首页 > 最新文献

Numerical Methods for Partial Differential Equations最新文献

英文 中文
Adaptive finite element methods for scalar double‐well problem 标量双井问题的自适应有限元方法
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-03-08 DOI: 10.1002/num.23096
Bingzhen Li, Dongjie Liu
Some scalar double‐well problems eventually lead to a degenerate convex minimization problem with unique stress. We consider the adaptive conforming and nonconforming finite element methods for the scalar double‐well problem with the reliable a posteriori error analysis. A number of experiments confirm the effective decay rates of the methods.
一些标量双井问题最终会导致具有唯一应力的退化凸最小化问题。我们考虑了标量双井问题的自适应共形和非共形有限元方法,并进行了可靠的后验误差分析。大量实验证实了这些方法的有效衰减率。
{"title":"Adaptive finite element methods for scalar double‐well problem","authors":"Bingzhen Li, Dongjie Liu","doi":"10.1002/num.23096","DOIUrl":"https://doi.org/10.1002/num.23096","url":null,"abstract":"Some scalar double‐well problems eventually lead to a degenerate convex minimization problem with unique stress. We consider the adaptive conforming and nonconforming finite element methods for the scalar double‐well problem with the reliable a posteriori error analysis. A number of experiments confirm the effective decay rates of the methods.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"276 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On strong convergence of a fully discrete scheme for solving stochastic strongly damped wave equations 论求解随机强阻尼波方程的全离散方案的强收敛性
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-17 DOI: 10.1002/num.23094
Chengqiang Xu, Yibo Wang, Wanrong Cao
This article develops an efficient fully discrete scheme for a stochastic strongly damped wave equation (SSDWE) driven by an additive noise and presents its error estimates in the strong sense. We use the truncated spectral expansion of the noise to get an approximate equation and prove its regularity. Then we establish a spatio-temporal discretization of the approximate equation by a finite element method in space and an exponential trapezoidal scheme in time. We prove that the combination can derive higher strong convergence order in time than the use of the piecewise approximation of the noise and the exponential Euler scheme or the implicit Euler scheme in time. Particularly, the temporal strong convergence order of the fully discrete scheme reaches <mjx-container aria-label="5 divided by 4 minus epsilon" ctxtmenu_counter="0" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true"><mjx-semantics><mjx-mrow data-semantic-children="5,4" data-semantic-content="3" data-semantic- data-semantic-role="subtraction" data-semantic-speech="5 divided by 4 minus epsilon" data-semantic-type="infixop"><mjx-mrow data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-parent="6" data-semantic-role="division" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="5" data-semantic-role="division" data-semantic-type="operator" rspace="1" space="1"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="infixop,−" data-semantic-parent="6" data-semantic-role="subtraction" data-semantic-type="operator" rspace="1" style="margin-left: 0.056em;"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden="true" display="inline" unselectable="on"><math altimg="/cms/asset/246ca0b6-0dc3-49d5-80f8-c979b4835343/num23094-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow data-semantic-="" data-semantic-children="5,4" data-semantic-content="3" data-semantic-role="subtraction" data-semantic-speech="5 divided by 4 minus epsilon" data-semantic-type="infixop"><mrow data-semantic-="" data-semantic-children="0,2" data-semantic-content="1" data-semantic-parent="6" data-semantic-role="division" data-semantic-type="infixo
本文针对加性噪声驱动的随机强阻尼波方程(SSDWE)提出了一种高效的全离散方案,并给出了其强意义上的误差估计。我们利用噪声的截断谱扩展得到近似方程,并证明了其正则性。然后,我们通过空间有限元法和时间指数梯形方案建立了近似方程的时空离散化。我们证明,与使用噪声的片断逼近和指数欧拉方案或隐式欧拉方案相比,这种组合能获得更高的时间强收敛阶次。特别是,对于一维时空白噪声,全离散方案的时间强收敛阶数达到了 5/4-ε$$ 5/4-varepsilon$$,克服了阶数障碍一。此外,我们允许噪声的协方差算子与 Dirichlet Laplacian 非交换,这弱化了文献中对噪声的常见假设。最后,我们介绍了一些不同空间维度的数值实验,以支持我们的理论发现。通过对噪声的片断谱近似,我们构建了一个片断版的完全离散方案,以实现长时间模拟。
