Pub Date : 2024-05-03DOI: 10.1038/s41522-024-00515-7
Alexander Harry McGrath, Kimberley Lema, Suhelen Egan, Georgina Wood, Sebastian Vadillo Gonzalez, Staffan Kjelleberg, Peter D Steinberg, Ezequiel M Marzinelli
{"title":"Publisher Correction: Disentangling direct vs indirect effects of microbiome manipulations in a habitat-forming marine holobiont.","authors":"Alexander Harry McGrath, Kimberley Lema, Suhelen Egan, Georgina Wood, Sebastian Vadillo Gonzalez, Staffan Kjelleberg, Peter D Steinberg, Ezequiel M Marzinelli","doi":"10.1038/s41522-024-00515-7","DOIUrl":"https://doi.org/10.1038/s41522-024-00515-7","url":null,"abstract":"","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"43"},"PeriodicalIF":9.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1038/s41522-024-00514-8
Timothy Patrick Jenkins, Norbert Ács, Emma Wenzel Arendrup, Abbie Swift, Ágnes Duzs, Ioanna Chatzigiannidou, Michael Pichler, Tiia Kittilä, Laura Peachey, Lone Gram, Nuria Canibe, Andreas Hougaard Laustsen, Susanne Brix, Sandra Wingaard Thrane
Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2–7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.
{"title":"Protecting the piglet gut microbiota against ETEC-mediated post-weaning diarrhoea using specific binding proteins","authors":"Timothy Patrick Jenkins, Norbert Ács, Emma Wenzel Arendrup, Abbie Swift, Ágnes Duzs, Ioanna Chatzigiannidou, Michael Pichler, Tiia Kittilä, Laura Peachey, Lone Gram, Nuria Canibe, Andreas Hougaard Laustsen, Susanne Brix, Sandra Wingaard Thrane","doi":"10.1038/s41522-024-00514-8","DOIUrl":"https://doi.org/10.1038/s41522-024-00514-8","url":null,"abstract":"<p>Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic <i>E. coli</i> (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (V<sub>H</sub>H) constructs (V<sub>H</sub>H-(GGGGS)<sub>3</sub>-V<sub>H</sub>H, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log<sub>10</sub> units difference in gene copies and bacterial count/g faeces across day 2–7) and resulted in week 1 enrichment of three bacterial families (<i>Prevotellaceae</i> (estimate: 1.12 ± 0.25, <i>q</i> = 0.0054)<i>, Lactobacillaceae</i> (estimate: 2.86 ± 0.52, <i>q</i> = 0.0012), and <i>Ruminococcaceae</i> (estimate: 0.66 ± 0.18, <i>q</i> = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such V<sub>H</sub>H constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"8 1","pages":""},"PeriodicalIF":9.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-11DOI: 10.1038/s41522-024-00509-5
Haonan Sha, Jiaqi Lu, Jiong Chen, Jinbo Xiong
Increasing evidence infers that some complex diseases are attributed to co-infection with multiple pathogens, such as shrimp white feces syndrome (WFS); however, there is a lack of experimental evidence to validate such causal link. This deficiency further impedes rational design of probiotics to elicit desired benefits to shrimp WFS resistance. Herein, we validated the causal roles of Vibrio fluvialis, V. coralliilyticus and V. tubiashii (in a ratio of 7:2:1) in shrimp WFS etiology, which fully satisfied Koch’s postulates. Correspondingly, we precisely designed four antagonistic strains: Ruegeria lacuscaerulensis, Nioella nitratireducens, Bacillus subtilis and Streptomyces euryhalinus in a ratio of 4:3:2:1, which efficiently guarded against WFS. Dietary supplementation of the probiotics stimulated beneficial gut populations, streptomycin, short chain fatty acids, taurine metabolism potentials, network stability, tight junction, and host selection, while reducing turnover rate and average variation degree of gut microbiota, thereby facilitating ecological and mechanical barriers against pathogens. Additionally, shrimp immune pathways, such as Fcγ R-mediated phagocytosis, Toll-like receptor and RIG-I-like receptor signaling pathways conferring immune barrier, were activated by probiotics supplementation. Collectively, we establish an updated framework for precisely validating co-infection with multiple pathogens and rationally designing antagonistic probiotics. Furthermore, our findings uncover the underlying beneficial mechanisms of designed probiotics from the probiotics–gut microbiome–host immunity axis.
