Pub Date : 2024-10-01Epub Date: 2024-09-02DOI: 10.3892/or.2024.8800
Charles Adolfu Shirima, Coralia Bleotu, Demetrios A Spandidos, Adel K El-Naggar, Gratiela Gradisteanu Pircalabioru, Ioannis Michalopoulos
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
{"title":"Epithelial‑derived head and neck squamous tumourigenesis (Review).","authors":"Charles Adolfu Shirima, Coralia Bleotu, Demetrios A Spandidos, Adel K El-Naggar, Gratiela Gradisteanu Pircalabioru, Ioannis Michalopoulos","doi":"10.3892/or.2024.8800","DOIUrl":"10.3892/or.2024.8800","url":null,"abstract":"<p><p>Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 4","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-12DOI: 10.3892/or.2024.8772
Jia Wu, Ying Zhu, Dandan Liu, Qingwei Cong, Changchuan Bai
In recent years, microRNAs (miRNAs or miRs) have been increasingly studied for their role in cancer and have shown potential as cancer biomarkers. miR‑143‑3p and miR‑143‑5p are the mature miRNAs derived from pre‑miRNA‑143. At present, there are numerous studies on the function of miR‑143‑3p in cancer progression, but there are no systematic reviews describing the function of miR‑143‑3p in cancer. It is widely considered that miR‑143‑3p is downregulated in most malignant tumors and that upstream regulators can act on this gene, which in turn regulates the corresponding target to act on the tumor. In addition, miRNA‑143‑3p can regulate target genes to affect the biological process of tumors through various signaling pathways, such as the PI3K/Akt, Wnt/β‑catenin, AKT/STAT3 and Ras‑Raf‑MEK‑ERK pathways. The present review comprehensively described the biogenesis of miR‑143‑3p, the biological functions of miR‑143‑3p and the related roles and mechanisms in different cancer types. The potential of miR‑143‑3p as a biomarker for cancer was also highlighted and valuable future research directions were discussed.
{"title":"Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review).","authors":"Jia Wu, Ying Zhu, Dandan Liu, Qingwei Cong, Changchuan Bai","doi":"10.3892/or.2024.8772","DOIUrl":"10.3892/or.2024.8772","url":null,"abstract":"<p><p>In recent years, microRNAs (miRNAs or miRs) have been increasingly studied for their role in cancer and have shown potential as cancer biomarkers. miR‑143‑3p and miR‑143‑5p are the mature miRNAs derived from pre‑miRNA‑143. At present, there are numerous studies on the function of miR‑143‑3p in cancer progression, but there are no systematic reviews describing the function of miR‑143‑3p in cancer. It is widely considered that miR‑143‑3p is downregulated in most malignant tumors and that upstream regulators can act on this gene, which in turn regulates the corresponding target to act on the tumor. In addition, miRNA‑143‑3p can regulate target genes to affect the biological process of tumors through various signaling pathways, such as the PI3K/Akt, Wnt/β‑catenin, AKT/STAT3 and Ras‑Raf‑MEK‑ERK pathways. The present review comprehensively described the biogenesis of miR‑143‑3p, the biological functions of miR‑143‑3p and the related roles and mechanisms in different cancer types. The potential of miR‑143‑3p as a biomarker for cancer was also highlighted and valuable future research directions were discussed.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-12DOI: 10.3892/or.2024.8773
Yongyue Dai, Yucheng Zhang, Maolin Hao, Renwu Zhu
Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that the 'Control' data panel shown for the EdU assay experiment in Fig. 6D on p. 1209 was strikingly similar to a data panel featured in Fig. 7 that had already been submitted to the journal Cancer Management and Research by different authors at different research institutes [Chen T‑J, Gao F, Yang T, Li H, Li Y, Ren H and Chen M‑W: Knockdown of linc‑POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Cancer Manag Res 12: 4379‑4390, 2020]. Owing to the fact that contentious data in the above article had already been submitted for publication prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 1202‑1212, 2021; DOI: 10.3892/or.2021.7949].
