Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/or.2024.8801
Nianjie Zhang, Kunming Wen
Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.
{"title":"The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review).","authors":"Nianjie Zhang, Kunming Wen","doi":"10.3892/or.2024.8801","DOIUrl":"10.3892/or.2024.8801","url":null,"abstract":"<p><p>Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemotherapy remains a prevalent treatment for a wide range of tumors; however, the majority of patients undergoing conventional chemotherapy experience varying levels of chemoresistance, ultimately leading to suboptimal outcomes. The present article provided an in‑depth review of chemotherapy resistance in tumors, emphasizing the underlying factors contributing to this resistance in tumor cells. It also explored recent advancements in the identification of key molecules and molecular mechanisms within the primary chemoresistant pathways.
{"title":"The molecular mechanisms of chemotherapeutic resistance in tumors (Review).","authors":"Xin Weng, Wei-Hong Zeng, Li-Yuan Zhong, Li-Hua Xie, Wen-Jun Ge, Zhen Lai, Qin Qin, Peng Liu, De-Liang Cao, Xi Zeng","doi":"10.3892/or.2024.8816","DOIUrl":"10.3892/or.2024.8816","url":null,"abstract":"<p><p>Chemotherapy remains a prevalent treatment for a wide range of tumors; however, the majority of patients undergoing conventional chemotherapy experience varying levels of chemoresistance, ultimately leading to suboptimal outcomes. The present article provided an in‑depth review of chemotherapy resistance in tumors, emphasizing the underlying factors contributing to this resistance in tumor cells. It also explored recent advancements in the identification of key molecules and molecular mechanisms within the primary chemoresistant pathways.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-04DOI: 10.3892/or.2024.8817
Vasiliki Epameinondas Georgakopoulou, Ioannis G Lempesis, Nikolaos Trakas, Pagona Sklapani, Yutong He, Demetrios A Spandidos
The global obesity epidemic, attributed to sedentary lifestyles, unhealthy diets, genetics and environmental factors, has led to over 1.9 billion adults being classified as overweight and 650 million living with obesity. Despite advancements in early detection and treatment, lung cancer prognosis remains poor due to late diagnoses and limited therapies. The obesity paradox challenges conventional thinking by suggesting that individuals with obesity and certain diseases, including cancer, may have an improved prognosis compared with their counterparts of a normal weight. This observation has prompted investigations to understand protective mechanisms, including potentially favorable adipokine secretion and metabolic reserves that contribute to tolerating cancer treatments. However, understanding the association between obesity and lung cancer is complex. While smoking is the primary risk factor of lung cancer, obesity may independently impact lung cancer risk, particularly in non‑smokers. Adipose tissue dysfunction, including low‑grade chronic inflammation, and hormonal changes contribute to lung cancer development and progression. Obesity‑related factors may also influence treatment responses and survival outcomes in patients with lung cancer. The impact of obesity on treatment modalities such as chemotherapy, radiotherapy and surgery is still under investigation. Challenges in managing patients with obesity and cancer include increased surgical complexity, higher rates of postoperative complications and limited treatment options due to comorbidities. Targeted interventions aimed at reducing obesity prevalence and promoting healthy lifestyles are crucial for lung cancer prevention. The impact of obesity on lung cancer is multifaceted and requires further research to elucidate the underlying mechanisms and develop personalized interventions for prevention and treatment.
