首页 > 最新文献

Oncology reports最新文献

英文 中文
DNA methylation and mRNA expression of ZNF577 as biomarkers for the detection and prognosis of lung adenocarcinoma. 将 ZNF577 的 DNA 甲基化和 mRNA 表达作为检测和预后肺腺癌的生物标记物。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI: 10.3892/or.2024.8790
Batkhishig Munkhjargal, Kazuya Kondo, Shiho Soejima, Bilguun Tegshee, Michiko Yamashita, Naoya Kawakita, Hiroaki Toba, Hiromitsu Takizawa

Despite advances in science and technology, lung cancer remains a major public health issue. The discovery of early diagnostic and prognostic markers is still needed to reduce the mortality rate of lung cancer, which is the highest among all cancer types. Aberrations in the DNA methylation system have an important role in human cancer and are promising for the development of early diagnostic and prognostic markers. The present study focused on zinc finger protein (ZNF)577, whose encoding gene was indicated to exhibit promoter hypermethylation together with 9 other genes in lung adenocarcinoma (LADC) in a previous study by our group. ZN577 is a member of the ZNG family and its functional role has so far remained elusive. LADC tissue samples surgically resected at Tokushima University Hospital (Tokushima, Japan) between April 1999 and November 2013 were collected. A total of 73 tumors and 27 paired tumor-adjacent normal tissues were examined for DNA methylation and mRNA expression of ZNF577. A total of 149 LADC tissue samples were collected and evaluated by immunohistochemistry (IHC) for the tissue expression of ZNF577. High methylation (n=27, P<0.0001) and low mRNA expression levels (n=27, P<0.031) of ZNF577 were identified in LADC tissues, and it was demonstrated that methylation levels were inversely correlated with mRNA expression levels (P=0.0116, ρ=-0.2515). Among the LADC tissues, lepidic-patterned samples had lower methylation levels of ZNF577 than other pathological types. In addition, mRNA expression levels of ZNF577 were significantly higher in females, non-smokers and stage I samples. Overall survival [P<0.0001; area under curve (AUC)=0.8658] and disease-free survival (DFS; P<0.0004; AUC=0.7232) rates were significantly higher in the ZNF577 high mRNA expression group than in the ZNF577 low mRNA expression group. Among the 149 LADC samples examined by IHC, 105 were negative and 44 were positive for the tissue expression of ZNF577. Cox regression analysis showed poorer DFS (hazard ratio: 3.917; P=0.023) in patients with lower expression of ZNF577. In conclusion, higher methylation levels of ZNF577 were observed in LADC tissues than in normal lung tissue and low mRNA expression of ZNF577 was associated with unfavorable prognosis.

尽管科学技术在不断进步,但肺癌仍然是一个重大的公共卫生问题。肺癌是所有癌症类型中死亡率最高的一种,要降低肺癌的死亡率,仍然需要发现早期诊断和预后标志物。DNA 甲基化系统的畸变在人类癌症中起着重要作用,有望成为早期诊断和预后标志物。本研究的重点是锌指蛋白(ZNF)577,在我们小组之前的一项研究中,锌指蛋白(ZNF)577的编码基因与其他9个基因一起在肺腺癌(LADC)中表现出启动子高甲基化。ZN577 是 ZNG 家族的成员之一,其功能作用至今仍不明确。我们收集了 1999 年 4 月至 2013 年 11 月期间在德岛大学医院(日本德岛)手术切除的 LADC 组织样本。共检测了 73 例肿瘤和 27 例肿瘤相邻正常组织的 DNA 甲基化和 ZNF577 的 mRNA 表达。共收集了 149 份 LADC 组织样本,并通过免疫组化(IHC)评估了 ZNF577 的组织表达。高甲基化(n=27,P
{"title":"DNA methylation and mRNA expression of ZNF577 as biomarkers for the detection and prognosis of lung adenocarcinoma.","authors":"Batkhishig Munkhjargal, Kazuya Kondo, Shiho Soejima, Bilguun Tegshee, Michiko Yamashita, Naoya Kawakita, Hiroaki Toba, Hiromitsu Takizawa","doi":"10.3892/or.2024.8790","DOIUrl":"10.3892/or.2024.8790","url":null,"abstract":"<p><p>Despite advances in science and technology, lung cancer remains a major public health issue. The discovery of early diagnostic and prognostic markers is still needed to reduce the mortality rate of lung cancer, which is the highest among all cancer types. Aberrations in the DNA methylation system have an important role in human cancer and are promising for the development of early diagnostic and prognostic markers. The present study focused on zinc finger protein (ZNF)577, whose encoding gene was indicated to exhibit promoter hypermethylation together with 9 other genes in lung adenocarcinoma (LADC) in a previous study by our group. ZN577 is a member of the ZNG family and its functional role has so far remained elusive. LADC tissue samples surgically resected at Tokushima University Hospital (Tokushima, Japan) between April 1999 and November 2013 were collected. A total of 73 tumors and 27 paired tumor-adjacent normal tissues were examined for DNA methylation and mRNA expression of ZNF577. A total of 149 LADC tissue samples were collected and evaluated by immunohistochemistry (IHC) for the tissue expression of ZNF577. High methylation (n=27, P<0.0001) and low mRNA expression levels (n=27, P<0.031) of ZNF577 were identified in LADC tissues, and it was demonstrated that methylation levels were inversely correlated with mRNA expression levels (P=0.0116, ρ=-0.2515). Among the LADC tissues, lepidic-patterned samples had lower methylation levels of ZNF577 than other pathological types. In addition, mRNA expression levels of ZNF577 were significantly higher in females, non-smokers and stage I samples. Overall survival [P<0.0001; area under curve (AUC)=0.8658] and disease-free survival (DFS; P<0.0004; AUC=0.7232) rates were significantly higher in the ZNF577 high mRNA expression group than in the ZNF577 low mRNA expression group. Among the 149 LADC samples examined by IHC, 105 were negative and 44 were positive for the tissue expression of ZNF577. Cox regression analysis showed poorer DFS (hazard ratio: 3.917; P=0.023) in patients with lower expression of ZNF577. In conclusion, higher methylation levels of ZNF577 were observed in LADC tissues than in normal lung tissue and low mRNA expression of ZNF577 was associated with unfavorable prognosis.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin suppresses esophageal cancer progression through the radiation‑induced cellular senescence of cancer‑associated fibroblasts. 二甲双胍通过辐射诱导癌症相关成纤维细胞衰老来抑制食管癌的进展。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-02 DOI: 10.3892/or.2024.8788
Yuya Sugimoto, Koichi Okamoto, Hiroto Saito, Takahisa Yamaguchi, Jun Kinoshita, Keishi Nakamura, Takahisa Takino, Yoshio Endo, Itasu Ninomiya, Tetsuo Ohta, Noriyuki Inaki