{"title":"Rationally designed probiotics prevent shrimp white feces syndrome via the probiotics–gut microbiome–immunity axis","authors":"Haonan Sha, Jiaqi Lu, Jiong Chen, Jinbo Xiong","doi":"10.1038/s41522-024-00509-5","DOIUrl":"https://doi.org/10.1038/s41522-024-00509-5","url":null,"abstract":"<p>Increasing evidence infers that some complex diseases are attributed to co-infection with multiple pathogens, such as shrimp white feces syndrome (WFS); however, there is a lack of experimental evidence to validate such causal link. This deficiency further impedes rational design of probiotics to elicit desired benefits to shrimp WFS resistance. Herein, we validated the causal roles of <i>Vibrio fluvialis</i>, <i>V. coralliilyticus</i> and <i>V. tubiashii</i> (in a ratio of 7:2:1) in shrimp WFS etiology, which fully satisfied Koch’s postulates. Correspondingly, we precisely designed four antagonistic strains: <i>Ruegeria lacuscaerulensis</i>, <i>Nioella nitratireducens</i>, <i>Bacillus subtilis</i> and <i>Streptomyces euryhalinus</i> in a ratio of 4:3:2:1, which efficiently guarded against WFS. Dietary supplementation of the probiotics stimulated beneficial gut populations, streptomycin, short chain fatty acids, taurine metabolism potentials, network stability, tight junction, and host selection, while reducing turnover rate and average variation degree of gut microbiota, thereby facilitating ecological and mechanical barriers against pathogens. Additionally, shrimp immune pathways, such as Fcγ R-mediated phagocytosis, Toll-like receptor and RIG-I-like receptor signaling pathways conferring immune barrier, were activated by probiotics supplementation. Collectively, we establish an updated framework for precisely validating co-infection with multiple pathogens and rationally designing antagonistic probiotics. Furthermore, our findings uncover the underlying beneficial mechanisms of designed probiotics from the probiotics–gut microbiome–host immunity axis.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"22 1","pages":""},"PeriodicalIF":9.2,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1038/s41522-024-00511-x
Liuyang Cai, Hengyan Zhu, Qianqian Mou, Po Yee Wong, Linlin Lan, Cherrie W. K. Ng, Pu Lei, Man Kit Cheung, Daijuanru Wang, Eddy W. Y. Wong, Eric H. L. Lau, Zenon W. C. Yeung, Ronald Lai, Katie Meehan, Sherwood Fung, Kwan Chee A. Chan, Vivian W. Y. Lui, Alfred S. L. Cheng, Jun Yu, Paul K. S. Chan, Jason Y. K. Chan, Zigui Chen
Dysbiosis of the human oral microbiota has been reported to be associated with oral cavity squamous cell carcinoma (OSCC) while the host-microbiota interactions with respect to the potential impact of pathogenic bacteria on host genomic and epigenomic abnormalities remain poorly studied. In this study, the mucosal bacterial community, host genome-wide transcriptome and DNA CpG methylation were simultaneously profiled in tumors and their adjacent normal tissues of OSCC patients. Significant enrichment in the relative abundance of seven bacteria species (Fusobacterium nucleatum, Treponema medium, Peptostreptococcus stomatis, Gemella morbillorum, Catonella morbi, Peptoanaerobacter yurli and Peptococcus simiae) were observed in OSCC tumor microenvironment. These tumor-enriched bacteria formed 254 positive correlations with 206 up-regulated host genes, mainly involving signaling pathways related to cell adhesion, migration and proliferation. Integrative analysis of bacteria-transcriptome and bacteria-methylation correlations identified at least 20 dysregulated host genes with inverted CpG methylation in their promoter regions associated with enrichment of bacterial pathogens, implying a potential of pathogenic bacteria to regulate gene expression, in part, through epigenetic alterations. An in vitro model further confirmed that Fusobacterium nucleatum might contribute to cellular invasion via crosstalk with E-cadherin/β-catenin signaling, TNFα/NF-κB pathway and extracellular matrix remodeling by up-regulating SNAI2 gene, a key transcription factor of epithelial-mesenchymal transition (EMT). Our work using multi-omics approaches explored complex host-microbiota interactions and provided important insights into genetic and functional basis in OSCC tumorigenesis, which may serve as a precursor for hypothesis-driven study to better understand the causational relationship of pathogenic bacteria in this deadly cancer.