在上述论文发表后,一位相关读者提请编辑注意,第 1209 页图 6D 中 EdU 检测实验的 "对照 "数据面板与图 7 中的一个数据面板惊人地相似,该数据面板是由不同研究机构的不同作者提交给《癌症管理与研究》杂志的[Chen T-J, Gao F, Yang T, Li H, Li Y, Ren H and Chen M-W: Knocking the EdU assay experiment]。不同研究机构的不同作者已经向《癌症管理与研究》杂志提交了图 7 中的数据面板[Chen T-J, Gao F, Yang T, Li H, Li Y, Ren H and Chen M-W: Knockdown of linc-POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer.Cancer Manag Res 12: 4379-4390, 2020]。由于上述文章中存在争议的数据在提交给《肿瘤学报告》之前已经提交发表,编辑决定将该论文从杂志上撤下。作者被要求解释这些问题,但编辑部没有收到回复。对于给读者带来的不便,编辑深表歉意。[肿瘤学报告 45: 1202-1212, 2021; DOI: 10.3892/or.2021.7949]。
{"title":"[Retracted] <i>LINC00665</i> functions as a competitive endogenous RNA to regulate AGTR1 expression by sponging miR‑34a‑5p in glioma.","authors":"Yongyue Dai, Yucheng Zhang, Maolin Hao, Renwu Zhu","doi":"10.3892/or.2024.8773","DOIUrl":"10.3892/or.2024.8773","url":null,"abstract":"<p><p>Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that the 'Control' data panel shown for the EdU assay experiment in Fig. 6D on p. 1209 was strikingly similar to a data panel featured in Fig. 7 that had already been submitted to the journal <i>Cancer Management and Research</i> by different authors at different research institutes [Chen T‑J, Gao F, Yang T, Li H, Li Y, Ren H and Chen M‑W: Knockdown of linc‑POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Cancer Manag Res 12: 4379‑4390, 2020]. Owing to the fact that contentious data in the above article had already been submitted for publication prior to its submission to <i>Oncology Reports</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 45: 1202‑1212, 2021; DOI: 10.3892/or.2021.7949].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-19DOI: 10.3892/or.2024.8778
Soledad Cameselle-García, Ihab Abdulkader-Nallib, María Sánchez-Ares, José Manuel Cameselle-Teijeiro
Cribriform morular thyroid carcinoma (CMTC) has been included within the group of thyroid tumors of uncertain histogenesis in the recent World Health Organization classification of endocrine tumors. Most CMTCs occur in young euthyroid women with multiple (and bilateral) thyroid nodules in cases associated with familial adenomatous polyposis (FAP) or as single nodules in sporadic cases. CMTC generally behaves indolently, while aggressiveness and mortality are associated with high‑grade CMTC. This tumor histologically displays a distinctive combination of growth patterns with morular structures. Strong diffuse nuclear and cytoplasmic immunostaining for β‑catenin is the hallmark of CMTC. Tumor cells are also positive for thyroid transcription factor‑1 and for estrogen and progesterone receptors, but negative for thyroglobulin and calcitonin. It is possible that the CMTC phenotype could result from blockage in the terminal/follicular differentiation of follicular cells (or their precursor cells) secondary to the permanent activation of the Wnt/β‑catenin pathway. In CMTC, the activation of the Wnt/β‑catenin pathway is the central pathogenetic event, which in FAP‑associated cases results from germline mutations of the APC regulator of WNT signaling pathway (APC) gene, and in sporadic cases from somatic inactivating mutations in the APC, AXIN1 and CTNNB1 genes. Estrogens appear to play a tumor‑promoting role by stimulating both the PI3K/AKT/mTOR and the RAS/RAF/MAPK signaling pathways. Additional somatic mutations (i.e. RET rearrangements, or KRAS, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α, telomerase reverse transcriptase or tumor protein 53 mutations) may further potentiate the development and progression of CMTC. While hemithyroidectomy would be the treatment of choice for sporadic cases without high‑risk data, total thyroidectomy would be indicated in FAP‑associated cases. There is insufficient clinical data to propose therapies targeting the Wnt/β‑catenin pathway, but multikinase or selective inhibitors could be used in a manner analogous to that of conventional thyroid tumors. It is also unknown whether adjuvant antiestrogenic therapy could be useful in the subgroup of women undergoing surgery with high‑risk CMTC, as well as when there is tumor recurrence and/or metastasis.