{"title":"Lung cancer and obesity: A contentious relationship (Review).","authors":"Vasiliki Epameinondas Georgakopoulou, Ioannis G Lempesis, Nikolaos Trakas, Pagona Sklapani, Yutong He, Demetrios A Spandidos","doi":"10.3892/or.2024.8817","DOIUrl":"10.3892/or.2024.8817","url":null,"abstract":"<p><p>The global obesity epidemic, attributed to sedentary lifestyles, unhealthy diets, genetics and environmental factors, has led to over 1.9 billion adults being classified as overweight and 650 million living with obesity. Despite advancements in early detection and treatment, lung cancer prognosis remains poor due to late diagnoses and limited therapies. The obesity paradox challenges conventional thinking by suggesting that individuals with obesity and certain diseases, including cancer, may have an improved prognosis compared with their counterparts of a normal weight. This observation has prompted investigations to understand protective mechanisms, including potentially favorable adipokine secretion and metabolic reserves that contribute to tolerating cancer treatments. However, understanding the association between obesity and lung cancer is complex. While smoking is the primary risk factor of lung cancer, obesity may independently impact lung cancer risk, particularly in non‑smokers. Adipose tissue dysfunction, including low‑grade chronic inflammation, and hormonal changes contribute to lung cancer development and progression. Obesity‑related factors may also influence treatment responses and survival outcomes in patients with lung cancer. The impact of obesity on treatment modalities such as chemotherapy, radiotherapy and surgery is still under investigation. Challenges in managing patients with obesity and cancer include increased surgical complexity, higher rates of postoperative complications and limited treatment options due to comorbidities. Targeted interventions aimed at reducing obesity prevalence and promoting healthy lifestyles are crucial for lung cancer prevention. The impact of obesity on lung cancer is multifaceted and requires further research to elucidate the underlying mechanisms and develop personalized interventions for prevention and treatment.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/or.2024.8808
Huan Gui, Yujie Nie, Haohua Yuan, Qianyu Jing, Linzhao Li, Lan Zhu, Shuanghui Chen, Mengjiao Wang, Quan Wan, Hang Lv, Yingjie Nie, Xiangyan Zhang
Lung cancer is increasingly recognized as a leading cause of cancer‑related mortality. Immunotherapy has emerged as a promising therapeutic approach for lung cancer, particularly non‑small cell lung cancer (NSCLC). Nonetheless, the response rate to programmed cell death 1 (PD‑1) inhibitors remains less than optimal. It has been suggested that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in the development and progression of cancer by facilitating T cell expansion and cytotoxicity. Our previous research demonstrated that the combination of tumor necrosis factor receptor 2 (TNFR2) with immune activity treatments synergistically suppresses tumor growth. This insight led to exploring the efficacy of a combined treatment strategy involving PD‑1 inhibitors, PTP1B inhibitors and TNFR2 antibodies (triple therapy) in NSCLC. In this context, the therapeutic effectiveness of these combination immunotherapies was validated in mouse models with NSCLC by analyzing the expansion and function of immune cells, thereby assessing their impact on tumor growth. The results indicated that inhibiting PTP1B decreases the expression of PD‑L1 and TNFR2 on LLC cells, along with an increase in the proportion of CD4+T and CD8+T cells. Compared with other treatment groups, the triple therapy significantly reduced tumor volume in mice with NSCLC and extended their survival. Moreover, this combination therapy altered the distribution of myeloid‑derived suppressor cells, dendritic cells, B cells and M1 macrophages, while increasing the proportion of CD8+T cells and reducing the proportion of Treg cells in the spleens, lymph nodes, and tumors of NSCLC models. The triple therapy also resulted in a decrease in PD‑L1, PTP1B and TNFR2 expression within NSCLC tumor tissues in mice. Overall, the triple therapy effectively suppressed tumor growth and improved outcomes in mice with NSCLC by modulating immune cell distribution and reducing levels of target immune proteins.