{"title":"Integrative analysis reveals associations between oral microbiota dysbiosis and host genetic and epigenetic aberrations in oral cavity squamous cell carcinoma","authors":"Liuyang Cai, Hengyan Zhu, Qianqian Mou, Po Yee Wong, Linlin Lan, Cherrie W. K. Ng, Pu Lei, Man Kit Cheung, Daijuanru Wang, Eddy W. Y. Wong, Eric H. L. Lau, Zenon W. C. Yeung, Ronald Lai, Katie Meehan, Sherwood Fung, Kwan Chee A. Chan, Vivian W. Y. Lui, Alfred S. L. Cheng, Jun Yu, Paul K. S. Chan, Jason Y. K. Chan, Zigui Chen","doi":"10.1038/s41522-024-00511-x","DOIUrl":"https://doi.org/10.1038/s41522-024-00511-x","url":null,"abstract":"<p>Dysbiosis of the human oral microbiota has been reported to be associated with oral cavity squamous cell carcinoma (OSCC) while the host-microbiota interactions with respect to the potential impact of pathogenic bacteria on host genomic and epigenomic abnormalities remain poorly studied. In this study, the mucosal bacterial community, host genome-wide transcriptome and DNA CpG methylation were simultaneously profiled in tumors and their adjacent normal tissues of OSCC patients. Significant enrichment in the relative abundance of seven bacteria species (<i>Fusobacterium nucleatum</i>, <i>Treponema medium</i>, <i>Peptostreptococcus stomatis</i>, <i>Gemella morbillorum</i>, <i>Catonella morbi</i>, <i>Peptoanaerobacter yurli</i> and <i>Peptococcus simiae</i>) were observed in OSCC tumor microenvironment. These tumor-enriched bacteria formed 254 positive correlations with 206 up-regulated host genes, mainly involving signaling pathways related to cell adhesion, migration and proliferation. Integrative analysis of bacteria-transcriptome and bacteria-methylation correlations identified at least 20 dysregulated host genes with inverted CpG methylation in their promoter regions associated with enrichment of bacterial pathogens, implying a potential of pathogenic bacteria to regulate gene expression, in part, through epigenetic alterations. An in vitro model further confirmed that <i>Fusobacterium nucleatum</i> might contribute to cellular invasion via crosstalk with E-cadherin/β-catenin signaling, TNFα/NF-κB pathway and extracellular matrix remodeling by up-regulating <i>SNAI2</i> gene, a key transcription factor of epithelial-mesenchymal transition (EMT). Our work using multi-omics approaches explored complex host-microbiota interactions and provided important insights into genetic and functional basis in OSCC tumorigenesis, which may serve as a precursor for hypothesis-driven study to better understand the causational relationship of pathogenic bacteria in this deadly cancer.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"27 1","pages":""},"PeriodicalIF":9.2,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.