Senescent cells are known to secrete proteins, including inflammatory cytokines and damage‑associated molecular patterns. This phenomenon is known as the senescence‑associated secretory phenotype (SASP). SASP in cancer stromal fibroblasts is involved in cancer growth and progression. Conversely, metformin, an antidiabetic drug, has been reported to inhibit SASP induction by inhibiting the activation of NF‑κB, a regulator of SASP. To date, at least to the best of our knowledge, there have been no reports regarding cellular senescence in fibroblasts and tumor progression via the SASP‑mediated paracrine pathway. The present study thus aimed to elucidate the induction mechanisms of SASP in radiation‑induced fibroblasts and to determine its effects on cancer progression via the paracrine pathway. Furthermore, the present study aimed to determine whether controlling SASP using metformin suppresses cancer progression. A well‑differentiated esophageal cancer cell line established by the authors' department and fibroblasts isolated and cultured from the non‑cancerous esophageal mucosa of resected esophageal cancer cases were used for the experiments. Fibroblasts were irradiated with 8 Gy radiation, and the changes in the expression of the senescence markers, SA‑β‑gal, p21, p16 and NF‑κB were evaluated using immunofluorescent staining and western blot analysis in the presence or absence of metformin treatment. The culture supernatants of irradiated fibroblasts treated with metformin and those treated without metformin were collected and added to the cancer cells to evaluate their proliferative, invasive and migratory abilities. Vimentin and E‑cadherin expression levels were also evaluated using immunofluorescent staining and western blot analysis. The expression levels of p16, p21 and NF‑κB in irradiated fibroblasts were attenuated by treatment with metformin. Supernatants collected from irradiated fibroblasts exhibited the proliferative activity of esophageal cancer cells, and the promotion of migratory and invasion abilities, which may be due to epithelial‑mesenchymal transition and changes in cell morphology. These reactions were confirmed to be suppressed by the addition of the supernatant of cultured fibroblasts pre‑treated with metformin. On the whole, the present study demonstrates that fibroblasts in the cancer stroma may be involved in tumor progression through cellular senescence.