{"title":"Cribriform morular thyroid carcinoma: Clinicopathological and molecular basis for both a preventive and therapeutic approach for a rare tumor (Review).","authors":"Soledad Cameselle-García, Ihab Abdulkader-Nallib, María Sánchez-Ares, José Manuel Cameselle-Teijeiro","doi":"10.3892/or.2024.8778","DOIUrl":"10.3892/or.2024.8778","url":null,"abstract":"<p><p>Cribriform morular thyroid carcinoma (CMTC) has been included within the group of thyroid tumors of uncertain histogenesis in the recent World Health Organization classification of endocrine tumors. Most CMTCs occur in young euthyroid women with multiple (and bilateral) thyroid nodules in cases associated with familial adenomatous polyposis (FAP) or as single nodules in sporadic cases. CMTC generally behaves indolently, while aggressiveness and mortality are associated with high‑grade CMTC. This tumor histologically displays a distinctive combination of growth patterns with morular structures. Strong diffuse nuclear and cytoplasmic immunostaining for β‑catenin is the hallmark of CMTC. Tumor cells are also positive for thyroid transcription factor‑1 and for estrogen and progesterone receptors, but negative for thyroglobulin and calcitonin. It is possible that the CMTC phenotype could result from blockage in the terminal/follicular differentiation of follicular cells (or their precursor cells) secondary to the permanent activation of the Wnt/β‑catenin pathway. In CMTC, the activation of the Wnt/β‑catenin pathway is the central pathogenetic event, which in FAP‑associated cases results from germline mutations of the APC regulator of WNT signaling pathway (<i>APC</i>) gene, and in sporadic cases from somatic inactivating mutations in the <i>APC, AXIN1</i> and <i>CTNNB1</i> genes. Estrogens appear to play a tumor‑promoting role by stimulating both the PI3K/AKT/mTOR and the RAS/RAF/MAPK signaling pathways. Additional somatic mutations (i.e. RET rearrangements, or KRAS, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α, telomerase reverse transcriptase or tumor protein 53 mutations) may further potentiate the development and progression of CMTC. While hemithyroidectomy would be the treatment of choice for sporadic cases without high‑risk data, total thyroidectomy would be indicated in FAP‑associated cases. There is insufficient clinical data to propose therapies targeting the Wnt/β‑catenin pathway, but multikinase or selective inhibitors could be used in a manner analogous to that of conventional thyroid tumors. It is also unknown whether adjuvant antiestrogenic therapy could be useful in the subgroup of women undergoing surgery with high‑risk CMTC, as well as when there is tumor recurrence and/or metastasis.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subsequently to the publication of the above article, an interested reader drew to the authors' attention that, for the scratch‑wound assay experiments shown in Fig. 3C, two images appeared to overlap [specifically, the '0 h / Control' and 0 h / OP‑B (5 μmol/l) data panels], albeit with different magnification and after a 180° rotation. The authors have examined their original data, and realize that an inadvertent error was made in assembling the images in the figure; specifically, the images of 5 and 10 μmol/l OP‑B treatment for 0 h were both misused. The corrected version of Fig. 3, showing all the correct data for Fig. 3C, is shown on the next page. Note that these errors did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1339‑1347, 2018; DOI: 10.3892/or.2018.6531].