{"title":"On strong convergence of a fully discrete scheme for solving stochastic strongly damped wave equations","authors":"Chengqiang Xu, Yibo Wang, Wanrong Cao","doi":"10.1002/num.23094","DOIUrl":"https://doi.org/10.1002/num.23094","url":null,"abstract":"This article develops an efficient fully discrete scheme for a stochastic strongly damped wave equation (SSDWE) driven by an additive noise and presents its error estimates in the strong sense. We use the truncated spectral expansion of the noise to get an approximate equation and prove its regularity. Then we establish a spatio-temporal discretization of the approximate equation by a finite element method in space and an exponential trapezoidal scheme in time. We prove that the combination can derive higher strong convergence order in time than the use of the piecewise approximation of the noise and the exponential Euler scheme or the implicit Euler scheme in time. Particularly, the temporal strong convergence order of the fully discrete scheme reaches &lt;mjx-container aria-label=\"5 divided by 4 minus epsilon\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow data-semantic-children=\"5,4\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"subtraction\" data-semantic-speech=\"5 divided by 4 minus epsilon\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"/cms/asset/246ca0b6-0dc3-49d5-80f8-c979b4835343/num23094-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow data-semantic-=\"\" data-semantic-children=\"5,4\" data-semantic-content=\"3\" data-semantic-role=\"subtraction\" data-semantic-speech=\"5 divided by 4 minus epsilon\" data-semantic-type=\"infixop\"&gt;&lt;mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixo","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"199 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A second-order time discretizing block-centered finite difference method for compressible wormhole propagation 可压缩虫洞传播的二阶时间离散块中心有限差分法
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-07 DOI: 10.1002/num.23091
Fei Sun, Xiaoli Li, Hongxing Rui
In this paper, a second-order time discretizing block-centered finite difference method is introduced to solve the compressible wormhole propagation. The optimal second-order error estimates for the porosity, pressure, velocity, concentration and its flux are established carefully in different discrete norms on non-uniform grids. Then by introducing Lagrange multiplier, a novel bound-preserving scheme for concentration is constructed. Finally, numerical experiments are carried out to demonstrate the correctness of theoretical analysis and capability for simulations of compressible wormhole propagation.
本文引入了一种二阶时间离散块中心有限差分法来求解可压缩虫洞传播。在非均匀网格的不同离散规范下,仔细建立了孔隙度、压力、速度、浓度及其通量的最优二阶误差估计。然后,通过引入拉格朗日乘法器,构建了一种新颖的浓度保界方案。最后,通过数值实验证明了理论分析的正确性以及模拟可压缩虫洞传播的能力。
{"title":"A second-order time discretizing block-centered finite difference method for compressible wormhole propagation","authors":"Fei Sun, Xiaoli Li, Hongxing Rui","doi":"10.1002/num.23091","DOIUrl":"https://doi.org/10.1002/num.23091","url":null,"abstract":"In this paper, a second-order time discretizing block-centered finite difference method is introduced to solve the compressible wormhole propagation. The optimal second-order error estimates for the porosity, pressure, velocity, concentration and its flux are established carefully in different discrete norms on non-uniform grids. Then by introducing Lagrange multiplier, a novel bound-preserving scheme for concentration is constructed. Finally, numerical experiments are carried out to demonstrate the correctness of theoretical analysis and capability for simulations of compressible wormhole propagation.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"6 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: Asymptotic behavior of the solution of a singularly perturbed general boundary value problem with boundary jumps 撤回:具有边界跳跃的奇异扰动一般边界值问题解的渐近行为
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-01 DOI: 10.1002/num.23089
