Pub Date : 2024-06-24DOI: 10.1038/s41545-024-00342-5
Zhuobin Wu, Ke Zheng, Guichang Zhang, Longwei Huang, Shaoqi Zhou
Membrane distillation is an emerging wastewater treatment technology that harnesses low-grade heat as an energy source and exhibits potential for complete desalination. Nonetheless, two notable challenges hinder the practical application of this technology: membrane wetting and fouling. To counter these challenges, an innovative anti-fouling Janus membrane with asymmetric wettability was developed through electrospinning. The hydrophobic layer was formed using tetraethyl orthosilicate/polysulfone (PSF), and the superhydrophilic layer was created using polyvinylpyrrolidone (PVP)/PSF. A sensitive adhesion probe was used to assess the anti-fouling performance of the Janus membrane against oil. Molecular dynamics simulation suggested that PVP reduced the adsorption tendency of the membrane for humic acid (HA). Under experimental conditions involving saline water with HA and a saline oil–water emulsion, the non-Janus membrane suffered severe fouling, resulting in rapid water permeate flux decline. However, the Janus membrane demonstrated consistent permeate flux (26.84 LMH and 24.92 LMH) and an impressive salt rejection rate (> 99.99%). This study suggests that the Janus membrane, with its high permeate fluxes and remarkable resistance to fouling and wetting, could be an effective solution for wastewater treatment, with considerable potential for future application.
{"title":"Preparation of polysulfone-based nanofiber Janus membrane for membrane distillation containing organic pollutants","authors":"Zhuobin Wu, Ke Zheng, Guichang Zhang, Longwei Huang, Shaoqi Zhou","doi":"10.1038/s41545-024-00342-5","DOIUrl":"10.1038/s41545-024-00342-5","url":null,"abstract":"Membrane distillation is an emerging wastewater treatment technology that harnesses low-grade heat as an energy source and exhibits potential for complete desalination. Nonetheless, two notable challenges hinder the practical application of this technology: membrane wetting and fouling. To counter these challenges, an innovative anti-fouling Janus membrane with asymmetric wettability was developed through electrospinning. The hydrophobic layer was formed using tetraethyl orthosilicate/polysulfone (PSF), and the superhydrophilic layer was created using polyvinylpyrrolidone (PVP)/PSF. A sensitive adhesion probe was used to assess the anti-fouling performance of the Janus membrane against oil. Molecular dynamics simulation suggested that PVP reduced the adsorption tendency of the membrane for humic acid (HA). Under experimental conditions involving saline water with HA and a saline oil–water emulsion, the non-Janus membrane suffered severe fouling, resulting in rapid water permeate flux decline. However, the Janus membrane demonstrated consistent permeate flux (26.84 LMH and 24.92 LMH) and an impressive salt rejection rate (> 99.99%). This study suggests that the Janus membrane, with its high permeate fluxes and remarkable resistance to fouling and wetting, could be an effective solution for wastewater treatment, with considerable potential for future application.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00342-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1038/s41545-024-00347-0
Menghan Hu, Na Xie, Yujia Huang, Yikai Yu
It was observed that a super-efficient gel adsorbent system (RRQG@CDC) could be obtained when a matrix material of polyquaternium gel with a flat distribution (RRQG) was loaded onto a skeleton material of cyclodextrin carbide (CDC). The results showed that the adsorption capacity of RRQG@CDC towards dyes was 1250 times higher than that of commonly used activated carbon, enabling highly efficient purification of dyeing wastewater through superior adsorption. In addition, RRQG@CDC demonstrated adaptability to a range of different pH values and salinity conditions, showing super-efficient adsorption abilities towards various types of dyes. Moreover, simulated scale-up tests confirmed the feasibility of this super-efficient adsorbent for practical engineering applications. An enhanced quasi-planar electrostatic adsorption mechanism model was established, which has changed the traditional understanding of adsorption mechanisms. Furthermore, the waste residues of RRQG@CDC, after dye adsorption, can be directly utilized as high-calorific fuels, showcasing the resourcefulness of these residues while eliminating the risk of secondary pollution. In conclusion, this study achieved a remarkably efficient and resource-based purification of dyeing wastewater by developing a highly effective adsorbent system.