{"title":"[Corrigendum] Ophiopogonin B suppresses the metastasis and angiogenesis of A549 cells <i>in vitro</i> and <i>in vivo</i> by inhibiting the EphA2/Akt signaling pathway.","authors":"Meijuan Chen, Cheng Hu, Yuanyuan Guo, Rilei Jiang, Huimin Jiang, Yu Zhou, Haian Fu, Mianhua Wu, Xu Zhang","doi":"10.3892/or.2024.8774","DOIUrl":"10.3892/or.2024.8774","url":null,"abstract":"<p><p>Subsequently to the publication of the above article, an interested reader drew to the authors' attention that, for the scratch‑wound assay experiments shown in Fig. 3C, two images appeared to overlap [specifically, the '0 h / Control' and 0 h / OP‑B (5 μmol/l) data panels], albeit with different magnification and after a 180° rotation. The authors have examined their original data, and realize that an inadvertent error was made in assembling the images in the figure; specifically, the images of 5 and 10 μmol/l OP‑B treatment for 0 h were both misused. The corrected version of Fig. 3, showing all the correct data for Fig. 3C, is shown on the next page. Note that these errors did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of <i>Oncology Reports</i> for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1339‑1347, 2018; DOI: 10.3892/or.2018.6531].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that there appeared to be a matching data panel comparing between one of the Transwell invasion assay experiments (the 'SW620/si‑NC' data panel) shown in Fig. 2F and Fig 6D in the following paper, written by different authors at different research institutes, that had already been published at the time of this paper's submission: Wang D, Yang T, Liu J, Liu Y, Xing N, He J, Yang J and Ai Y: Propofol inhibits the migration and invasion of glioma cells by blocking the PI3K/AKT pathway through miR‑206/ROCK1 axis. Onco Targets Ther 13: 361‑370, 2020. In addition, a potential problem regarding the design of the experiment was noted with the selection of the primers for the amplification of the miRNA miR‑485‑5p. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 44: 2009‑2020, 2020; DOI: 10.3892/or.2020.7758].
在上述论文发表后,一位相关读者提请编辑注意,在以下论文中,图 2F 和图 6D 所示的 Transwell 侵袭实验之一("SW620/si-NC "数据面板)之间似乎存在匹配数据面板的比较,该论文由不同研究机构的不同作者撰写,在本文提交时已经发表:Wang D, Yang T, Liu J, Liu Y, Xing N, He J, Yang J and Ai Y: Propofol inhibits the migration and invasion of glioma cells by blocking the PI3K/AKT pathway through miR-206/ROCK1 axis.Onco Targets Ther 13: 361-370, 2020.此外,在选择扩增 miRNA miR-485-5p 的引物时,还发现了实验设计方面的一个潜在问题。由于上述文章中有争议的数据在提交给《肿瘤学报告》之前已经发表,编辑决定将该论文从杂志上撤下。作者被要求解释这些问题,但编辑部没有收到回复。对于给读者带来的不便,编辑深表歉意。[肿瘤学报告 44: 2009-2020, 2020; DOI: 10.3892/or.2020.7758]。
{"title":"[Retracted] Circular RNA NOX4 promotes the development of colorectal cancer via the microRNA‑485‑5p/CKS1B axis.","authors":"Ximin Wang, Geng Tao, Donghong Huang, Shuangyin Liang, Dongxu Zheng","doi":"10.3892/or.2024.8780","DOIUrl":"10.3892/or.2024.8780","url":null,"abstract":"<p><p>Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that there appeared to be a matching data panel comparing between one of the Transwell invasion assay experiments (the 'SW620/si‑NC' data panel) shown in Fig. 2F and Fig 6D in the following paper, written by different authors at different research institutes, that had already been published at the time of this paper's submission: Wang D, Yang T, Liu J, Liu Y, Xing N, He J, Yang J and Ai Y: Propofol inhibits the migration and invasion of glioma cells by blocking the PI3K/AKT pathway through miR‑206/ROCK1 axis. Onco Targets Ther 13: 361‑370, 2020. In addition, a potential problem regarding the design of the experiment was noted with the selection of the primers for the amplification of the miRNA miR‑485‑5p. Owing to the fact that the contentious data in the above article had already been published prior to its submission to <i>Oncology Reports</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 44: 2009‑2020, 2020; DOI: 10.3892/or.2020.7758].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-26DOI: 10.3892/or.2024.8781
Xiaoning Li, Yumeng Guo, Zihan Xing, Tao Gong, Lijun Yang, Tao Yang, Bingmei Chang, Xiaoxia Wang, Baofeng Yu, Rui Guo