Retraction: Nurgabyl DN, Uaissov AB. Asymptotic behavior of the solution of a singularly perturbed general boundary value problem with boundary jumps. Numer Methods Partial Differential Eq. 2021; 37: 2375–2392. https://doi.org/10.1002/num.22719
撤回:Nurgabyl DN, Uaissov AB.具有边界跳跃的奇异扰动一般边界值问题解的渐近行为.Numer Methods Partial Differential Eq. 2021; 37: 2375-2392. https://doi.org/10.1002/num.22719
{"title":"Retraction: Asymptotic behavior of the solution of a singularly perturbed general boundary value problem with boundary jumps","authors":"","doi":"10.1002/num.23089","DOIUrl":"https://doi.org/10.1002/num.23089","url":null,"abstract":"<b>Retraction:</b> Nurgabyl DN, Uaissov AB. Asymptotic behavior of the solution of a singularly perturbed general boundary value problem with boundary jumps. <i>Numer Methods Partial Differential Eq</i>. 2021; 37: 2375–2392. https://doi.org/10.1002/num.22719","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"5 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully decoupled unconditionally stable Crank–Nicolson leapfrog numerical methods for the Cahn–Hilliard–Darcy system 针对卡恩-希利亚德-达西系统的完全解耦无条件稳定的克兰-尼科尔森跃迁数值方法
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-30 DOI: 10.1002/num.23087
Yali Gao, Daozhi Han
We develop two totally decoupled, linear and second-order accurate numerical methods that are unconditionally energy stable for solving the Cahn–Hilliard–Darcy equations for two phase flows in porous media or in a Hele-Shaw cell. The implicit-explicit Crank–Nicolson leapfrog method is employed for the discretization of the Cahn–Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique and pressure correction methods are utilized, respectively, so that the Cahn–Hiliard equation and the update of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the numerical methods, including simulations of the Rayleigh–Taylor instability, the Saffman–Taylor instability (fingering phenomenon).
我们开发了两种完全解耦的线性二阶精确数值方法,这些方法无条件能量稳定,可用于求解多孔介质或 Hele-Shaw 单元中两相流动的 Cahn-Hilliard-Darcy 方程。在对 Cahn-Hiliard 方程进行离散化时,采用了隐式-显式 Crank-Nicolson 跃迁法,以获得线性方案。此外,还分别采用了人工压缩技术和压力校正方法,从而可以独立求解卡恩-希利亚德方程和达西压力更新。我们确定了这些方案的无条件长期稳定性。为了证明数值方法的准确性和稳健性,我们进行了大量的数值实验,包括对雷利-泰勒不稳定性、萨夫曼-泰勒不稳定性(指状现象)的模拟。
{"title":"Fully decoupled unconditionally stable Crank–Nicolson leapfrog numerical methods for the Cahn–Hilliard–Darcy system","authors":"Yali Gao, Daozhi Han","doi":"10.1002/num.23087","DOIUrl":"https://doi.org/10.1002/num.23087","url":null,"abstract":"We develop two totally decoupled, linear and second-order accurate numerical methods that are unconditionally energy stable for solving the Cahn–Hilliard–Darcy equations for two phase flows in porous media or in a Hele-Shaw cell. The implicit-explicit Crank–Nicolson leapfrog method is employed for the discretization of the Cahn–Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique and pressure correction methods are utilized, respectively, so that the Cahn–Hiliard equation and the update of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the numerical methods, including simulations of the Rayleigh–Taylor instability, the Saffman–Taylor instability (fingering phenomenon).","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"3 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the convergence of 2D P4+ triangular and 3D P6+ tetrahedral divergence-free finite elements 论二维 P4+ 三角形和三维 P6+ 四面体无发散有限元的收敛性
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-21 DOI: 10.1002/num.23088
Shangyou Zhang
We show that the discrete velocity solution converges at the optimal order when solving the steady state Stokes equations by the Pk�$$ {P}_k $$�-Pk1disc�$$ {P}_{k-1}^{mathrm{disc}} $$� mixed finite element method for k4�$$ kge 4 $$� on 2D triangular grids or k6�$$ kge 6 $$� on tetrahedral grids, even in the case the inf-sup condition fails. By a simple L2�$$ {L}^2 $$�-projection of the discrete Pk1�$$ {P}_{k-1} $$� pressure to the space of continuous Pk1�$$ {P}_{k-1} $$� polynomials, we show this post-processed pressure solution also converges at the optimal order. Both 2D and 3D numerical tests are presented, verifying the theory.