{"title":"A super-efficient gel adsorbent with over 1000 times the adsorption capacity of activated carbon","authors":"Menghan Hu, Na Xie, Yujia Huang, Yikai Yu","doi":"10.1038/s41545-024-00347-0","DOIUrl":"10.1038/s41545-024-00347-0","url":null,"abstract":"It was observed that a super-efficient gel adsorbent system (RRQG@CDC) could be obtained when a matrix material of polyquaternium gel with a flat distribution (RRQG) was loaded onto a skeleton material of cyclodextrin carbide (CDC). The results showed that the adsorption capacity of RRQG@CDC towards dyes was 1250 times higher than that of commonly used activated carbon, enabling highly efficient purification of dyeing wastewater through superior adsorption. In addition, RRQG@CDC demonstrated adaptability to a range of different pH values and salinity conditions, showing super-efficient adsorption abilities towards various types of dyes. Moreover, simulated scale-up tests confirmed the feasibility of this super-efficient adsorbent for practical engineering applications. An enhanced quasi-planar electrostatic adsorption mechanism model was established, which has changed the traditional understanding of adsorption mechanisms. Furthermore, the waste residues of RRQG@CDC, after dye adsorption, can be directly utilized as high-calorific fuels, showcasing the resourcefulness of these residues while eliminating the risk of secondary pollution. In conclusion, this study achieved a remarkably efficient and resource-based purification of dyeing wastewater by developing a highly effective adsorbent system.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00347-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the path of walking on the road of sustainable and eco-friendly production methods for manufacturing nanomaterials and utilizing them in environmental applications, this article deals with the prosperous synthesis of a biogenic cyclam-functionalized homologous SBA-15 (BCFH-SBA-15). For this purpose, the agricultural waste of the extensively consumed sorghum was used as a rich source of silica in the preparation of BCFH-SBA-15 with a bimodal micro-mesoporous architecture and a substantial surface area of 325 m2 g–1 through a simple one-pot environmentally friendly approach. The material was structurally characterized through the use of different instrumental analyses such as XRD, FTIR, FESEM, TEM, and nitrogen adsorption/desorption isotherms. BCFH-SBA-15 proved to be highly efficient in adsorbing Ni(II) in aqueous solutions, as confirmed by the most reliable classical models utilized for determining isotherm, thermodynamic, and kinetic adsorption parameters. The Langmuir isotherm model provided the most accurate representation of the experimental results, and it was used to calculate the maximum adsorption capacity of BCFH-SBA-15 under optimal conditions (pH = 6.0, adsorbent dose = 3.00 mg, contact time = 20 min). The maximum adsorption capacity at four temperatures of 298, 303, 308, and 313 K was estimated to be 243.36, 253.87, 260.95, and 266.28 mg g–1, respectively; surpassing most previously reported adsorbents for Ni(II) adsorption. The thermodynamic data of Ni(II) adsorption on the BCFH-SBA-15 indicated a strong chemisorption ( $${triangle H}_{{rm{ads}}.}^{circ }$$ = +122.61 kJ mol–1) and spontaneous process ( $${triangle G}_{{rm{ads}}.}^{circ }$$ .= −29.161 to −36.801 kJ mol–1) with a low degree of randomness ( $${triangle S}_{{rm{ads}}.}^{circ }$$ . = 0.5093 kJ mol–1 K–1).