Ovarian cancer is a gynecological malignant tumor with the highest mortality rate, and chemotherapy resistance seriously affects patient therapeutic outcomes. It has been shown that the high expression of anti‑apoptotic proteins Bcl‑2 and Bcl‑xL is closely related to ovarian cancer chemotherapy resistance. Therefore, reducing Bcl‑2 and Bcl‑xL expression levels may be essential for reversing drug resistance in ovarian cancer. ABT‑737 is a BH3‑only protein mimetic, which can effectively inhibit the expression of the anti‑apoptotic proteins Bcl‑xL and Bcl‑2. Although it has been shown that ABT‑737 can increase the sensitivity of ovarian cancer cells to cisplatin, the specific molecular mechanism remains unclear and requires further investigation. In the present study, the results revealed that ABT‑737 can significantly increase the activation levels of JNK and ASK1 induced by cisplatin in A2780/DDP cells, which are cisplatin‑resistant ovarian cancer cells. Inhibition of the JNK and ASK1 pathway could significantly reduce cisplatin cytotoxicity increased by ABT‑737 in A2780/DDP cells, while inhibiting the ASK1 pathway could reduce JNK activation. In addition, it was further determined that ABT‑737 could increase reactive oxygen species (ROS) levels in A2780/DDP cells induced by cisplatin. Furthermore, the inhibition of ROS could significantly reduce JNK and ASK1 activation and ABT‑737‑mediated increased cisplatin cytotoxicity in A2780/DDP cells. Overall, the current data identified that activation of the ROS‑ASK1‑JNK signaling axis plays an essential role in the ability of ABT‑737 to increase cisplatin sensitivity in A2780/DDP cells. Therefore, upregulation the ROS‑ASK1‑JNK signaling axis is a potentially novel molecular mechanism by which ABT‑737 can enhance cisplatin sensitivity of ovarian cancer cells. In addition, the present research can also provide new therapeutic strategies and new therapeutic targets for patients with cisplatin‑resistant ovarian cancer with high Bcl‑2/Bcl‑xL expression patterns.
{"title":"ABT‑737 increases cisplatin sensitivity through the ROS‑ASK1‑JNK MAPK signaling axis in human ovarian cancer cisplatin‑resistant A2780/DDP cells.","authors":"Xiaoning Li, Yumeng Guo, Zihan Xing, Tao Gong, Lijun Yang, Tao Yang, Bingmei Chang, Xiaoxia Wang, Baofeng Yu, Rui Guo","doi":"10.3892/or.2024.8781","DOIUrl":"10.3892/or.2024.8781","url":null,"abstract":"<p><p>Ovarian cancer is a gynecological malignant tumor with the highest mortality rate, and chemotherapy resistance seriously affects patient therapeutic outcomes. It has been shown that the high expression of anti‑apoptotic proteins Bcl‑2 and Bcl‑xL is closely related to ovarian cancer chemotherapy resistance. Therefore, reducing Bcl‑2 and Bcl‑xL expression levels may be essential for reversing drug resistance in ovarian cancer. ABT‑737 is a BH3‑only protein mimetic, which can effectively inhibit the expression of the anti‑apoptotic proteins Bcl‑xL and Bcl‑2. Although it has been shown that ABT‑737 can increase the sensitivity of ovarian cancer cells to cisplatin, the specific molecular mechanism remains unclear and requires further investigation. In the present study, the results revealed that ABT‑737 can significantly increase the activation levels of JNK and ASK1 induced by cisplatin in A2780/DDP cells, which are cisplatin‑resistant ovarian cancer cells. Inhibition of the JNK and ASK1 pathway could significantly reduce cisplatin cytotoxicity increased by ABT‑737 in A2780/DDP cells, while inhibiting the ASK1 pathway could reduce JNK activation. In addition, it was further determined that ABT‑737 could increase reactive oxygen species (ROS) levels in A2780/DDP cells induced by cisplatin. Furthermore, the inhibition of ROS could significantly reduce JNK and ASK1 activation and ABT‑737‑mediated increased cisplatin cytotoxicity in A2780/DDP cells. Overall, the current data identified that activation of the ROS‑ASK1‑JNK signaling axis plays an essential role in the ability of ABT‑737 to increase cisplatin sensitivity in A2780/DDP cells. Therefore, upregulation the ROS‑ASK1‑JNK signaling axis is a potentially novel molecular mechanism by which ABT‑737 can enhance cisplatin sensitivity of ovarian cancer cells. In addition, the present research can also provide new therapeutic strategies and new therapeutic targets for patients with cisplatin‑resistant ovarian cancer with high Bcl‑2/Bcl‑xL expression patterns.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-19DOI: 10.3892/or.2024.8779
Fuhai Wang, Xiaofeng Dong, Peng Xiu, Jingtao Zhong, Honglong Wei, Zongzhen Xu, Tao Li, Feng Liu, Xueying Sun, Jie Li