我们的研究表明,用 Pk$$ {P}_k $$-Pk-1disc$$ {P}_{k-1}^{mathrm{disc}} 混合有限元法求解稳态斯托克斯方程时,离散速度解以最优阶收敛。$$ 混合有限元法在二维三角形网格上计算 k≥4$ kge 4 $$ 或在四面体网格上计算 k≥6$ kge 6 $$,即使在 inf-sup 条件失效的情况下也是如此。通过将离散的 Pk-1$$ {P}_{k-1} $ $ 压力简单地投影到连续的 Pk-1$$ {P}_{k-1} $ 多项式空间的 L2$$ {L}^2 $$投影,我们证明了这种后处理压力解也能以最优阶收敛。二维和三维数值测试都验证了这一理论。
{"title":"On the convergence of 2D P4+ triangular and 3D P6+ tetrahedral divergence-free finite elements","authors":"Shangyou Zhang","doi":"10.1002/num.23088","DOIUrl":"https://doi.org/10.1002/num.23088","url":null,"abstract":"We show that the discrete velocity solution converges at the optimal order when solving the steady state Stokes equations by the <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0003\" display=\"inline\" location=\"graphic/num23088-math-0003.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msub>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000</mrow>\u0000</msub>\u0000</mrow>\u0000$$ {P}_k $$</annotation>\u0000</semantics></math>-<math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0004\" display=\"inline\" location=\"graphic/num23088-math-0004.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msubsup>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo form=\"prefix\">−</mo>\u0000<mn>1</mn>\u0000</mrow>\u0000<mrow>\u0000<mtext>disc</mtext>\u0000</mrow>\u0000</msubsup>\u0000</mrow>\u0000$$ {P}_{k-1}^{mathrm{disc}} $$</annotation>\u0000</semantics></math> mixed finite element method for <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0005\" display=\"inline\" location=\"graphic/num23088-math-0005.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo>≥</mo>\u0000<mn>4</mn>\u0000</mrow>\u0000$$ kge 4 $$</annotation>\u0000</semantics></math> on 2D triangular grids or <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0006\" display=\"inline\" location=\"graphic/num23088-math-0006.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo>≥</mo>\u0000<mn>6</mn>\u0000</mrow>\u0000$$ kge 6 $$</annotation>\u0000</semantics></math> on tetrahedral grids, even in the case the inf-sup condition fails. By a simple <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0007\" display=\"inline\" location=\"graphic/num23088-math-0007.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msup>\u0000<mrow>\u0000<mi>L</mi>\u0000</mrow>\u0000<mrow>\u0000<mn>2</mn>\u0000</mrow>\u0000</msup>\u0000</mrow>\u0000$$ {L}^2 $$</annotation>\u0000</semantics></math>-projection of the discrete <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0008\" display=\"inline\" location=\"graphic/num23088-math-0008.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msub>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo form=\"prefix\">−</mo>\u0000<mn>1</mn>\u0000</mrow>\u0000</msub>\u0000</mrow>\u0000$$ {P}_{k-1} $$</annotation>\u0000</semantics></math> pressure to the space of continuous <math altimg=\"urn:x-wiley:num:media:num23088:num23088-math-0009\" display=\"inline\" location=\"graphic/num23088-math-0009.png\" overflow=\"scroll\">\u0000<semantics>\u0000<mrow>\u0000<msub>\u0000<mrow>\u0000<mi>P</mi>\u0000</mrow>\u0000<mrow>\u0000<mi>k</mi>\u0000<mo form=\"prefix\">−</mo>\u0000<mn>1</mn>\u0000</mrow>\u0000</msub>\u0000</mrow>\u0000$$ {P}_{k-1} $$</annotation>\u0000</semantics></math> polynomials, we show this post-processed pressure solution also converges at the optimal order. Both 2D and 3D numerical tests are presented, verifying the theory.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"65 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double diffusive effects on nanofluid flow toward a permeable stretching surface in presence of Thermophoresis and Brownian motion effects: A numerical study 热泳效应和布朗运动效应对纳米流体流向可渗透拉伸表面的双重扩散效应:数值研究
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-19 DOI: 10.1002/num.23086
V. V. L. Deepthi, V. K. Narla, R. Srinivasa Raju
The present study explores the nanofluid boundary layer flow over a stretching sheet with the combined influence of the double diffusive effects of thermophoresis and Brownian motion effects. For the purpose of transforming nonlinear partial differential equations into the linear united ordinary differential equation method, the similarity transformation technique is used. The Runge–Kutta–Fehlberg method was used to solve the equations of flow, along with sufficient boundary conditions. The effect on hydrodynamic, thermal and solutes boundary layers of a number of related parameters is investigated and the effects are graphically displayed. In conclusion, a strong agreement between the current numerical findings and the previous literature results is sought.