{"title":"Bio-originated mesosilicate SBA-15: synthesis, characterization, and application for heavy metal removal","authors":"Wensheng Yang, Saeed Shirazian, Roozbeh Soltani, Masoud Habibi Zare","doi":"10.1038/s41545-024-00340-7","DOIUrl":"10.1038/s41545-024-00340-7","url":null,"abstract":"In the path of walking on the road of sustainable and eco-friendly production methods for manufacturing nanomaterials and utilizing them in environmental applications, this article deals with the prosperous synthesis of a biogenic cyclam-functionalized homologous SBA-15 (BCFH-SBA-15). For this purpose, the agricultural waste of the extensively consumed sorghum was used as a rich source of silica in the preparation of BCFH-SBA-15 with a bimodal micro-mesoporous architecture and a substantial surface area of 325 m2 g–1 through a simple one-pot environmentally friendly approach. The material was structurally characterized through the use of different instrumental analyses such as XRD, FTIR, FESEM, TEM, and nitrogen adsorption/desorption isotherms. BCFH-SBA-15 proved to be highly efficient in adsorbing Ni(II) in aqueous solutions, as confirmed by the most reliable classical models utilized for determining isotherm, thermodynamic, and kinetic adsorption parameters. The Langmuir isotherm model provided the most accurate representation of the experimental results, and it was used to calculate the maximum adsorption capacity of BCFH-SBA-15 under optimal conditions (pH = 6.0, adsorbent dose = 3.00 mg, contact time = 20 min). The maximum adsorption capacity at four temperatures of 298, 303, 308, and 313 K was estimated to be 243.36, 253.87, 260.95, and 266.28 mg g–1, respectively; surpassing most previously reported adsorbents for Ni(II) adsorption. The thermodynamic data of Ni(II) adsorption on the BCFH-SBA-15 indicated a strong chemisorption ( $${triangle H}_{{rm{ads}}.}^{circ }$$ = +122.61 kJ mol–1) and spontaneous process ( $${triangle G}_{{rm{ads}}.}^{circ }$$ .= −29.161 to −36.801 kJ mol–1) with a low degree of randomness ( $${triangle S}_{{rm{ads}}.}^{circ }$$ . = 0.5093 kJ mol–1 K–1).","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00340-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1038/s41545-024-00345-2
Saeed Shirazian, Sameer Alshehri, Mohammad A. Khasawneh, Masoud Habibi Zare, Arjomand Mehrabani-Zeinabad
In this research, the generation of nanobubbles was carried out using a structure of vortex pump based on the relative blockage of flow (without the use of venturi and orifices, which consume a lot of energy to generate nanobubbles), which has made this process economical and commercial. In addition, the use of advanced synthesized nanoreactors with the Yolk@Shell structure, which forms a photoanode by coating the anode electrode and can operate in the visible light range, has highlighted this research work. An in-depth study of the synergistic effect of advanced photoelectrofenton oxidation methods in addition to the hydrodynamic reactor has shown that the intelligent selection of these three types of advanced oxidation methods together has improved the performance of each other and solved their negative aspects, including the use of hydrogen peroxide, divalent iron ion, and the removal of sludge generated by the electrofenton method. The use of hollow cylindrical electrodes allowed adequate loading of the advanced synthesized nanoreactors with Yolk@Shell structure. The investigation of the effects of micro (advanced synthesized nanoreactors with Yolk@Shell structure) and macro (vortex structure based on relative blockage of the flow) processes on the degradation of pharmaceutical pollutants, both separately and in combination, is a focus of this work. At the end, the energy consumption for each of these processes and this system in general was studied, which showed that the operating cost of this combined system according to the energy consumption requirements for the almost complete removal of the pollutant naproxen and the 90% reduction of its chemical oxygen demand is 6530 Rials/L.h (or 0.15525 USD/L.h), which presents this system as an economical method with industrialization capability. The degradability index (DI) of the introduced system under optimal operating conditions was 3.38, which shows that the development of the system based on the combination of advanced oxidation methods is a suitable method used in this research work due to its environmental friendliness, absence of side effluent production, efficiency and high degradation performance, ability to recover the nanocatalyst and consequently economic efficiency.