{"title":"The combination of a PTP1B inhibitor, TNFR2 blocker, and PD‑1 antibody suppresses the progression of non‑small cell lung cancer tumors by enhancing immunocompetence.","authors":"Huan Gui, Yujie Nie, Haohua Yuan, Qianyu Jing, Linzhao Li, Lan Zhu, Shuanghui Chen, Mengjiao Wang, Quan Wan, Hang Lv, Yingjie Nie, Xiangyan Zhang","doi":"10.3892/or.2024.8808","DOIUrl":"https://doi.org/10.3892/or.2024.8808","url":null,"abstract":"<p><p>Lung cancer is increasingly recognized as a leading cause of cancer‑related mortality. Immunotherapy has emerged as a promising therapeutic approach for lung cancer, particularly non‑small cell lung cancer (NSCLC). Nonetheless, the response rate to programmed cell death 1 (PD‑1) inhibitors remains less than optimal. It has been suggested that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in the development and progression of cancer by facilitating T cell expansion and cytotoxicity. Our previous research demonstrated that the combination of tumor necrosis factor receptor 2 (TNFR2) with immune activity treatments synergistically suppresses tumor growth. This insight led to exploring the efficacy of a combined treatment strategy involving PD‑1 inhibitors, PTP1B inhibitors and TNFR2 antibodies (triple therapy) in NSCLC. In this context, the therapeutic effectiveness of these combination immunotherapies was validated in mouse models with NSCLC by analyzing the expansion and function of immune cells, thereby assessing their impact on tumor growth. The results indicated that inhibiting PTP1B decreases the expression of PD‑L1 and TNFR2 on LLC cells, along with an increase in the proportion of CD4<sup>+</sup>T and CD8<sup>+</sup>T cells. Compared with other treatment groups, the triple therapy significantly reduced tumor volume in mice with NSCLC and extended their survival. Moreover, this combination therapy altered the distribution of myeloid‑derived suppressor cells, dendritic cells, B cells and M1 macrophages, while increasing the proportion of CD8<sup>+</sup>T cells and reducing the proportion of Treg cells in the spleens, lymph nodes, and tumors of NSCLC models. The triple therapy also resulted in a decrease in PD‑L1, PTP1B and TNFR2 expression within NSCLC tumor tissues in mice. Overall, the triple therapy effectively suppressed tumor growth and improved outcomes in mice with NSCLC by modulating immune cell distribution and reducing levels of target immune proteins.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-27DOI: 10.3892/or.2024.8812
Yanbin Chen, Bingchen Chen, Shiliang Tu, Hang Yuan
Accumulating evidence indicates that the dysregulation of microRNAs (miRNAs or miRs), is associated with human malignancies and suggests a casual role of miRNAs in tumor initiation and progression. Even though it has been discovered that a number of miRNAs play significant parts in the development of colorectal cancer (CRC), it is crucial to comprehend the regulatory functions that other miRNAs play in CRC. Based on GSE183437 and GSE156719 microarray data that were obtained from Gene Expression Omnibus database, candidate miRNAs were researched. The oncogenic effects of miR‑25‑3p in different malignancies have led to its selection for additional investigation in the present study. The expression of miR‑25‑3p was verified by reverse transcription‑quantitative PCR, and its correlation with clinicopathological characteristics in patients with CRC was then investigated. In vitro assays were conducted to investigate the influence of miR‑25‑3p on the proliferative and apoptotic behaviors of HCT116 and Caco‑2 cells. The present data revealed that miR‑25‑3p exhibited one of the most significant upregulations in CRC tissues and cell lines. The expression levels of miR‑25‑3p were found to be intimately correlated with tumor size, distant metastasis, tumor‑node‑metastasis stage, and shorter overall survival rate. In terms of functionality, the downregulation of miR‑25‑3p led to the inhibition of cellular proliferation and the enhancement of apoptosis in both HCT116 and Caco‑2 cell lines. The critical tumor suppressor F‑box and WD repeat containing domain 7 (FBXW7) was identified as a direct molecular target for miR‑25‑3p, with an inverse relationship observed between the two in neoplastic tissues. Subsequent studies demonstrated that the tumor suppressive effects of miR‑25‑3p inhibitor were effectively negated by the silencing of FBXW7. Moreover, the ability of FBXW7 to inhibit the expression of several oncogenes was deemed essential for countering the anticancer effects mediated by miR‑25‑3p downregulation. These findings posit miR‑25‑3p as a promising therapeutic target and prognostic indicator for CRC.