{"title":"Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides","authors":"Xiao-Meng Hu, Lihua Peng, Jingxian Wu, Guanju Wu, Xiao Liang, Jin-Long Yang","doi":"10.1038/s41522-024-00508-6","DOIUrl":"https://doi.org/10.1038/s41522-024-00508-6","url":null,"abstract":"<p>Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in <i>Pseudoalteromonas marina</i> led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels <i>Mytilus coruscus</i>, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"38 1","pages":""},"PeriodicalIF":9.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1038/s41522-024-00507-7
N. K. Brar, A. Dhariwal, H. A. Åmdal, R. Junges, G. Salvadori, J. L. Baker, A. Edlund, F. C. Petersen
Prolonged exposure to antibiotics at low concentration can promote processes associated with bacterial biofilm formation, virulence and antibiotic resistance. This can be of high relevance in microbial communities like the oral microbiome, where commensals and pathogens share a common habitat and where the total abundance of antibiotic resistance genes surpasses the abundance in the gut. Here, we used an ex vivo model of human oral biofilms to investigate the impact of ampicillin on biofilm viability. The ecological impact on the microbiome and resistome was investigated using shotgun metagenomics. The results showed that low concentrations promoted significant shifts in microbial taxonomic profile and could enhance biofilm viability by up to 1 to 2-log. For the resistome, low concentrations had no significant impact on antibiotic resistance gene (ARG) diversity, while ARG abundance decreased by up to 84%. A positive correlation was observed between reduced microbial diversity and reduced ARG abundance. The WHO priority pathogens Streptococcus pneumoniae and Staphylococcus aureus were identified in some of the samples, but their abundance was not significantly altered by ampicillin. Most of the antibiotic resistance genes that increased in abundance in the ampicillin group were associated with streptococci, including Streptococcus mitis, a well-known potential donor of ARGs to S. pneumoniae. Overall, the results highlight the potential of using the model to further our understanding of ecological and evolutionary forces driving antimicrobial resistance in oral microbiomes.
{"title":"Exploring ex vivo biofilm dynamics: consequences of low ampicillin concentrations on the human oral microbiome","authors":"N. K. Brar, A. Dhariwal, H. A. Åmdal, R. Junges, G. Salvadori, J. L. Baker, A. Edlund, F. C. Petersen","doi":"10.1038/s41522-024-00507-7","DOIUrl":"https://doi.org/10.1038/s41522-024-00507-7","url":null,"abstract":"<p>Prolonged exposure to antibiotics at low concentration can promote processes associated with bacterial biofilm formation, virulence and antibiotic resistance. This can be of high relevance in microbial communities like the oral microbiome, where commensals and pathogens share a common habitat and where the total abundance of antibiotic resistance genes surpasses the abundance in the gut. Here, we used an ex vivo model of human oral biofilms to investigate the impact of ampicillin on biofilm viability. The ecological impact on the microbiome and resistome was investigated using shotgun metagenomics. The results showed that low concentrations promoted significant shifts in microbial taxonomic profile and could enhance biofilm viability by up to 1 to 2-log. For the resistome, low concentrations had no significant impact on antibiotic resistance gene (ARG) diversity, while ARG abundance decreased by up to 84%. A positive correlation was observed between reduced microbial diversity and reduced ARG abundance. The WHO priority pathogens <i>Streptococcus pneumoniae</i> and <i>Staphylococcus aureus</i> were identified in some of the samples, but their abundance was not significantly altered by ampicillin. Most of the antibiotic resistance genes that increased in abundance in the ampicillin group were associated with streptococci, including <i>Streptococcus mitis</i>, a well-known potential donor of ARGs to <i>S. pneumoniae</i>. Overall, the results highlight the potential of using the model to further our understanding of ecological and evolutionary forces driving antimicrobial resistance in oral microbiomes.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"16 1","pages":""},"PeriodicalIF":9.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marine ecosystems are influenced by phytoplankton aggregation, which affects processes like marine snow formation and harmful events such as marine mucilage outbreaks. Phytoplankton secrete exopolymers, creating an extracellular matrix (ECM) that promotes particle aggregation. This ECM attracts heterotrophic bacteria, providing a nutrient-rich and protective environment. In terrestrial environments, bacterial colonization near primary producers relies on attachment and the formation of multidimensional structures like biofilms. Bacteria were observed attaching and aggregating within algal-derived exopolymers, but it is unclear if bacteria produce an ECM that contributes to this colonization. This study, using Emiliania huxleyi algae and Phaeobacter inhibens bacteria in an environmentally relevant model system, reveals a shared algal-bacterial ECM scaffold that promotes algal-bacterial aggregation. Algal exudates play a pivotal role in promoting bacterial colonization, stimulating bacterial exopolysaccharide (EPS) production, and facilitating a joint ECM formation. A bacterial biosynthetic pathway responsible for producing a specific EPS contributing to bacterial ECM formation is identified. Genes from this pathway show increased expression in algal-rich environments. These findings highlight the underestimated role of bacteria in aggregate-mediated processes in marine environments, offering insights into algal-bacterial interactions and ECM formation, with implications for understanding and managing natural and perturbed aggregation events.