{"title":"Economic nanobubbles by RFB and promoted PEF with yolk@double-shell structural photocatalyst for degradation of pharmaceutical pollutants","authors":"Saeed Shirazian, Sameer Alshehri, Mohammad A. Khasawneh, Masoud Habibi Zare, Arjomand Mehrabani-Zeinabad","doi":"10.1038/s41545-024-00345-2","DOIUrl":"10.1038/s41545-024-00345-2","url":null,"abstract":"In this research, the generation of nanobubbles was carried out using a structure of vortex pump based on the relative blockage of flow (without the use of venturi and orifices, which consume a lot of energy to generate nanobubbles), which has made this process economical and commercial. In addition, the use of advanced synthesized nanoreactors with the Yolk@Shell structure, which forms a photoanode by coating the anode electrode and can operate in the visible light range, has highlighted this research work. An in-depth study of the synergistic effect of advanced photoelectrofenton oxidation methods in addition to the hydrodynamic reactor has shown that the intelligent selection of these three types of advanced oxidation methods together has improved the performance of each other and solved their negative aspects, including the use of hydrogen peroxide, divalent iron ion, and the removal of sludge generated by the electrofenton method. The use of hollow cylindrical electrodes allowed adequate loading of the advanced synthesized nanoreactors with Yolk@Shell structure. The investigation of the effects of micro (advanced synthesized nanoreactors with Yolk@Shell structure) and macro (vortex structure based on relative blockage of the flow) processes on the degradation of pharmaceutical pollutants, both separately and in combination, is a focus of this work. At the end, the energy consumption for each of these processes and this system in general was studied, which showed that the operating cost of this combined system according to the energy consumption requirements for the almost complete removal of the pollutant naproxen and the 90% reduction of its chemical oxygen demand is 6530 Rials/L.h (or 0.15525 USD/L.h), which presents this system as an economical method with industrialization capability. The degradability index (DI) of the introduced system under optimal operating conditions was 3.38, which shows that the development of the system based on the combination of advanced oxidation methods is a suitable method used in this research work due to its environmental friendliness, absence of side effluent production, efficiency and high degradation performance, ability to recover the nanocatalyst and consequently economic efficiency.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00345-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141326811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1038/s41545-024-00344-3
Kai Sun, Ziyan Niu, Shenghua Xiao, Xuemin Qi, Shunyao Li, Meihua Chen, Lingzhi Dai, Youbin Si
Humic substances (HSs), as the “black gold” of global agriculture, have a crucial environmental significance in cleaning harmful compounds, maintaining carbon mass balance, and increasing crop productivity. Unfortunately, the resources of HSs extracted from nature are insufficient, causing the supply, demand, and budget of the humus market to gradually increase. Given the analogous architectures of lignin and HSs, artificially regulated humification (ARH) has a great potential for directionally controlling the oxidative cleavage of lignin and/or the radical copolymerization of lignin precursors, to produce reassembled oligomers and/or polymers that can compare favorably with the function and efficacy of HSs. Herein, different ARH strategies are innovatively proposed to tackle hazardous chemicals and create humic-like biostimulators (H-LBs). We briefly describe the characteristics and functionalities of natural HSs, and summarize the latest approaches and mechanisms of lignin and its precursor-based ARH. In particular, the ARH routes of bio-composting, laccase catalysis, white-rot fungal degradation, Fenton-based advanced oxidation, and hydrothermal humification are comparatively highlighted to govern harmful substrates, enhance carbon sequestration, generate H-LBs, and practice sustainable agriculture. Furthermore, the mechanisms for promoting crop growth of H-LBs are also illustrated. Advances in modulating humification pathways may solve the technological bottlenecks of ARH in-situ and ex-situ by well-stocked lignin and its small derivatives, which are important for decontaminating contaminants, reducing CO2 emissions, and enriching H-LBs in agroecosystems.