{"title":"miR‑25‑3p serves as an oncogenic in colorectal cancer cells by regulating the ubiquitin ligase FBXW7 function.","authors":"Yanbin Chen, Bingchen Chen, Shiliang Tu, Hang Yuan","doi":"10.3892/or.2024.8812","DOIUrl":"10.3892/or.2024.8812","url":null,"abstract":"<p><p>Accumulating evidence indicates that the dysregulation of microRNAs (miRNAs or miRs), is associated with human malignancies and suggests a casual role of miRNAs in tumor initiation and progression. Even though it has been discovered that a number of miRNAs play significant parts in the development of colorectal cancer (CRC), it is crucial to comprehend the regulatory functions that other miRNAs play in CRC. Based on GSE183437 and GSE156719 microarray data that were obtained from Gene Expression Omnibus database, candidate miRNAs were researched. The oncogenic effects of miR‑25‑3p in different malignancies have led to its selection for additional investigation in the present study. The expression of miR‑25‑3p was verified by reverse transcription‑quantitative PCR, and its correlation with clinicopathological characteristics in patients with CRC was then investigated. <i>In vitro</i> assays were conducted to investigate the influence of miR‑25‑3p on the proliferative and apoptotic behaviors of HCT116 and Caco‑2 cells. The present data revealed that miR‑25‑3p exhibited one of the most significant upregulations in CRC tissues and cell lines. The expression levels of miR‑25‑3p were found to be intimately correlated with tumor size, distant metastasis, tumor‑node‑metastasis stage, and shorter overall survival rate. In terms of functionality, the downregulation of miR‑25‑3p led to the inhibition of cellular proliferation and the enhancement of apoptosis in both HCT116 and Caco‑2 cell lines. The critical tumor suppressor F‑box and WD repeat containing domain 7 (FBXW7) was identified as a direct molecular target for miR‑25‑3p, with an inverse relationship observed between the two in neoplastic tissues. Subsequent studies demonstrated that the tumor suppressive effects of miR‑25‑3p inhibitor were effectively negated by the silencing of FBXW7. Moreover, the ability of FBXW7 to inhibit the expression of several oncogenes was deemed essential for countering the anticancer effects mediated by miR‑25‑3p downregulation. These findings posit miR‑25‑3p as a promising therapeutic target and prognostic indicator for CRC.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/or.2024.8810
Qi Zhong, Duo Li, Xiao-Ping Yang
Phenformin, a biguanide compound, has attracted increased attention due to its prominent antitumor activity. As a multi‑target agent, the antitumor effects of phenformin involve a wide range of factors, including inhibition of mitochondrial complex I, activation of AMP‑activated protein kinase, impact on the tumor microenvironment, suppression of cancer stem cells and others. In addition, phenformin has been shown to markedly augment the effectiveness of various clinical treatment methods, including radiotherapy, chemotherapy, targeted therapy and immunotherapy. It is noteworthy that breakthrough progress has been made in the treatment of cancer with phenformin with application in clinical trials for the treatment of melanoma. Phenformin not only reduces the lesion area of patients, but also enhances the efficacy of dalafinib/trimetinib. In the present review, the novel breakthroughs in the antitumor effects and mechanisms of phenformin were discussed. In addition, the current review focuses on the clinical development value of phenformin, striving to provide new insights into the future research direction of phenformin in the field of tumor treatment.
{"title":"Progress in antitumor mechanisms and applications of phenformin (Review).","authors":"Qi Zhong, Duo Li, Xiao-Ping Yang","doi":"10.3892/or.2024.8810","DOIUrl":"10.3892/or.2024.8810","url":null,"abstract":"<p><p>Phenformin, a biguanide compound, has attracted increased attention due to its prominent antitumor activity. As a multi‑target agent, the antitumor effects of phenformin involve a wide range of factors, including inhibition of mitochondrial complex I, activation of AMP‑activated protein kinase, impact on the tumor microenvironment, suppression of cancer stem cells and others. In addition, phenformin has been shown to markedly augment the effectiveness of various clinical treatment methods, including radiotherapy, chemotherapy, targeted therapy and immunotherapy. It is noteworthy that breakthrough progress has been made in the treatment of cancer with phenformin with application in clinical trials for the treatment of melanoma. Phenformin not only reduces the lesion area of patients, but also enhances the efficacy of dalafinib/trimetinib. In the present review, the novel breakthroughs in the antitumor effects and mechanisms of phenformin were discussed. In addition, the current review focuses on the clinical development value of phenformin, striving to provide new insights into the future research direction of phenformin in the field of tumor treatment.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/or.2024.8804
Zongquan Xu, Yu Chen, Guohui Xu, Cheng Peng, Enyu Liu, Yunguang Li, Jun Niu, Changhai Li
Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the control western blots shown for Fig. 1A and B on p. 908 and Fig. 8A and C on p. 911 were apparently the same, where different experiments were intended to have been portrayed. After having re‑examined their original data files, the authors realized that these figures had been published with the control western blots shown incorrectly for Fig. 1A and 8C. The corrected versions of this pair of figures are shown on the next page. Note that the corrections made to these figures do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [Oncology Reports 33: 905‑912, 2015; DOI: 10.3892/or.2014.3656].