众所周知,衰老细胞会分泌蛋白质,包括炎症细胞因子和损伤相关分子模式。这种现象被称为衰老相关分泌表型(SASP)。癌症基质成纤维细胞中的 SASP 与癌症的生长和进展有关。相反,二甲双胍作为一种抗糖尿病药物,据报道可通过抑制 SASP 的调节因子 NF-κB 的活化来抑制 SASP 的诱导。迄今为止,至少就我们所知,还没有关于成纤维细胞的细胞衰老和肿瘤进展通过 SASP 介导的旁分泌途径的报道。因此,本研究旨在阐明 SASP 在辐射诱导的成纤维细胞中的诱导机制,并确定其通过旁分泌途径对癌症进展的影响。此外,本研究还旨在确定使用二甲双胍控制 SASP 是否会抑制癌症进展。实验使用了作者所在部门建立的分化良好的食管癌细胞系和从切除食管癌病例的非癌食管粘膜中分离培养的成纤维细胞。成纤维细胞经 8 Gy 放射线照射后,在有无二甲双胍处理的情况下,用免疫荧光染色和 Western 印迹分析评估衰老标记物 SA-β-gal、p21、p16 和 NF-κB 的表达变化。收集经二甲双胍处理和未经二甲双胍处理的辐照成纤维细胞的培养上清,并将其添加到癌细胞中,以评估其增殖、侵袭和迁移能力。此外,还使用免疫荧光染色和 Western 印迹分析法评估了波形蛋白和 E-cadherin 的表达水平。二甲双胍可降低辐照成纤维细胞中 p16、p21 和 NF-κB 的表达水平。从辐照成纤维细胞收集的上清液显示出食管癌细胞的增殖活性,以及促进迁移和侵袭的能力,这可能是由于上皮-间质转化和细胞形态的改变。经证实,加入经二甲双胍预处理的成纤维细胞上清液可抑制这些反应。总之,本研究表明,癌症基质中的成纤维细胞可能通过细胞衰老参与了肿瘤的进展。
{"title":"Metformin suppresses esophageal cancer progression through the radiation‑induced cellular senescence of cancer‑associated fibroblasts.","authors":"Yuya Sugimoto, Koichi Okamoto, Hiroto Saito, Takahisa Yamaguchi, Jun Kinoshita, Keishi Nakamura, Takahisa Takino, Yoshio Endo, Itasu Ninomiya, Tetsuo Ohta, Noriyuki Inaki","doi":"10.3892/or.2024.8788","DOIUrl":"10.3892/or.2024.8788","url":null,"abstract":"<p><p>Senescent cells are known to secrete proteins, including inflammatory cytokines and damage‑associated molecular patterns. This phenomenon is known as the senescence‑associated secretory phenotype (SASP). SASP in cancer stromal fibroblasts is involved in cancer growth and progression. Conversely, metformin, an antidiabetic drug, has been reported to inhibit SASP induction by inhibiting the activation of NF‑κB, a regulator of SASP. To date, at least to the best of our knowledge, there have been no reports regarding cellular senescence in fibroblasts and tumor progression via the SASP‑mediated paracrine pathway. The present study thus aimed to elucidate the induction mechanisms of SASP in radiation‑induced fibroblasts and to determine its effects on cancer progression via the paracrine pathway. Furthermore, the present study aimed to determine whether controlling SASP using metformin suppresses cancer progression. A well‑differentiated esophageal cancer cell line established by the authors' department and fibroblasts isolated and cultured from the non‑cancerous esophageal mucosa of resected esophageal cancer cases were used for the experiments. Fibroblasts were irradiated with 8 Gy radiation, and the changes in the expression of the senescence markers, SA‑β‑gal, p21, p16 and NF‑κB were evaluated using immunofluorescent staining and western blot analysis in the presence or absence of metformin treatment. The culture supernatants of irradiated fibroblasts treated with metformin and those treated without metformin were collected and added to the cancer cells to evaluate their proliferative, invasive and migratory abilities. Vimentin and E‑cadherin expression levels were also evaluated using immunofluorescent staining and western blot analysis. The expression levels of p16, p21 and NF‑κB in irradiated fibroblasts were attenuated by treatment with metformin. Supernatants collected from irradiated fibroblasts exhibited the proliferative activity of esophageal cancer cells, and the promotion of migratory and invasion abilities, which may be due to epithelial‑mesenchymal transition and changes in cell morphology. These reactions were confirmed to be suppressed by the addition of the supernatant of cultured fibroblasts pre‑treated with metformin. On the whole, the present study demonstrates that fibroblasts in the cancer stroma may be involved in tumor progression through cellular senescence.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glioma lateralization: Focus on the anatomical localization and the distribution of molecular alterations (Review). 胶质瘤侧位:关注解剖定位和分子改变的分布(综述)。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.3892/or.2024.8798
Nilgun Tuncel Cini, Manuela Pennisi, Sidika Genc, Demetrios A Spandidos, Luca Falzone, Panayiotis D Mitsias, Aristides Tsatsakis, Ali Taghizadehghalehjoughi

It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto‑occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal‑temporal‑parietal‑occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.

众所周知,多形性胶质母细胞瘤(GBM)的精确定位可预测肿瘤在周围神经元结构中的扩散方向。本综述旨在通过评估多形性胶质母细胞瘤经常发生的解剖区域以及在不同脑区观察到的主要分子改变,揭示多形性胶质母细胞瘤的侧向性。根据文献,GBM 的确切或最常见的侧位尚未确定。不过,可以说 GBM 更常发生在额叶。GBM 所涉及的束带似乎主要集中在皮质脊髓束、上纵 I、II 和 III 束带、弓形束带长段、额束带和下额枕束带。考虑到 GBM 的解剖学特征及其累及的脑区,额叶-颞叶-顶叶-枕叶分别是其主要累及的脑区,这也是合乎逻辑的。虽然右半球肿瘤体积较大,但已确定左半球确诊癌症患者的预后较差,这可能反映了一些有害改变的解剖分布,如 TP53 突变、PTEN 缺失、表皮生长因子受体扩增和 MGMT 启动子甲基化。有理论认为,右半球在发育过程中受外界影响较小,因为它负责生存所需的功能,而左半球的肿瘤可能更具侵袭性。为了阐明不同脑区 GBM 的具体解剖和分子特征,本综述文章旨在描述主要的侧化途径以及与脑肿瘤发展相关的基因突变或表观遗传学改变。
{"title":"Glioma lateralization: Focus on the anatomical localization and the distribution of molecular alterations (Review).","authors":"Nilgun Tuncel Cini, Manuela Pennisi, Sidika Genc, Demetrios A Spandidos, Luca Falzone, Panayiotis D Mitsias, Aristides Tsatsakis, Ali Taghizadehghalehjoughi","doi":"10.3892/or.2024.8798","DOIUrl":"10.3892/or.2024.8798","url":null,"abstract":"<p><p>It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto‑occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal‑temporal‑parietal‑occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pituitary tumor‑transforming gene 1 regulates the senescence and apoptosis of oral squamous cell carcinoma in a p21‑dependent DNA damage response manner. 垂体肿瘤转化基因1以p21依赖性DNA损伤应答方式调控口腔鳞状细胞癌的衰老和凋亡。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.3892/or.2024.8794
Suyeon Park, Shihyun Kim, Moon-Young Kim, Sang Shin Lee, Jongho Choi