{"title":"Bacteria contribute exopolysaccharides to an algal-bacterial joint extracellular matrix.","authors":"Valeria Lipsman, Olesia Shlakhter, Jorge Rocha, Einat Segev","doi":"10.1038/s41522-024-00510-y","DOIUrl":"10.1038/s41522-024-00510-y","url":null,"abstract":"<p><p>Marine ecosystems are influenced by phytoplankton aggregation, which affects processes like marine snow formation and harmful events such as marine mucilage outbreaks. Phytoplankton secrete exopolymers, creating an extracellular matrix (ECM) that promotes particle aggregation. This ECM attracts heterotrophic bacteria, providing a nutrient-rich and protective environment. In terrestrial environments, bacterial colonization near primary producers relies on attachment and the formation of multidimensional structures like biofilms. Bacteria were observed attaching and aggregating within algal-derived exopolymers, but it is unclear if bacteria produce an ECM that contributes to this colonization. This study, using Emiliania huxleyi algae and Phaeobacter inhibens bacteria in an environmentally relevant model system, reveals a shared algal-bacterial ECM scaffold that promotes algal-bacterial aggregation. Algal exudates play a pivotal role in promoting bacterial colonization, stimulating bacterial exopolysaccharide (EPS) production, and facilitating a joint ECM formation. A bacterial biosynthetic pathway responsible for producing a specific EPS contributing to bacterial ECM formation is identified. Genes from this pathway show increased expression in algal-rich environments. These findings highlight the underestimated role of bacteria in aggregate-mediated processes in marine environments, offering insights into algal-bacterial interactions and ECM formation, with implications for understanding and managing natural and perturbed aggregation events.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"36"},"PeriodicalIF":9.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1038/s41522-024-00506-8
Aitor Blanco-Míguez, Sara Carloni, Cindy Cardenas, Carola Conca Dioguardi, Luca Lambroia, Giovanni Capretti, Gennaro Nappo, Alessandro Fugazza, Antonio Capogreco, Federica Armanini, Francesco Asnicar, Leonard Dubois, Davide Golzato, Paolo Manghi, Federica Pinto, Cristina Scuderi, Erminia Casari, Marco Montorsi, Andrea Anderloni, Maria Rescigno, Alessandro Repici, Alessandro Zerbi, Clelia Peano, Sabrina Tamburini, Roberto Rusconi, Nicola Segata
Malignant bile duct obstruction is typically treated by biliary stenting, which however increases the risk of bacterial infections. Here, we analyzed the microbial content of the biliary stents from 56 patients finding widespread microbial colonization. Seventeen of 36 prevalent stent species are common oral microbiome members, associate with disease conditions when present in the gut, and include dozens of biofilm- and antimicrobial resistance-related genes. This work provides an overview of the microbial communities populating the stents.
