pivotal role in mammalian health and metabolism. They thrive in this diverse ecosystem due to their notable ability to cope with distinct recalcitrant dietary glycans via polysaccharide utilization loci (PULs). Our study reveals that a PUL from an herbivore gut bacterium belonging to the Bacteroidota phylum, with a gene composition similar to that in the human gut, exhibits extended functionality. While the human gut PUL targets mixed-linkage β-glucans specifically, the herbivore gut PUL also efficiently processes linear and substituted β-1,3-glucans. This gain of function emerges from molecular adaptations in recognition proteins and carbohydrate-active enzymes, including a β-glucosidase specialized for β(1,6)-glucosyl linkages, a typical substitution in β(1,3)-glucans. These findings broaden the existing model for non-cellulosic β-glucans utilization by gut bacteria, revealing an additional layer of functional and evolutionary complexity within the gut microbiota, beyond conventional gene insertions/deletions to intricate biochemical interactions.
类杆菌门的肠道微生物群成员在哺乳动物的健康和新陈代谢中发挥着举足轻重的作用。它们通过多糖利用位点(PULs)处理独特的难处理膳食糖的显著能力使它们在这个多样化的生态系统中茁壮成长。我们的研究发现,属于类杆菌门的一种食草动物肠道细菌的多糖利用位点(PUL)具有与人类肠道细菌相似的基因组成,并具有扩展功能。人类肠道 PUL 专攻混合连接的 β-葡聚糖,而食草动物肠道 PUL 也能有效处理线性和取代的 β-1,3-葡聚糖。这种功能的增加源于识别蛋白和碳水化合物活性酶的分子适应性,其中包括专门处理β(1,6)-葡萄糖基连接的β-葡萄糖苷酶,这是β(1,3)-葡聚糖中的典型替代物。这些发现拓宽了肠道细菌利用非纤维素 β-葡聚糖的现有模式,揭示了肠道微生物群内功能和进化的另一层复杂性,超越了传统的基因插入/缺失,而是错综复杂的生化相互作用。
{"title":"A functionally augmented carbohydrate utilization locus from herbivore gut microbiota fueled by dietary β-glucans.","authors":"Fernanda Mandelli, Marcele Pandeló Martins, Mariana Chinaglia, Evandro Antonio de Lima, Mariana Abrahão Bueno Morais, Tatiani Brenelli Lima, Lucélia Cabral, Renan Augusto Siqueira Pirolla, Felipe Jun Fuzita, Douglas Antônio Alvaredo Paixão, Maxuel de Oliveira Andrade, Lucia Daniela Wolf, Plinio Salmazo Vieira, Gabriela Felix Persinoti, Mario Tyago Murakami","doi":"10.1038/s41522-024-00578-6","DOIUrl":"https://doi.org/10.1038/s41522-024-00578-6","url":null,"abstract":"<p><p>Gut microbiota members from the Bacteroidota phylum play a pivotal role in mammalian health and metabolism. They thrive in this diverse ecosystem due to their notable ability to cope with distinct recalcitrant dietary glycans via polysaccharide utilization loci (PULs). Our study reveals that a PUL from an herbivore gut bacterium belonging to the Bacteroidota phylum, with a gene composition similar to that in the human gut, exhibits extended functionality. While the human gut PUL targets mixed-linkage β-glucans specifically, the herbivore gut PUL also efficiently processes linear and substituted β-1,3-glucans. This gain of function emerges from molecular adaptations in recognition proteins and carbohydrate-active enzymes, including a β-glucosidase specialized for β(1,6)-glucosyl linkages, a typical substitution in β(1,3)-glucans. These findings broaden the existing model for non-cellulosic β-glucans utilization by gut bacteria, revealing an additional layer of functional and evolutionary complexity within the gut microbiota, beyond conventional gene insertions/deletions to intricate biochemical interactions.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"105"},"PeriodicalIF":7.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1038/s41522-024-00577-7
Jian Wu, Jiarui Li, Meina Yan, Ze Xiang
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
{"title":"Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value.","authors":"Jian Wu, Jiarui Li, Meina Yan, Ze Xiang","doi":"10.1038/s41522-024-00577-7","DOIUrl":"10.1038/s41522-024-00577-7","url":null,"abstract":"<p><p>Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"104"},"PeriodicalIF":7.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1038/s41522-024-00575-9
Stephen M Lander, Garth Fisher, Blake A Everett, Peter Tran, Arthur Prindle
DNA is the genetic code found inside all living cells and its molecular stability can also be utilized outside the cell. While extracellular DNA (eDNA) has been identified as a structural polymer in bacterial biofilms, whether it persists stably throughout development remains unclear. Here, we report that eDNA is temporarily invested in the biofilm matrix before being reclaimed later in development. Specifically, by imaging eDNA dynamics within undomesticated Bacillus subtilis biofilms, we found eDNA is produced during biofilm establishment before being globally degraded in a spatiotemporally coordinated pulse. We identified YhcR, a secreted Ca2+-dependent nuclease, as responsible for eDNA degradation in pellicle biofilms. YhcR cooperates with two other nucleases, NucA and NucB, to reclaim eDNA for its phosphate content in colony biofilms. Our results identify extracellular nucleases that are crucial for eDNA reclamation during biofilm development and we therefore propose a new role for eDNA as a dynamic metabolic reservoir.