{"title":"Artificially regulated humification in creating humic-like biostimulators","authors":"Kai Sun, Ziyan Niu, Shenghua Xiao, Xuemin Qi, Shunyao Li, Meihua Chen, Lingzhi Dai, Youbin Si","doi":"10.1038/s41545-024-00344-3","DOIUrl":"10.1038/s41545-024-00344-3","url":null,"abstract":"Humic substances (HSs), as the “black gold” of global agriculture, have a crucial environmental significance in cleaning harmful compounds, maintaining carbon mass balance, and increasing crop productivity. Unfortunately, the resources of HSs extracted from nature are insufficient, causing the supply, demand, and budget of the humus market to gradually increase. Given the analogous architectures of lignin and HSs, artificially regulated humification (ARH) has a great potential for directionally controlling the oxidative cleavage of lignin and/or the radical copolymerization of lignin precursors, to produce reassembled oligomers and/or polymers that can compare favorably with the function and efficacy of HSs. Herein, different ARH strategies are innovatively proposed to tackle hazardous chemicals and create humic-like biostimulators (H-LBs). We briefly describe the characteristics and functionalities of natural HSs, and summarize the latest approaches and mechanisms of lignin and its precursor-based ARH. In particular, the ARH routes of bio-composting, laccase catalysis, white-rot fungal degradation, Fenton-based advanced oxidation, and hydrothermal humification are comparatively highlighted to govern harmful substrates, enhance carbon sequestration, generate H-LBs, and practice sustainable agriculture. Furthermore, the mechanisms for promoting crop growth of H-LBs are also illustrated. Advances in modulating humification pathways may solve the technological bottlenecks of ARH in-situ and ex-situ by well-stocked lignin and its small derivatives, which are important for decontaminating contaminants, reducing CO2 emissions, and enriching H-LBs in agroecosystems.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00344-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1038/s41545-024-00343-4
María Molinos-Senante, Manel Poch, Diego Rosso, Manel Garrido-Baserba
Current wastewater management practices underutilize wastewater as a valuable source of water, energy, and essential plant nutrients. A new paradigm shift is needed, one that integrates the water-energy-food nexus into wastewater management. Decentralized wastewater management has the power to redefine not only the urban water cycle but also reshape society towards a more economic and environmentally sustainable future.
{"title":"From wastewater treatment plants to decentralized resource factories","authors":"María Molinos-Senante, Manel Poch, Diego Rosso, Manel Garrido-Baserba","doi":"10.1038/s41545-024-00343-4","DOIUrl":"10.1038/s41545-024-00343-4","url":null,"abstract":"Current wastewater management practices underutilize wastewater as a valuable source of water, energy, and essential plant nutrients. A new paradigm shift is needed, one that integrates the water-energy-food nexus into wastewater management. Decentralized wastewater management has the power to redefine not only the urban water cycle but also reshape society towards a more economic and environmentally sustainable future.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00343-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The global wastewater surge demands constructed wetlands (CWs) to achieve the UN’s Sustainable Development Goals (SDG); yet the pollutant removal interactions and global sustainability of small CWs are unclear. This study synthesizes small CW data from 364 sites worldwide. The removal efficiency of organic matter and nutrient pollutants of small CWs had a 75th percentile of 68.8–84.0%. Bivariate analysis found consistent synergies between pollutant removals, lasting 3–12 years. The optimal thresholds for maintaining the synergistic effects were as follows: area size—17587 m2, hydraulic loading rate—0.45 m/d, hydraulic retention time—8.2 days, and temperature—20.2 °C. When considering the co-benefits and sustainability of small CWs for multi-pollutants control, promoting small-scale CWs could be an effective and sustainable solution for managing diverse wastewater pollutants while simultaneously minimizing land requirements. This solution holds the potential to address the challenges posed by global water scarcity resulting from wastewater discharge and water pollution.