Following the publication of this article, an interested reader drew to the authors' attention that two pairs of protein bands featured in the western blots in Fig. 3A and 5D on p. 679 and 681 respectively appeared to be strikingly similar. After having re‑examined their original data, the authors realized that Fig. 5D had been assembled incorrectly. The revised version of Fig. 5, now including the correct data for Fig. 5D, is shown on the next page. Note that the errors made in terms of assembling the data in Fig. 5 did not greatly affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this corrigendum. The authors regret that these errors went unnoticed prior to the publication of their article, are grateful to the Editor of Oncology Reports for allowing them this opportunity to publish this corrigendum. They also apologize to the readership for any inconvenience caused. [Oncology Reports 33: 675‑684, 2015; DOI: 10.3892/or.2014.3653].
{"title":"[Corrigendum] T7 peptide inhibits angiogenesis via downregulation of angiopoietin‑2 and autophagy.","authors":"Fuhai Wang, Xiaofeng Dong, Peng Xiu, Jingtao Zhong, Honglong Wei, Zongzhen Xu, Tao Li, Feng Liu, Xueying Sun, Jie Li","doi":"10.3892/or.2024.8779","DOIUrl":"10.3892/or.2024.8779","url":null,"abstract":"<p><p>Following the publication of this article, an interested reader drew to the authors' attention that two pairs of protein bands featured in the western blots in Fig. 3A and 5D on p. 679 and 681 respectively appeared to be strikingly similar. After having re‑examined their original data, the authors realized that Fig. 5D had been assembled incorrectly. The revised version of Fig. 5, now including the correct data for Fig. 5D, is shown on the next page. Note that the errors made in terms of assembling the data in Fig. 5 did not greatly affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this corrigendum. The authors regret that these errors went unnoticed prior to the publication of their article, are grateful to the Editor of <i>Oncology Reports</i> for allowing them this opportunity to publish this corrigendum. They also apologize to the readership for any inconvenience caused. [Oncology Reports 33: 675‑684, 2015; DOI: 10.3892/or.2014.3653].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.
铁色素沉着诱导剂(FIN)在癌症治疗中发挥着关键作用,并提供了新颖、创新的治疗策略。尽管许多研究人员已经对合成化合物进行了FIN筛选,但从天然产物中鉴定FIN的研究还很有限,尤其是在药物开发和联合治疗领域。在这篇综述中,通过全面总结近期有关铁中毒的研究,填补了这一空白。研究人员将铁中毒的原因分为驱动因素和防御因素,阐明了关键途径和靶点。接下来,研究通过总结有关诱导铁变态反应的天然产物的研究,详细阐述了具有 FIN 功能的天然产物。研究还介绍了它们的发现和发展,并为临床药物开发提供了启示。此外,还分析了其作用机制,并介绍了潜在的联合疗法、抗药性逆转和结构增强。这篇综述强调了天然产物在诱导铁蛋白沉积治疗癌症方面的潜力,可作为利用这些化合物抗癌的参考。它不仅显示了天然产物的重要意义,还可能促进对其治疗效果的进一步研究,从而鼓励这一领域的研究。
{"title":"Natural products targeting ferroptosis pathways in cancer therapy (Review).","authors":"Xin Na, Lin Li, Dongmei Liu, Jiaqi He, Ling Zhang, Yiping Zhou","doi":"10.3892/or.2024.8782","DOIUrl":"10.3892/or.2024.8782","url":null,"abstract":"<p><p>Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that there appeared to be two instances of overlapping data panels comparing between the cell migration and invasion assay data shown in Figs. 4 and 6 on p. 143 and 145, respectively, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original sources. In addition, the authors themselves realized that incorrect western blotting data for Snail protein in Fig. 10A on p. 147 had been included in the figure. The authors were able to re‑examine their original data files, and realized that the affected data panels in these figures had inadvertently been incorporated into them incorrectly. The revised versions of Figs. 4, 6, and 10, featuring the correct data for the 'NC / Control' panels in Fig. 4B and C and the 'siRNA2 / ATP 12 h' panels in Fig. 4A and B, a replacement data panel for the 'siRNA1 / Control' experiment in Fig. 6, and the correct western blotting data for Snail protein in Fig. 10A (together with a revised histogram for the MCF7 cell line relating to Fig. 10A) are shown on the next three pages. The authors wish to emphasize that the errors made in compiling these figures did not affect the overall conclusions reported in the paper, and they are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this corrigendum. All the authors agree to the publication of this corrigendum, and also apologize to the readership for any inconvenience caused. [Oncology Reports 39: 138‑150, 2018; DOI: 10.3892/or.2017.6081].