{"title":"Secreted nucleases reclaim extracellular DNA during biofilm development.","authors":"Stephen M Lander, Garth Fisher, Blake A Everett, Peter Tran, Arthur Prindle","doi":"10.1038/s41522-024-00575-9","DOIUrl":"10.1038/s41522-024-00575-9","url":null,"abstract":"<p><p>DNA is the genetic code found inside all living cells and its molecular stability can also be utilized outside the cell. While extracellular DNA (eDNA) has been identified as a structural polymer in bacterial biofilms, whether it persists stably throughout development remains unclear. Here, we report that eDNA is temporarily invested in the biofilm matrix before being reclaimed later in development. Specifically, by imaging eDNA dynamics within undomesticated Bacillus subtilis biofilms, we found eDNA is produced during biofilm establishment before being globally degraded in a spatiotemporally coordinated pulse. We identified YhcR, a secreted Ca<sup>2+</sup>-dependent nuclease, as responsible for eDNA degradation in pellicle biofilms. YhcR cooperates with two other nucleases, NucA and NucB, to reclaim eDNA for its phosphate content in colony biofilms. Our results identify extracellular nucleases that are crucial for eDNA reclamation during biofilm development and we therefore propose a new role for eDNA as a dynamic metabolic reservoir.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"103"},"PeriodicalIF":7.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-06DOI: 10.1038/s41522-024-00573-x
Céline Margot, William Rhoads, Marco Gabrielli, Margot Olive, Frederik Hammes
Understanding how Legionella spp. proliferate in multispecies biofilms is essential to develop strategies to control their presence in building plumbing. Here, we analyzed biofilm formation and Legionella spp. colonization on new plumbing material during 8 weeks. Biofilm formation was characterized by an initial increase in intact cell concentrations up to 9.5 × 105 cells/cm2, followed by a steady decrease. We identified Comamonas, Caulobacter, Schlegella, Blastomonas and Methyloversatilis as pioneer genera in the biofilm formation process. Importantly, L. pneumophila was the dominant Legionella spp. and rapidly colonized the biofilms, with culturable cell concentrations peaking at 3.1 × 104 MPN/cm2 after 4 weeks already. Moreover, several Legionella species co-occurred and had distinct dynamics of biofilm colonization. Vermamoeba vermiformis (V. vermiformis) was the dominant protist identified with 18S rRNA gene amplicon sequencing. Together our results highlight that biofilm formation upon introduction of new building plumbing material is a dynamic process where pathogenic Legionella species can be part of the earliest colonizers.