Pituitary tumor‑transforming gene 1 (PTTG1), also known as securin, is a proto‑oncogene involved in the development of various cancers by promoting cell proliferation and mobility. However, its underlying biological mechanisms in oral squamous cell carcinoma (OSCC) progression remain unclear. in the present study, it was sought to elucidate the role of PTTG1 as an oncogene in OSCC progression and was attempted to unravel the underlying mechanism and impact of PTTG1 expression on cell cycle, cell death, and cellular senescence. The effect of double strand break on PTTG1 expression was investigated in OSCC growth. To identify the role of PTTG1 in OSCC growth, the cell viability and senescence was analyzed by EdU and senescence‑associated beta‑galactosidase (SA‑β‑gal) assay, respectively. To verify the DNA damage‑induced senescence of PTTG1, the chromosomal damage in OSCC was analyzed in vitro. Finally, the effect of PTTG1 on tumor growth and gene expression related to cell viability and DNA damaged‑induced senescence was investigated in vivo. PTTG1 expression was compared between OSCC and healthy patient samples (n=32) using reverse transcription‑quantitative PCR and immunohistochemistry; and it was found that PTTG1 expression was upregulated in OSCC. Small interfering RNA‑mediated knockdown of PTTG1 in two OSCC cell lines revealed that PTTG1 downregulation significantly inhibited cell proliferation and arrested the cell cycle pathway as evidenced by changes in checkpoint genes (such as cyclin D1, E and B1). PTTG1 knockdown also increased apoptosis, as evidenced by the upregulation of apoptotic genes [such as cleaved (c‑) Caspase‑7 and c‑poly (ADP‑ribose) polymerase]. Moreover, PTTG1 downregulation promoted cellular senescence, as shown by western blotting and SA‑β‑gal staining. Finally, senescence‑induced DNA damage was observed in OSCC cells, which accelerates genomic instability, through chromosomal damage analysis. Taken together, the present findings suggested that PTTG1 acts as a proto‑oncogene; regulates cell proliferation, cell cycle, cellular senescence and DNA damage in OSCC; and may serve as a novel diagnostic biomarker and potential therapeutic target for OSCC.

垂体肿瘤转化基因1(PTTG1)又称securin,是一种原癌基因,通过促进细胞增殖和移动而参与各种癌症的发展。本研究试图阐明 PTTG1 作为一种癌基因在口腔鳞状细胞癌(OSCC)进展中的作用,并试图揭示 PTTG1 表达的内在机制及其对细胞周期、细胞死亡和细胞衰老的影响。在 OSCC 生长过程中,研究了双股断裂对 PTTG1 表达的影响。为了确定PTTG1在OSCC生长中的作用,分别采用EdU和衰老相关β-半乳糖苷酶(SA-β-gal)检测法分析了细胞活力和衰老。为了验证 PTTG1 诱导的 DNA 损伤衰老,体外分析了 OSCC 中的染色体损伤。最后,在体内研究了PTTG1对肿瘤生长以及细胞活力和DNA损伤诱导衰老相关基因表达的影响。利用反转录定量 PCR 和免疫组化技术比较了 OSCC 和健康患者样本(32 人)中 PTTG1 的表达,结果发现 PTTG1 在 OSCC 中表达上调。在两种 OSCC 细胞系中以小干扰 RNA 为介导敲除 PTTG1,结果表明,PTTG1 的下调能显著抑制细胞增殖并阻滞细胞周期通路,检查点基因(如细胞周期蛋白 D1、E 和 B1)的变化证明了这一点。PTTG1 下调还增加了细胞凋亡,这体现在凋亡基因的上调[如裂解(c-)Caspase-7 和 c-聚(ADP-核糖)聚合酶]。此外,PTTG1 的下调促进了细胞的衰老,这一点可以通过 Western 印迹和 SA-β-gal 染色来证明。最后,通过染色体损伤分析,在 OSCC 细胞中观察到衰老诱导的 DNA 损伤,这加速了基因组的不稳定性。综上所述,本研究结果表明,PTTG1是一种原癌基因,调控OSCC中的细胞增殖、细胞周期、细胞衰老和DNA损伤,可作为OSCC的新型诊断生物标志物和潜在治疗靶点。
{"title":"Pituitary tumor‑transforming gene 1 regulates the senescence and apoptosis of oral squamous cell carcinoma in a p21‑dependent DNA damage response manner.","authors":"Suyeon Park, Shihyun Kim, Moon-Young Kim, Sang Shin Lee, Jongho Choi","doi":"10.3892/or.2024.8794","DOIUrl":"10.3892/or.2024.8794","url":null,"abstract":"<p><p>Pituitary tumor‑transforming gene 1 (PTTG1), also known as securin, is a proto‑oncogene involved in the development of various cancers by promoting cell proliferation and mobility. However, its underlying biological mechanisms in oral squamous cell carcinoma (OSCC) progression remain unclear. in the present study, it was sought to elucidate the role of PTTG1 as an oncogene in OSCC progression and was attempted to unravel the underlying mechanism and impact of PTTG1 expression on cell cycle, cell death, and cellular senescence. The effect of double strand break on PTTG1 expression was investigated in OSCC growth. To identify the role of PTTG1 in OSCC growth, the cell viability and senescence was analyzed by EdU and senescence‑associated beta‑galactosidase (SA‑β‑gal) assay, respectively. To verify the DNA damage‑induced senescence of PTTG1, the chromosomal damage in OSCC was analyzed <i>in vitro</i>. Finally, the effect of PTTG1 on tumor growth and gene expression related to cell viability and DNA damaged‑induced senescence was investigated <i>in vivo</i>. PTTG1 expression was compared between OSCC and healthy patient samples (n=32) using reverse transcription‑quantitative PCR and immunohistochemistry; and it was found that PTTG1 expression was upregulated in OSCC. Small interfering RNA‑mediated knockdown of PTTG1 in two OSCC cell lines revealed that PTTG1 downregulation significantly inhibited cell proliferation and arrested the cell cycle pathway as evidenced by changes in checkpoint genes (such as cyclin D1, E and B1). PTTG1 knockdown also increased apoptosis, as evidenced by the upregulation of apoptotic genes [such as cleaved (c‑) Caspase‑7 and c‑poly (ADP‑ribose) polymerase]. Moreover, PTTG1 downregulation promoted cellular senescence, as shown by western blotting and SA‑β‑gal staining. Finally, senescence‑induced DNA damage was observed in OSCC cells, which accelerates genomic instability, through chromosomal damage analysis. Taken together, the present findings suggested that PTTG1 acts as a proto‑oncogene; regulates cell proliferation, cell cycle, cellular senescence and DNA damage in OSCC; and may serve as a novel diagnostic biomarker and potential therapeutic target for OSCC.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] MicroRNA‑642a‑5p inhibits colon cancer cell migration and invasion by targeting collagen type I α1. [撤稿】MicroRNA-642a-5p 通过靶向胶原 I 型 α1 抑制结肠癌细胞迁移和侵袭。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.3892/or.2024.8795
Xiaoguang Wang, Zhengwei Song, Biwen Hu, Zhenwei Chen, Fei Chen, Chenxi Cao