{"title":"Sustainability of global small-scale constructed wetlands for multiple pollutant control","authors":"Guogui Chen, Yuanyuan Mo, Xuan Gu, Erik Jeppesen, Tian Xie, Zhonghua Ning, Yina Li, Dongxue Li, Cong Chen, Baoshan Cui, Haiming Wu","doi":"10.1038/s41545-024-00336-3","DOIUrl":"10.1038/s41545-024-00336-3","url":null,"abstract":"The global wastewater surge demands constructed wetlands (CWs) to achieve the UN’s Sustainable Development Goals (SDG); yet the pollutant removal interactions and global sustainability of small CWs are unclear. This study synthesizes small CW data from 364 sites worldwide. The removal efficiency of organic matter and nutrient pollutants of small CWs had a 75th percentile of 68.8–84.0%. Bivariate analysis found consistent synergies between pollutant removals, lasting 3–12 years. The optimal thresholds for maintaining the synergistic effects were as follows: area size—17587 m2, hydraulic loading rate—0.45 m/d, hydraulic retention time—8.2 days, and temperature—20.2 °C. When considering the co-benefits and sustainability of small CWs for multi-pollutants control, promoting small-scale CWs could be an effective and sustainable solution for managing diverse wastewater pollutants while simultaneously minimizing land requirements. This solution holds the potential to address the challenges posed by global water scarcity resulting from wastewater discharge and water pollution.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00336-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1038/s41545-024-00339-0
Yun Xia, Yarong Liu, Kai Zhang, Jinhui Sun, Guangjun Wang, Zhifei Li, Jingjing Tian, Wangbao Gong, Hongyan Li, Wenping Xie, Gen Kaneko, Jun Xie, Ermeng Yu
The biodegradable polymer poly-β-hydroxybutyrate (PHB) is a promising carbon source for biological mitigation of nitrogen pollution, a significant problem in aquaculture that physical and chemical methods have not provided a comprehensive solution. Here we investigated the impact of PHB on the zero-water-change largemouth bass culture by 30- and 40-day experiments. PHB loaded into the filter circulation pump at 4 g L−1, optimum value determined by the first experiment, significantly reduced the levels of nitrate by 99.65%, nitrite by 95.96%, and total nitrogen by 85.22% compared to the control without PHB. PHB also significantly increased denitrifying bacteria (e.g., Proteobacteria and Fusobacteria) and expression of denitrification genes (e.g., nirK and nirS) in the microbial community, improving growth and health parameters of largemouth bass. While the impact may vary in other culture systems, PHB thus demonstrated its remarkable utility in aquaculture, highlighting ecological assessment and application to larger aquaculture operations as future considerations.
{"title":"Microorganism-mediated denitrogenation of aquaculture systems provoked by poly-β-hydroxybutyrate (PHB)","authors":"Yun Xia, Yarong Liu, Kai Zhang, Jinhui Sun, Guangjun Wang, Zhifei Li, Jingjing Tian, Wangbao Gong, Hongyan Li, Wenping Xie, Gen Kaneko, Jun Xie, Ermeng Yu","doi":"10.1038/s41545-024-00339-0","DOIUrl":"10.1038/s41545-024-00339-0","url":null,"abstract":"The biodegradable polymer poly-β-hydroxybutyrate (PHB) is a promising carbon source for biological mitigation of nitrogen pollution, a significant problem in aquaculture that physical and chemical methods have not provided a comprehensive solution. Here we investigated the impact of PHB on the zero-water-change largemouth bass culture by 30- and 40-day experiments. PHB loaded into the filter circulation pump at 4 g L−1, optimum value determined by the first experiment, significantly reduced the levels of nitrate by 99.65%, nitrite by 95.96%, and total nitrogen by 85.22% compared to the control without PHB. PHB also significantly increased denitrifying bacteria (e.g., Proteobacteria and Fusobacteria) and expression of denitrification genes (e.g., nirK and nirS) in the microbial community, improving growth and health parameters of largemouth bass. While the impact may vary in other culture systems, PHB thus demonstrated its remarkable utility in aquaculture, highlighting ecological assessment and application to larger aquaculture operations as future considerations.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00339-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study is focused on the use of cubic metal-organic frameworks-5 (MOF-5) and its functionalized form in the removal of phenolic pollutants by molecular dynamics (MD) and Well-tempered metadynamics (WTMD) simulation methods. It was found that the adsorption mechanism of MOF-5s/phenolic compounds is mostly due to the van der Waals and π–π interactions. However, electrostatic and hydrogen bond (HB) interactions also play a significant role in removing phenolic pollutants by MOF-5 and its functionalized form. The results show that the fluorine functional group (F-MOF-5) increases the adsorption capacity of phenol compounds on the adsorbent surface. By functionalizing the MOF-5 with a methyl functional group (CH3-MOF-5), the adsorption strength decreases. The WTMD calculation confirmed that at the most stable state, the free energy (FE) value of system II (the most stable system in functionalized systems with –F functional group) is about −289.528 kJ mol−1. This value is ~5.781 and 35.514 kJ mol−1 more negative than the FE of the I and III systems (the most stable systems in the pristine and CH3-MOF-5/pollutant systems, respectively). Altogether, the results indicate that F-MOF-5 can be considered a more suitable adsorbent than MOF-5 and CH3-MOF-5 for phenolic pollutants removal from the environment for more assessment.