本研究探讨了在热泳效应和布朗运动效应双重扩散效应共同影响下拉伸片上的纳米流体边界层流动。为了将非线性偏微分方程转换为线性联合常微分方程方法,采用了相似性转换技术。采用 Runge-Kutta-Fehlberg 方法求解流动方程,并充分考虑了边界条件。研究了一些相关参数对流体力学、热学和溶质边界层的影响,并以图形显示了这些影响。总之,目前的数值研究结果与之前的文献结果非常吻合。
{"title":"Double diffusive effects on nanofluid flow toward a permeable stretching surface in presence of Thermophoresis and Brownian motion effects: A numerical study","authors":"V. V. L. Deepthi, V. K. Narla, R. Srinivasa Raju","doi":"10.1002/num.23086","DOIUrl":"https://doi.org/10.1002/num.23086","url":null,"abstract":"The present study explores the nanofluid boundary layer flow over a stretching sheet with the combined influence of the double diffusive effects of thermophoresis and Brownian motion effects. For the purpose of transforming nonlinear partial differential equations into the linear united ordinary differential equation method, the similarity transformation technique is used. The Runge–Kutta–Fehlberg method was used to solve the equations of flow, along with sufficient boundary conditions. The effect on hydrodynamic, thermal and solutes boundary layers of a number of related parameters is investigated and the effects are graphically displayed. In conclusion, a strong agreement between the current numerical findings and the previous literature results is sought.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"22 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved error estimates of the time-splitting methods for the long-time dynamics of the Klein–Gordon–Dirac system with the small coupling constant 具有小耦合常数的克莱因-戈登-狄拉克系统长时动力学时间分割方法的改进误差估计
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-11 DOI: 10.1002/num.23084
Jiyong Li
We provide improved uniform error estimates for the time-splitting Fourier pseudo-spectral (TSFP) methods applied to the Klein–Gordon–Dirac system (KGDS) with the small parameter <mjx-container ctxtmenu_counter="0" jax="CHTML" style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" data-semantic-complexity="5.5" location="graphic/num23084-math-0001.png"><mjx-semantics data-semantic-complexity="5.5"><mjx-maction data-collapsible="true" data-semantic-complexity="1.5" toggle="2"><mjx-mrow data-semantic-children="0,8" data-semantic-complexity="16" data-semantic-content="1" data-semantic- data-semantic-role="element" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-complexity="1" data-semantic-font="italic" data-semantic- data-semantic-parent="9" data-semantic-role="greekletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-complexity="1" data-semantic- data-semantic-operator="infixop,∈" data-semantic-parent="9" data-semantic-role="element" data-semantic-type="operator" rspace="5" space="5"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children="7" data-semantic-complexity="11" data-semantic-content="2,6" data-semantic- data-semantic-parent="9" data-semantic-role="leftright" data-semantic-type="fenced"><mjx-mo data-semantic-complexity="1" data-semantic- data-semantic-operator="fenced" data-semantic-parent="8" data-semantic-role="open" data-semantic-type="fence" style="margin-left: 0.056em; margin-right: 0.056em;"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children="3,4,5" data-semantic-complexity="6" data-semantic-content="4" data-semantic- data-semantic-parent="8" data-semantic-role="sequence" data-semantic-type="punctuated"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-complexity="1" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="number"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-complexity="1" data-semantic- data-semantic-operator="punctuated" data-semantic-parent="7" data-semantic-role="comma" data-semantic-type="punctuation" rspace="3" style="margin-left: 0.056em;"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-complexity="1" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="number"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic-complexity="1" data-semantic- data-semantic-operator="fenced" data-semantic-parent="8" data-semantic-role="close" data-semantic-type="fence" style="margin-left: 0.056em; margin-right: 0.056em;"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-maction></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:num:media:num23084:num23084-math-0001" data-semantic-complexity="5.5" display="inline" location="graphic/num23084-math-0001.png" overflow="s