{"title":"Dynamics of drinking water biofilm formation associated with Legionella spp. colonization.","authors":"Céline Margot, William Rhoads, Marco Gabrielli, Margot Olive, Frederik Hammes","doi":"10.1038/s41522-024-00573-x","DOIUrl":"10.1038/s41522-024-00573-x","url":null,"abstract":"<p><p>Understanding how Legionella spp. proliferate in multispecies biofilms is essential to develop strategies to control their presence in building plumbing. Here, we analyzed biofilm formation and Legionella spp. colonization on new plumbing material during 8 weeks. Biofilm formation was characterized by an initial increase in intact cell concentrations up to 9.5 × 10<sup>5</sup> cells/cm<sup>2</sup>, followed by a steady decrease. We identified Comamonas, Caulobacter, Schlegella, Blastomonas and Methyloversatilis as pioneer genera in the biofilm formation process. Importantly, L. pneumophila was the dominant Legionella spp. and rapidly colonized the biofilms, with culturable cell concentrations peaking at 3.1 × 10<sup>4</sup> MPN/cm<sup>2</sup> after 4 weeks already. Moreover, several Legionella species co-occurred and had distinct dynamics of biofilm colonization. Vermamoeba vermiformis (V. vermiformis) was the dominant protist identified with 18S rRNA gene amplicon sequencing. Together our results highlight that biofilm formation upon introduction of new building plumbing material is a dynamic process where pathogenic Legionella species can be part of the earliest colonizers.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"101"},"PeriodicalIF":7.8,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Staphylococcus aureus (S. aureus) SaeRS two-component system (TCS) regulates over 20 virulence factors. While its impact on chronic infection has been thoroughly discussed, its role in the early stage of infection remains elusive. Since macrophages serve as the primary immune defenders at the onset of infection, this study investigates the influence of SaeRS on macrophage functions and elucidates the underlying mechanisms. Macrophage expression of inflammatory and chemotactic factors, phagocytosis, and bactericidal activity against S. aureus were assessed, along with the evaluation of cellular oxidative stress. SaeRS was found to impair macrophage function. Mechanistically, SaeRS inhibited NF-κB pathway activation via toll-like receptor 2 (TLR2). Its immune-modulating effect could partially be explained by the strengthened biofilm formation. More importantly, we found SaeRS compromised macrophage immune functions at early infection stages even prior to biofilm formation. These early immune evasion effects were dependent on bacterial clumping as cytokine secretion, phagocytosis, and bactericidal activity were repaired when clumping was inhibited. We speculate that the bacterial clumping-mediated antigen mask is responsible for SaeRS-mediated immune evasion at the early infection stage. In vivo, ΔsaeRS infection was cleared earlier, accompanied by early pro-inflammatory cytokines production, and increased tissue oxidative stress. Subsequently, macrophages transitioned to an anti-inflammatory state, thereby promoting tissue repair. In summary, our findings underscore the critical role of the SaeRS TCS in S. aureus pathogenicity, particularly during early infection, which is likely initiated by SaeRS-mediated bacterial clumping.
{"title":"Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection.","authors":"Mingzhang Li, Boyong Wang, Jiani Chen, Luhui Jiang, Yawen Zhou, Geyong Guo, Feng Jiang, Yujie Hu, Changming Wang, Yi Yang, Jin Tang, Pei Han, Jinlong Yu, Hao Shen","doi":"10.1038/s41522-024-00576-8","DOIUrl":"10.1038/s41522-024-00576-8","url":null,"abstract":"<p><p>The Staphylococcus aureus (S. aureus) SaeRS two-component system (TCS) regulates over 20 virulence factors. While its impact on chronic infection has been thoroughly discussed, its role in the early stage of infection remains elusive. Since macrophages serve as the primary immune defenders at the onset of infection, this study investigates the influence of SaeRS on macrophage functions and elucidates the underlying mechanisms. Macrophage expression of inflammatory and chemotactic factors, phagocytosis, and bactericidal activity against S. aureus were assessed, along with the evaluation of cellular oxidative stress. SaeRS was found to impair macrophage function. Mechanistically, SaeRS inhibited NF-κB pathway activation via toll-like receptor 2 (TLR2). Its immune-modulating effect could partially be explained by the strengthened biofilm formation. More importantly, we found SaeRS compromised macrophage immune functions at early infection stages even prior to biofilm formation. These early immune evasion effects were dependent on bacterial clumping as cytokine secretion, phagocytosis, and bactericidal activity were repaired when clumping was inhibited. We speculate that the bacterial clumping-mediated antigen mask is responsible for SaeRS-mediated immune evasion at the early infection stage. In vivo, ΔsaeRS infection was cleared earlier, accompanied by early pro-inflammatory cytokines production, and increased tissue oxidative stress. Subsequently, macrophages transitioned to an anti-inflammatory state, thereby promoting tissue repair. In summary, our findings underscore the critical role of the SaeRS TCS in S. aureus pathogenicity, particularly during early infection, which is likely initiated by SaeRS-mediated bacterial clumping.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"102"},"PeriodicalIF":7.8,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}