{"title":"Significantly enhanced performance for phenol compounds removal by MOF-5 nano-composite via its surface modification","authors":"Leila Razavi, Heidar Raissi, Ozra Hashemzehi, Farzaneh Farzad","doi":"10.1038/s41545-024-00338-1","DOIUrl":"10.1038/s41545-024-00338-1","url":null,"abstract":"The present study is focused on the use of cubic metal-organic frameworks-5 (MOF-5) and its functionalized form in the removal of phenolic pollutants by molecular dynamics (MD) and Well-tempered metadynamics (WTMD) simulation methods. It was found that the adsorption mechanism of MOF-5s/phenolic compounds is mostly due to the van der Waals and π–π interactions. However, electrostatic and hydrogen bond (HB) interactions also play a significant role in removing phenolic pollutants by MOF-5 and its functionalized form. The results show that the fluorine functional group (F-MOF-5) increases the adsorption capacity of phenol compounds on the adsorbent surface. By functionalizing the MOF-5 with a methyl functional group (CH3-MOF-5), the adsorption strength decreases. The WTMD calculation confirmed that at the most stable state, the free energy (FE) value of system II (the most stable system in functionalized systems with –F functional group) is about −289.528 kJ mol−1. This value is ~5.781 and 35.514 kJ mol−1 more negative than the FE of the I and III systems (the most stable systems in the pristine and CH3-MOF-5/pollutant systems, respectively). Altogether, the results indicate that F-MOF-5 can be considered a more suitable adsorbent than MOF-5 and CH3-MOF-5 for phenolic pollutants removal from the environment for more assessment.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00338-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1038/s41545-024-00337-2
Farah Ejaz Ahmed, Yazan Ibrahim, Nidal Hilal
Membrane distillation (MD) is a versatile low-temperature separation process used for desalinating saline solutions with high salt rejection rates. Its current drawbacks include low flux and high energy demand. This study presents localized electrically induced heating using ceramic-coated metallic spacers to improve MD performance. We coated Ni-Cr spacers with MgO via electrolytic deposition and calcination, optimizing for a crack-free protective surface. Smaller wire diameter Ni-Cr exhibited superior heating. When a periodic current of 0.2 A cm−2 was applied, permeate flux increased by 15% although energy consumption only increased by 4%. Continuous supply of high-grade electrical energy added no further performance improvement as compared to periodic application. Our work highlights a spacer-based approach for localized Joule heating in MD systems without compromising membrane structure, while exploring coating systems to protect conductive spacers and optimizing schemes for electrically controlled performance.
{"title":"A spacer-based approach for localized Joule heating in membrane distillation","authors":"Farah Ejaz Ahmed, Yazan Ibrahim, Nidal Hilal","doi":"10.1038/s41545-024-00337-2","DOIUrl":"10.1038/s41545-024-00337-2","url":null,"abstract":"Membrane distillation (MD) is a versatile low-temperature separation process used for desalinating saline solutions with high salt rejection rates. Its current drawbacks include low flux and high energy demand. This study presents localized electrically induced heating using ceramic-coated metallic spacers to improve MD performance. We coated Ni-Cr spacers with MgO via electrolytic deposition and calcination, optimizing for a crack-free protective surface. Smaller wire diameter Ni-Cr exhibited superior heating. When a periodic current of 0.2 A cm−2 was applied, permeate flux increased by 15% although energy consumption only increased by 4%. Continuous supply of high-grade electrical energy added no further performance improvement as compared to periodic application. Our work highlights a spacer-based approach for localized Joule heating in MD systems without compromising membrane structure, while exploring coating systems to protect conductive spacers and optimizing schemes for electrically controlled performance.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00337-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141091686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}