{"title":"Microbial composition associated with biliary stents in patients undergoing pancreatic resection for cancer.","authors":"Aitor Blanco-Míguez, Sara Carloni, Cindy Cardenas, Carola Conca Dioguardi, Luca Lambroia, Giovanni Capretti, Gennaro Nappo, Alessandro Fugazza, Antonio Capogreco, Federica Armanini, Francesco Asnicar, Leonard Dubois, Davide Golzato, Paolo Manghi, Federica Pinto, Cristina Scuderi, Erminia Casari, Marco Montorsi, Andrea Anderloni, Maria Rescigno, Alessandro Repici, Alessandro Zerbi, Clelia Peano, Sabrina Tamburini, Roberto Rusconi, Nicola Segata","doi":"10.1038/s41522-024-00506-8","DOIUrl":"10.1038/s41522-024-00506-8","url":null,"abstract":"<p><p>Malignant bile duct obstruction is typically treated by biliary stenting, which however increases the risk of bacterial infections. Here, we analyzed the microbial content of the biliary stents from 56 patients finding widespread microbial colonization. Seventeen of 36 prevalent stent species are common oral microbiome members, associate with disease conditions when present in the gut, and include dozens of biofilm- and antimicrobial resistance-related genes. This work provides an overview of the microbial communities populating the stents.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"35"},"PeriodicalIF":9.2,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is an invasive palm pest whose larvae eat wood, yet lack the necessary digestive enzymes. This study confirmed endogenous CRB cellulase is inactive, suggesting microbial fermentation. The inner lining of the CRB hindgut has tree-like structures covered with a conspicuous biofilm. To identify possible symbionts, 16 S rRNA amplicon sequencing was used on individuals from across Taiwan. Several taxa of Clostridia, an anaerobic class including many cellulolytic bacteria, were highly abundant in most individuals from all locations. Whole metagenome sequencing further confirmed many lignocellulose degrading enzymes are derived from these taxa. Analyses of eggs, larvae, adults, and soil found these cellulolytic microbes are not transmitted vertically or transstadially. The core microbiomes of the larval CRB are likely acquired and enriched from the environment with each molt, and enable efficient digestion of wood.
椰子犀角金龟(CRB,Oryctes rhinoceros)是一种入侵性棕榈害虫,其幼虫以木材为食,但缺乏必要的消化酶。这项研究证实,椰子犀角金龟的内源性纤维素酶没有活性,这表明椰子犀角金龟在进行微生物发酵。CRB后肠内壁有树状结构,覆盖着一层明显的生物膜。为了确定可能的共生体,对来自台湾各地的个体进行了 16 S rRNA 扩增子测序。梭状芽孢杆菌(Clostridia)是一种厌氧菌,包括许多纤维素分解菌,在各地的大多数个体中含量都很高。整个元基因组测序进一步证实,许多木质纤维素降解酶都来自这些类群。对卵、幼虫、成虫和土壤的分析发现,这些纤维素分解微生物不会垂直或横向传播。CRB幼虫的核心微生物群很可能是在每次蜕皮时从环境中获得和丰富的,它们能有效地消化木材。
{"title":"Coconut rhinoceros beetle digestive symbiosis with potential plant cell wall degrading microbes.","authors":"Chiao-Jung Han, Chih-Hsin Cheng, Ting-Feng Yeh, Yannick Pauchet, Matan Shelomi","doi":"10.1038/s41522-024-00505-9","DOIUrl":"10.1038/s41522-024-00505-9","url":null,"abstract":"<p><p>Coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is an invasive palm pest whose larvae eat wood, yet lack the necessary digestive enzymes. This study confirmed endogenous CRB cellulase is inactive, suggesting microbial fermentation. The inner lining of the CRB hindgut has tree-like structures covered with a conspicuous biofilm. To identify possible symbionts, 16 S rRNA amplicon sequencing was used on individuals from across Taiwan. Several taxa of Clostridia, an anaerobic class including many cellulolytic bacteria, were highly abundant in most individuals from all locations. Whole metagenome sequencing further confirmed many lignocellulose degrading enzymes are derived from these taxa. Analyses of eggs, larvae, adults, and soil found these cellulolytic microbes are not transmitted vertically or transstadially. The core microbiomes of the larval CRB are likely acquired and enriched from the environment with each molt, and enable efficient digestion of wood.