我们为应用于具有小参数◂+▸ε∈(0,1]$$ varepsilon in left(0,1right] $$$的Klein-Gordon-Dirac系统(KGDS)的时间分裂傅立叶伪谱(TSFP)方法提供了改进的均匀误差估计。我们首先将 KGDS 重述为耦合薛定谔-狄拉克系统(CSDS),然后将二阶斯特朗分裂法应用于 CSDS,并用傅立叶伪谱法提供空间离散化。基于严格的分析、我们建立了二阶斯特朗分裂法在 O◂()▸(◂◽˙▸hm-1+ετ2)$$ Oleft({h}^{m-1}+varepsilon {tau}^2right) $$ 直到 ◂⋅▸O(1/ε)$$ Oleft(1/varepsilon right) $$ 的长时。除常规分析方法外,我们主要应用正则补偿振荡技术进行长时间动态模拟分析。数值结果表明,我们的方法和结论不仅适用于一维问题,而且可以直接扩展到高维问题和高振荡问题。据我们所知,目前还没有针对求解 KGDS 的 TSFP 方法的相关长时间分析和改进的均匀误差边界。我们的方法很新颖,为分析类似 KGDS 的其他耦合系统的改进误差边界提供了参考。
{"title":"Improved error estimates of the time-splitting methods for the long-time dynamics of the Klein–Gordon–Dirac system with the small coupling constant","authors":"Jiyong Li","doi":"10.1002/num.23084","DOIUrl":"https://doi.org/10.1002/num.23084","url":null,"abstract":"We provide improved uniform error estimates for the time-splitting Fourier pseudo-spectral (TSFP) methods applied to the Klein–Gordon–Dirac system (KGDS) with the small parameter &lt;mjx-container ctxtmenu_counter=\"0\" jax=\"CHTML\" style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" data-semantic-complexity=\"5.5\" location=\"graphic/num23084-math-0001.png\"&gt;&lt;mjx-semantics data-semantic-complexity=\"5.5\"&gt;&lt;mjx-maction data-collapsible=\"true\" data-semantic-complexity=\"1.5\" toggle=\"2\"&gt;&lt;mjx-mrow data-semantic-children=\"0,8\" data-semantic-complexity=\"16\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"element\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-children=\"7\" data-semantic-complexity=\"11\" data-semantic-content=\"2,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-complexity=\"6\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-complexity=\"1\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic-complexity=\"1\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-maction&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:num:media:num23084:num23084-math-0001\" data-semantic-complexity=\"5.5\" display=\"inline\" location=\"graphic/num23084-math-0001.png\" overflow=\"s","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust finite element methods and solvers for the Biot–Brinkman equations in vorticity form 涡量型Biot-Brinkman方程的鲁棒有限元方法及求解方法
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-11-27 DOI: 10.1002/num.23083
Ruben Caraballo, Chansophea Wathanak In, Alberto F. Martín, Ricardo Ruiz-Baier
In this article, we propose a new formulation and a suitable finite element method for the steady coupling of viscous flow in deformable porous media using divergence-conforming filtration fluxes. The proposed method is based on the use of parameter-weighted spaces, which allows for a more accurate and robust analysis of the continuous and discrete problems. Furthermore, we conduct a solvability analysis of the proposed method and derive optimal error estimates in appropriate norms. These error estimates are shown to be robust in a variety of regimes, including the case of large Lamé parameters and small permeability and storativity coefficients. To illustrate the effectiveness of the proposed method, we provide a few representative numerical examples, including convergence verification and testing of robustness of block-diagonal preconditioners with respect to model parameters.