上述论文发表后,一位感兴趣的读者提请作者注意,第 143 页和第 145 页的图 4 和图 6 中分别显示的细胞迁移和侵袭检测数据之间似乎有两处数据面板重叠,因此,本应代表不同实验结果的数据显然来自相同的原始数据来源。此外,作者自己也意识到第 147 页图 10A 中蜗牛蛋白的 Western 印迹数据有误。 作者重新检查了他们的原始数据文件,发现这些图中受影响的数据板无意中被错误地纳入了图中。图 4、图 6 和图 10 的修订版,包括图 4B 和图 C 中 "NC / 对照 "面板和图 4A 和图 B 中 "siRNA2 / ATP 12 h "面板的正确数据、图 6 中 "siRNA1 / 对照 "实验的替代数据面板、图 10A 中蜗牛蛋白的正确 Western 印迹数据(以及与图 10A 相关的 MCF7 细胞系的修订直方图),见接下来的三页。作者希望强调,在编制这些图时出现的错误并不影响论文中报告的总体结论,他们非常感谢《肿瘤学报告》编辑允许他们有机会发表这份更正。所有作者均同意发表本更正,并对给读者带来的不便表示歉意。[Oncology Reports 39: 138-150, 2018; DOI: 10.3892/or.2017.6081]。
{"title":"[Corrigendum] P2Y2 receptor promotes the migration and invasion of breast cancer cells via EMT‑related genes Snail and E‑cadherin.","authors":"Ying Qiu, Yan Liu, Wei-Hua Li, Hong-Quan Zhang, Xin-Xia Tian, Wei-Gang Fang","doi":"10.3892/or.2024.8770","DOIUrl":"10.3892/or.2024.8770","url":null,"abstract":"<p><p>Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that there appeared to be two instances of overlapping data panels comparing between the cell migration and invasion assay data shown in Figs. 4 and 6 on p. 143 and 145, respectively, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original sources. In addition, the authors themselves realized that incorrect western blotting data for Snail protein in Fig. 10A on p. 147 had been included in the figure. The authors were able to re‑examine their original data files, and realized that the affected data panels in these figures had inadvertently been incorporated into them incorrectly. The revised versions of Figs. 4, 6, and 10, featuring the correct data for the 'NC / Control' panels in Fig. 4B and C and the 'siRNA2 / ATP 12 h' panels in Fig. 4A and B, a replacement data panel for the 'siRNA1 / Control' experiment in Fig. 6, and the correct western blotting data for Snail protein in Fig. 10A (together with a revised histogram for the MCF7 cell line relating to Fig. 10A) are shown on the next three pages. The authors wish to emphasize that the errors made in compiling these figures did not affect the overall conclusions reported in the paper, and they are grateful to the Editor of <i>Oncology Reports</i> for allowing them the opportunity to publish this corrigendum. All the authors agree to the publication of this corrigendum, and also apologize to the readership for any inconvenience caused. [Oncology Reports 39: 138‑150, 2018; DOI: 10.3892/or.2017.6081].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 3","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}