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell invasion assay data shown in Fig. 6B on p. 940, and western blot data featured in Fig. 7B on p. 942, had already appeared in previously published articles written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 933‑944, 2021; DOI: 10.3892/or.2020.7905].

在这篇论文发表后,一位相关读者提请编辑注意,第 940 页图 6B 所示的某些细胞侵袭检测数据和第 942 页图 7B 所示的某些 Western 印迹数据已经出现在不同研究机构不同作者以前发表的文章中。由于上述文章中有争议的数据在提交给《肿瘤学报告》之前已经发表,因此编辑决定从杂志上撤下这篇论文。编辑部要求作者对这些问题做出解释,但未收到令人满意的答复。对于给读者带来的不便,编辑深表歉意。[肿瘤学报告 45: 933-944, 2021; DOI: 10.3892/or.2020.7905]。
{"title":"[Retracted] MicroRNA‑642a‑5p inhibits colon cancer cell migration and invasion by targeting collagen type I α1.","authors":"Xiaoguang Wang, Zhengwei Song, Biwen Hu, Zhenwei Chen, Fei Chen, Chenxi Cao","doi":"10.3892/or.2024.8795","DOIUrl":"10.3892/or.2024.8795","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell invasion assay data shown in Fig. 6B on p. 940, and western blot data featured in Fig. 7B on p. 942, had already appeared in previously published articles written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been published prior to its submission to <i>Oncology Reports</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 933‑944, 2021; DOI: 10.3892/or.2020.7905].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Corrigendum] DJ‑1 is involved in the peritoneal metastasis of gastric cancer through activation of the Akt signaling pathway. [更正] DJ-1 通过激活 Akt 信号通路参与胃癌的腹膜转移。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.3892/or.2024.8797
Zheng-Ming Zhu, Zheng-Rong Li, Yan Huang, Hai-Hong Yu, Xiao-Shan Huang, Yu-Feng Yan, Jiang-Hua Shao, He-Ping Chen

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the western blot data shown for the MMP‑9 experiment in Fig. 4 on p. 1493 were strikingly similar to the western blots shown for the total‑Akt experiments in Fig. 6 on p. 1494. After having re‑examined their original data files, the authors realized that Fig. 6 had been inadvertently assembled incorrectly. The revised version of Fig. 6, containing the correct data for the total‑Akt experiments, is shown below. Note that the corrections made to this figure do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [Oncology Reports 31: 1489‑1497, 2014; DOI: 10.3892/or.2013.2961].

上述论文发表后,一位感兴趣的读者提请作者注意,第 1493 页图 4 中显示的 MMP-9 实验的 Western 印迹数据与第 1494 页图 6 中显示的总-Akt 实验的 Western 印迹惊人地相似。在重新检查了原始数据文件后,作者意识到图 6 是无意中组装错误的。图 6 的修订版包含了总 Akt 实验的正确数据,如下所示。请注意,对该图的更正并不影响论文中报告的总体结论。作者感谢《肿瘤学报告》编辑允许他们有机会发表本更正,并对给读者带来的不便表示歉意。[肿瘤学报告 31: 1489-1497, 2014; DOI: 10.3892/or.2013.2961]。
{"title":"[Corrigendum] DJ‑1 is involved in the peritoneal metastasis of gastric cancer through activation of the Akt signaling pathway.","authors":"Zheng-Ming Zhu, Zheng-Rong Li, Yan Huang, Hai-Hong Yu, Xiao-Shan Huang, Yu-Feng Yan, Jiang-Hua Shao, He-Ping Chen","doi":"10.3892/or.2024.8797","DOIUrl":"10.3892/or.2024.8797","url":null,"abstract":"<p><p>Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the western blot data shown for the MMP‑9 experiment in Fig. 4 on p. 1493 were strikingly similar to the western blots shown for the total‑Akt experiments in Fig. 6 on p. 1494. After having re‑examined their original data files, the authors realized that Fig. 6 had been inadvertently assembled incorrectly. The revised version of Fig. 6, containing the correct data for the total‑Akt experiments, is shown below. Note that the corrections made to this figure do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of <i>Oncology Reports</i> for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [Oncology Reports 31: 1489‑1497, 2014; DOI: 10.3892/or.2013.2961].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Retracted] MEG3/miR‑21 axis affects cell mobility by suppressing epithelial‑mesenchymal transition in gastric cancer. [撤稿】MEG3/miR-21 轴通过抑制胃癌的上皮-间质转化影响细胞的移动性。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.3892/or.2024.8799
Gang Xu, Lei Meng, Dawei Yuan, Kang Li, Yong Zhang, Chengxue Dang, Kun Zhu