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"34"},"PeriodicalIF":9.2,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alteration of gut microbiota can affect chronic lung diseases, such as asthma and chronic obstructive pulmonary disease, through abnormal immune and inflammatory responses. Previous studies have shown a feasible connection between gut microbiota and bronchopulmonary dysplasia (BPD) in preterm infants. However, whether BPD can be ameliorated by restoring the gut microbiota remains unclear. In preterm infants with BPD, we found variance in the diversity and structure of gut microbiota. Similarly, BPD rats showed gut dysbiosis, characterized by a deficiency of Lactobacillus, which was abundant in normal rats. We therefore explored the effect and potential mechanism of action of a probiotic strain, Lactobacillus plantarum L168, in improving BPD. The BPD rats were treated with L. plantarum L168 by gavage for 2 weeks, and the effect was evaluated by lung histopathology, lung function, and serum inflammatory markers. Subsequently, we observed reduced lung injury and improved lung development in BPD rats exposed to L. plantarum L168. Further evaluation revealed that L. plantarum L168 improved intestinal permeability in BPD rats. Serum metabolomics showed altered inflammation-associated metabolites following L. plantarum L168 intervention, notably a marked increase in anti-inflammatory metabolites. In agreement with the metabolites analysis, RNA-seq analysis of the intestine and lung showed that inflammation and immune-related genes were down-regulated. Based on the information from RNA-seq, we validated that L. plantarum L168 might improve BPD relating to down-regulation of TLR4 /NF-κB /CCL4 pathway. Together, our findings suggest the potential of L. plantarum L168 to provide probiotic-based therapeutic strategies for BPD.
{"title":"Lactobacillus plantarum L168 improves hyperoxia-induced pulmonary inflammation and hypoalveolarization in a rat model of bronchopulmonary dysplasia.","authors":"Xian Shen, Zhaocong Yang, Qiang Wang, Xu Chen, Qihui Zhu, Zhi Liu, Nishant Patel, Xingyin Liu, Xuming Mo","doi":"10.1038/s41522-024-00504-w","DOIUrl":"10.1038/s41522-024-00504-w","url":null,"abstract":"<p><p>Alteration of gut microbiota can affect chronic lung diseases, such as asthma and chronic obstructive pulmonary disease, through abnormal immune and inflammatory responses. Previous studies have shown a feasible connection between gut microbiota and bronchopulmonary dysplasia (BPD) in preterm infants. However, whether BPD can be ameliorated by restoring the gut microbiota remains unclear. In preterm infants with BPD, we found variance in the diversity and structure of gut microbiota. Similarly, BPD rats showed gut dysbiosis, characterized by a deficiency of Lactobacillus, which was abundant in normal rats. We therefore explored the effect and potential mechanism of action of a probiotic strain, Lactobacillus plantarum L168, in improving BPD. The BPD rats were treated with L. plantarum L168 by gavage for 2 weeks, and the effect was evaluated by lung histopathology, lung function, and serum inflammatory markers. Subsequently, we observed reduced lung injury and improved lung development in BPD rats exposed to L. plantarum L168. Further evaluation revealed that L. plantarum L168 improved intestinal permeability in BPD rats. Serum metabolomics showed altered inflammation-associated metabolites following L. plantarum L168 intervention, notably a marked increase in anti-inflammatory metabolites. In agreement with the metabolites analysis, RNA-seq analysis of the intestine and lung showed that inflammation and immune-related genes were down-regulated. Based on the information from RNA-seq, we validated that L. plantarum L168 might improve BPD relating to down-regulation of TLR4 /NF-κB /CCL4 pathway. Together, our findings suggest the potential of L. plantarum L168 to provide probiotic-based therapeutic strategies for BPD.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"32"},"PeriodicalIF":9.2,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}