在本文中,我们提出了一种新的公式和合适的有限元方法来计算可变形多孔介质中粘性流动的稳态耦合。该方法基于参数加权空间的使用,可以对连续和离散问题进行更准确和鲁棒的分析。此外,我们对所提出的方法进行了可解性分析,并在适当的规范下得出了最优误差估计。这些误差估计在各种情况下都具有鲁棒性,包括在lam参数大、渗透率和存储系数小的情况下。为了说明所提方法的有效性,我们提供了几个有代表性的数值例子,包括收敛性验证和块对角预调节器相对于模型参数的鲁棒性测试。
{"title":"Robust finite element methods and solvers for the Biot–Brinkman equations in vorticity form","authors":"Ruben Caraballo, Chansophea Wathanak In, Alberto F. Martín, Ricardo Ruiz-Baier","doi":"10.1002/num.23083","DOIUrl":"https://doi.org/10.1002/num.23083","url":null,"abstract":"In this article, we propose a new formulation and a suitable finite element method for the steady coupling of viscous flow in deformable porous media using divergence-conforming filtration fluxes. The proposed method is based on the use of parameter-weighted spaces, which allows for a more accurate and robust analysis of the continuous and discrete problems. Furthermore, we conduct a solvability analysis of the proposed method and derive optimal error estimates in appropriate norms. These error estimates are shown to be robust in a variety of regimes, including the case of large Lamé parameters and small permeability and storativity coefficients. To illustrate the effectiveness of the proposed method, we provide a few representative numerical examples, including convergence verification and testing of robustness of block-diagonal preconditioners with respect to model parameters.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"28 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iteration acceleration methods for solving three-temperature heat conduction equations on distorted meshes 变形网格上三温热传导方程的迭代加速求解方法
IF 3.9 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-11-27 DOI: 10.1002/num.23085
Yunlong Yu, Xingding Chen, Yanzhong Yao
This article focuses on designing efficient iteration algorithms for nonequilibrium three-temperature heat conduction equations, which are used to formulate the radiative energy transport problem. Based on the framework of relaxation iteration, we design a new accelerated iteration algorithm by reasonable approximation of the Jacobi matrix, according to the characteristics of the discrete scheme for the three-temperature equations. Adopting the iteration framework, we analyze the advantages and disadvantages of several iteration algorithms commonly used in practice and the new iteration algorithm. Finally, we compare the new iteration algorithm with some other iteration algorithms by solving several nonlinear models, and show that the new algorithm can achieve significant acceleration effect.
本文重点研究了求解非平衡态三温热传导方程的高效迭代算法,该算法用于求解辐射能量输运问题。根据三温方程离散格式的特点,在松弛迭代框架下,通过合理逼近雅可比矩阵,设计了一种新的加速迭代算法。采用迭代框架,分析了实践中常用的几种迭代算法和新的迭代算法的优缺点。最后,通过求解多个非线性模型,将新迭代算法与其他迭代算法进行了比较,结果表明新算法可以取得显著的加速效果。
{"title":"Iteration acceleration methods for solving three-temperature heat conduction equations on distorted meshes","authors":"Yunlong Yu, Xingding Chen, Yanzhong Yao","doi":"10.1002/num.23085","DOIUrl":"https://doi.org/10.1002/num.23085","url":null,"abstract":"This article focuses on designing efficient iteration algorithms for nonequilibrium three-temperature heat conduction equations, which are used to formulate the radiative energy transport problem. Based on the framework of relaxation iteration, we design a new accelerated iteration algorithm by reasonable approximation of the Jacobi matrix, according to the characteristics of the discrete scheme for the three-temperature equations. Adopting the iteration framework, we analyze the advantages and disadvantages of several iteration algorithms commonly used in practice and the new iteration algorithm. Finally, we compare the new iteration algorithm with some other iteration algorithms by solving several nonlinear models, and show that the new algorithm can achieve significant acceleration effect.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"3 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138532564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Numerical Methods for Partial Differential Equations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1