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell cell invasion assay data shown in Fig. 2B on p. 42 and the immunofluorescence data shown in Fig. 4D on p. 44 were strikingly similar to data appearing in other articles written by different authors at different research institutes that were submitted to different journals at around the same time. Moreover, a further investigation of this paper undertaken by the Editorial Office identified a large number of overlapping data panels comparing the Transwell cell migration and invasion assay data and the scratch‑wound assay data both within and between Figs. 2 and 3, where data which were intended to have shown the results from differently performed experiments had apparently been derived from the same original source, including an overlapping section of data within the 'MEG3+mimic' panel in Fig. 3G that would be difficult to attribute to pure chance. Owing to the fact that the contentious data in the above article had already been submitted for publication at around the same time as its submission to Oncology Reports, and given an overall lack of confidence in the presented data, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 40: 39‑48, 2018; DOI: 10.3892/or.2018.6424].

本文发表后,一位相关读者提请编辑注意,第 42 页图 2B 中显示的某些 Transwell 细胞侵袭实验数据和第 44 页图 4D 中显示的免疫荧光数据,与大约在同一时间由不同研究机构的不同作者撰写并提交给不同期刊的其他文章中出现的数据惊人地相似。此外,编辑部对这篇论文进行了进一步调查,发现在图 2 和图 3 内部以及图 3 之间有大量重叠的数据面板,其中比较了 Transwell 细胞迁移和侵袭试验数据以及划痕伤口试验数据,这些数据本应显示不同实验的结果,但显然来自同一原始来源,包括图 3G 中 "MEG3+模拟 "面板中的重叠数据部分,很难将其归因于纯粹的偶然性。由于上述文章中有争议的数据在提交给《肿瘤学报告》的同时就已提交发表,并且鉴于对所提交的数据总体缺乏信心,编辑决定从杂志上撤回这篇论文。作者被要求解释这些问题,但编辑部没有收到回复。对于给读者带来的不便,编辑深表歉意。[肿瘤学报告 40: 39-48, 2018; DOI: 10.3892/or.2018.6424]。
{"title":"[Retracted] MEG3/miR‑21 axis affects cell mobility by suppressing epithelial‑mesenchymal transition in gastric cancer.","authors":"Gang Xu, Lei Meng, Dawei Yuan, Kang Li, Yong Zhang, Chengxue Dang, Kun Zhu","doi":"10.3892/or.2024.8799","DOIUrl":"10.3892/or.2024.8799","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell cell invasion assay data shown in Fig. 2B on p. 42 and the immunofluorescence data shown in Fig. 4D on p. 44 were strikingly similar to data appearing in other articles written by different authors at different research institutes that were submitted to different journals at around the same time. Moreover, a further investigation of this paper undertaken by the Editorial Office identified a large number of overlapping data panels comparing the Transwell cell migration and invasion assay data and the scratch‑wound assay data both within and between Figs. 2 and 3, where data which were intended to have shown the results from differently performed experiments had apparently been derived from the same original source, including an overlapping section of data within the 'MEG3+mimic' panel in Fig. 3G that would be difficult to attribute to pure chance. Owing to the fact that the contentious data in the above article had already been submitted for publication at around the same time as its submission to <i>Oncology Reports</i>, and given an overall lack of confidence in the presented data, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 40: 39‑48, 2018; DOI: 10.3892/or.2018.6424].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zinc finger protein 180 induces an apoptotic phenotype by activating METTL14 transcriptional activity in colorectal cancer. 锌指蛋白 180 通过激活 METTL14 在结直肠癌中的转录活性诱导凋亡表型。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-26 DOI: 10.3892/or.2024.8784
Liang Xu, Xi-Jie Chen, Qian Yan, Xin-Tao Lei, Hai-Ling Liu, Jing-Ping Xu, Wei-Te Shang, Jing-Lin Huang, Zhi-Ting Chen, Xiao-Li Tan, Han-Jie Lin, Xin-Hui Fu, Li-Sheng Zheng, Ping Lan, Yan Huang

Zinc finger protein 180 (ZNF180) is a multifunctional protein that interacts with nucleic acids and regulates various cellular processes; however, the function of ZNF180 in colorectal cancer (CRC) remains unclear. The present study investigated the role and function of ZNF180 in CRC, and aimed to reveal the underlying molecular mechanism. The results revealed that ZNF180 was downregulated in CRC tissues and was associated with a good prognosis in patients with CRC. Additionally, the expression of ZNF180 was downregulated by methylation in CRC. In vivo and in vitro experiments revealed that ZNF180 overexpression was functionally associated with the inhibition of cell proliferation and the induction of apoptosis. Mechanistically, chromatin immunoprecipitation‑PCR and luciferase assays demonstrated that ZNF180 markedly regulated the transcriptional activity of methyltransferase 14, N6‑adenosine‑methyltransferase non‑catalytic subunit (METTL14) by directly binding to and activating its promoter region. Simultaneous overexpression of ZNF180 and knockdown of METTL14 indicated that the reduction of METTL14 could suppress the effects of ZNF180 on the induction of apoptosis. Clinically, the present study observed a significant positive correlation between ZNF180 and METTL14 expression levels, and low expression of ZNF180 and METTL14 predicted a poor prognosis in CRC. Overall, these findings revealed a novel mechanism by which the ZNF180/METTL14 axis may modulate apoptosis and cell proliferation in CRC. This evidence suggests that this axis may serve as a prognostic biomarker and therapeutic target in patients with CRC.

锌指蛋白180(ZNF180)是一种多功能蛋白,可与核酸相互作用并调控多种细胞过程;然而,ZNF180在结直肠癌(CRC)中的功能仍不清楚。本研究探讨了 ZNF180 在 CRC 中的作用和功能,旨在揭示其潜在的分子机制。结果发现,ZNF180在CRC组织中下调,并与CRC患者的良好预后相关。此外,ZNF180在CRC中的表达受甲基化下调。体内和体外实验显示,ZNF180 的过表达与抑制细胞增殖和诱导细胞凋亡有功能上的关联。从机理上讲,染色质免疫沉淀-PCR和荧光素酶试验表明,ZNF180通过直接结合和激活甲基转移酶14、N6-腺苷-甲基转移酶非催化亚基(METTL14)的启动子区域,显著调节了其转录活性。同时过表达 ZNF180 和敲除 METTL14 表明,减少 METTL14 可抑制 ZNF180 诱导细胞凋亡的作用。在临床上,本研究观察到 ZNF180 和 METTL14 的表达水平呈显著正相关,ZNF180 和 METTL14 的低表达预示着 CRC 的不良预后。总之,这些发现揭示了 ZNF180/METTL14 轴可能调节 CRC 细胞凋亡和增殖的新机制。这些证据表明,ZNF180/METTL14 轴可作为 CRC 患者的预后生物标志物和治疗靶点。
{"title":"Zinc finger protein 180 induces an apoptotic phenotype by activating METTL14 transcriptional activity in colorectal cancer.","authors":"Liang Xu, Xi-Jie Chen, Qian Yan, Xin-Tao Lei, Hai-Ling Liu, Jing-Ping Xu, Wei-Te Shang, Jing-Lin Huang, Zhi-Ting Chen, Xiao-Li Tan, Han-Jie Lin, Xin-Hui Fu, Li-Sheng Zheng, Ping Lan, Yan Huang","doi":"10.3892/or.2024.8784","DOIUrl":"10.3892/or.2024.8784","url":null,"abstract":"<p><p>Zinc finger protein 180 (ZNF180) is a multifunctional protein that interacts with nucleic acids and regulates various cellular processes; however, the function of ZNF180 in colorectal cancer (CRC) remains unclear. The present study investigated the role and function of ZNF180 in CRC, and aimed to reveal the underlying molecular mechanism. The results revealed that ZNF180 was downregulated in CRC tissues and was associated with a good prognosis in patients with CRC. Additionally, the expression of ZNF180 was downregulated by methylation in CRC. <i>In vivo</i> and <i>in vitro</i> experiments revealed that ZNF180 overexpression was functionally associated with the inhibition of cell proliferation and the induction of apoptosis. Mechanistically, chromatin immunoprecipitation‑PCR and luciferase assays demonstrated that ZNF180 markedly regulated the transcriptional activity of methyltransferase 14, N6‑adenosine‑methyltransferase non‑catalytic subunit (METTL14) by directly binding to and activating its promoter region. Simultaneous overexpression of ZNF180 and knockdown of METTL14 indicated that the reduction of METTL14 could suppress the effects of ZNF180 on the induction of apoptosis. Clinically, the present study observed a significant positive correlation between ZNF180 and METTL14 expression levels, and low expression of ZNF180 and METTL14 predicted a poor prognosis in CRC. Overall, these findings revealed a novel mechanism by which the ZNF180/METTL14 axis may modulate apoptosis and cell proliferation in CRC. This evidence suggests that this axis may serve as a prognostic biomarker and therapeutic target in patients with CRC.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging role of sirtuins in non‑small cell lung cancer (Review). sirtuins在非小细胞肺癌中的新作用(综述)。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-02 DOI: 10.3892/or.2024.8786
Min Zhou, Lin Wei, Renfu Lu

Non‑small cell lung cancer (NSCLC) is a highly prevalent lung malignancy characterized by insidious onset, rapid progression and advanced stage at the time of diagnosis, making radical surgery impossible. Sirtuin (SIRT) is a histone deacetylase that relies on NAD+ for its function, regulating the aging process through modifications in protein activity and stability. It is intricately linked to various processes, including glycolipid metabolism, inflammation, lifespan regulation, tumor formation and stress response. An increasing number of studies indicate that SIRTs significantly contribute to the progression of NSCLC by regulating pathophysiological processes such as energy metabolism, autophagy and apoptosis in tumor cells through the deacetylation of histones or non‑histone proteins. The present review elaborates on the roles of different SIRTs and their mechanisms in NSCLC, while also summarizing novel therapeutic agents based on SIRTs. It aims to present new ideas and a theoretical basis for NSCLC treatment.

非小细胞肺癌(NSCLC)是一种高发的肺部恶性肿瘤,其特点是起病隐匿、进展迅速,确诊时已是晚期,无法进行根治性手术。Sirtuin(SIRT)是一种组蛋白去乙酰化酶,其功能依赖于 NAD+,通过改变蛋白质的活性和稳定性来调节衰老过程。它与糖脂代谢、炎症、寿命调节、肿瘤形成和应激反应等各种过程有着错综复杂的联系。越来越多的研究表明,SIRTs 通过组蛋白或非组蛋白的去乙酰化调节肿瘤细胞的能量代谢、自噬和细胞凋亡等病理生理过程,对 NSCLC 的进展起着重要作用。本综述阐述了不同 SIRTs 在 NSCLC 中的作用及其机制,同时还总结了基于 SIRTs 的新型治疗药物。本综述旨在为 NSCLC 治疗提供新思路和理论依据。
{"title":"Emerging role of sirtuins in non‑small cell lung cancer (Review).","authors":"Min Zhou, Lin Wei, Renfu Lu","doi":"10.3892/or.2024.8786","DOIUrl":"10.3892/or.2024.8786","url":null,"abstract":"<p><p>Non‑small cell lung cancer (NSCLC) is a highly prevalent lung malignancy characterized by insidious onset, rapid progression and advanced stage at the time of diagnosis, making radical surgery impossible. Sirtuin (SIRT) is a histone deacetylase that relies on NAD+ for its function, regulating the aging process through modifications in protein activity and stability. It is intricately linked to various processes, including glycolipid metabolism, inflammation, lifespan regulation, tumor formation and stress response. An increasing number of studies indicate that SIRTs significantly contribute to the progression of NSCLC by regulating pathophysiological processes such as energy metabolism, autophagy and apoptosis in tumor cells through the deacetylation of histones or non‑histone proteins. The present review elaborates on the roles of different SIRTs and their mechanisms in NSCLC, while also summarizing novel therapeutic agents based on SIRTs. It aims to present new ideas and a theoretical basis for NSCLC treatment.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Corrigendum] Ethyl gallate suppresses proliferation and invasion in human breast cancer cells via Akt‑NF‑κB signaling. [更正] 没食子酸乙酯通过 Akt-NF-κB 信号抑制人类乳腺癌细胞的增殖和侵袭。
IF 3.8 3区 医学 Q2 ONCOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-02 DOI: 10.3892/or.2024.8787
Hongxia Cui, Jiaxin Yuan, Xiaohui Du, Ming Wang, Liling Yue, Jicheng Liu

Following the publication of this article, an interested reader drew to the authors' attention that, for the cell migration assay data shown in Fig. 3C on p. 1287, the '2.5 μg/ml' and '5.0 μg/ml' panels appeared to be overlapping, such that these data were apparently derived from the same original source where they were intended to show the results from differently performed experiments. Upon asking the authors to provide an explanation, after having referred back to their original data, the authors realized that they had made an inadvertent error in assembling this figure. The revised version of Fig. 3, now showing the correct data for the '5.0 μg/ml' experiment, is shown on the next page. Note that the error made in assembling the data in Fig. 3 did not greatly affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this corrigendum. The authors regret that this error went unnoticed prior to the publication of their article, and are grateful to the Editor of Oncology Reports for granting them this opportunity to publish a corrigendum. They also apologize to the readership for any inconvenience caused. [Oncology Reports 33: 1284‑1290, 2015; DOI: 10.3892/or.2014.3682].

本文发表后,一位感兴趣的读者提请作者注意,第 1287 页图 3C 中的细胞迁移实验数据中,"2.5 μg/ml "和 "5.0 μg/ml "两个板块似乎是重叠的,因此这些数据显然来自同一原始数据来源,而这两个数据本应显示不同实验的结果。在请作者提供解释并参考了他们的原始数据后,作者意识到他们在绘制该图时犯了一个无心之失。修改后的图 3 显示了 "5.0 μg/ml "实验的正确数据,见下页。请注意,图 3 中的数据组合错误并未对本文报告的结果或结论产生重大影响,所有作者均同意发表本更正。作者对文章发表前未注意到这一错误表示遗憾,并感谢《肿瘤学报告》编辑给予他们这次发表更正的机会。他们还对给读者带来的不便表示歉意。[肿瘤学报告 33: 1284-1290, 2015; DOI: 10.3892/or.2014.3682]。
{"title":"[Corrigendum] Ethyl gallate suppresses proliferation and invasion in human breast cancer cells via Akt‑NF‑κB signaling.","authors":"Hongxia Cui, Jiaxin Yuan, Xiaohui Du, Ming Wang, Liling Yue, Jicheng Liu","doi":"10.3892/or.2024.8787","DOIUrl":"10.3892/or.2024.8787","url":null,"abstract":"<p><p>Following the publication of this article, an interested reader drew to the authors' attention that, for the cell migration assay data shown in Fig. 3C on p. 1287, the '2.5 μg/ml' and '5.0 μg/ml' panels appeared to be overlapping, such that these data were apparently derived from the same original source where they were intended to show the results from differently performed experiments. Upon asking the authors to provide an explanation, after having referred back to their original data, the authors realized that they had made an inadvertent error in assembling this figure. The revised version of Fig. 3, now showing the correct data for the '5.0 μg/ml' experiment, is shown on the next page. Note that the error made in assembling the data in Fig. 3 did not greatly affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this corrigendum. The authors regret that this error went unnoticed prior to the publication of their article, and are grateful to the Editor of <i>Oncology Reports</i> for granting them this opportunity to publish a corrigendum. They also apologize to the readership for any inconvenience caused. [Oncology Reports 33: 1284‑1290, 2015; DOI: 10.3892/or.2014.3682].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Oncology reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1