上述论文发表后,一位感兴趣的读者提请作者注意,第 908 页的图 1A 和 B 以及第 911 页的图 8A 和 C 所显示的对照 Western 印迹显然是相同的,而这两张图本应描述不同的实验。在重新检查了原始数据文件后,作者意识到在发表这些图时,图 1A 和图 8C 的对照 Western 印迹显示有误。这对图的更正版本见下页。请注意,对这些图的更正并不影响论文中报告的总体结论。作者感谢《肿瘤学报告》编辑允许他们有机会发表本更正,并对给读者带来的不便表示歉意。[肿瘤学报告 33: 905-912, 2015; DOI: 10.3892/or.2014.3656]。
{"title":"[Corrigendum] Omi/HtrA2 pro-apoptotic marker differs in various hepatocellular carcinoma cell lines owing to ped/pea-15 expression level.","authors":"Zongquan Xu, Yu Chen, Guohui Xu, Cheng Peng, Enyu Liu, Yunguang Li, Jun Niu, Changhai Li","doi":"10.3892/or.2024.8804","DOIUrl":"10.3892/or.2024.8804","url":null,"abstract":"<p><p>Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the control western blots shown for Fig. 1A and B on p. 908 and Fig. 8A and C on p. 911 were apparently the same, where different experiments were intended to have been portrayed. After having re‑examined their original data files, the authors realized that these figures had been published with the control western blots shown incorrectly for Fig. 1A and 8C. The corrected versions of this pair of figures are shown on the next page. Note that the corrections made to these figures do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of <i>Oncology Reports</i> for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [Oncology Reports 33: 905‑912, 2015; DOI: 10.3892/or.2014.3656].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.3892/or.2024.8811
Yi Zhou, Zhigang Ji, Weigang Yan, Zhien Zhou, Hanzhong Li, Yu Xiao
Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion assay data shown in Fig. 3B on p. 839 were strikingly similar to data that had already appeared in another article written by different authors at different research institutes [Mao Y, Zhang L, Yuan L, Yan M and He Y: MiR‑218 suppresses cell progression by targeting APC in cervical cancer. Int J Clin Exp Pathol: 10, 2259‑2269, 2017]. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 38: 837‑842, 2017; DOI: 10.3892/or.2017.5768].
在这篇论文发表后,有相关读者提请编辑注意,第839页图3B所示的某些Transwell侵袭实验数据与不同研究机构不同作者撰写的另一篇文章[Mao Y, Zhang L, Yuan L, Yan M and He Y: MiR-218 suppresses cell progression by targeting APC in cervical cancer.Int J Clin Exp Pathol: 10, 2259-2269, 2017]。由于上述文章中存在争议的数据在投稿至《肿瘤学报告》之前已经发表,编辑决定将该论文从杂志上撤下。作者被要求解释这些问题,但编辑部没有收到回复。对于给读者带来的不便,编辑深表歉意。[肿瘤学报告 38: 837-842, 2017; DOI: 10.3892/or.2017.5768]。
{"title":"[Retracted] Tetramethylpyrazine inhibits prostate cancer progression by downregulation of forkhead box M1.","authors":"Yi Zhou, Zhigang Ji, Weigang Yan, Zhien Zhou, Hanzhong Li, Yu Xiao","doi":"10.3892/or.2024.8811","DOIUrl":"10.3892/or.2024.8811","url":null,"abstract":"<p><p>Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion assay data shown in Fig. 3B on p. 839 were strikingly similar to data that had already appeared in another article written by different authors at different research institutes [Mao Y, Zhang L, Yuan L, Yan M and He Y: MiR‑218 suppresses cell progression by targeting APC in cervical cancer. Int J Clin Exp Pathol: 10, 2259‑2269, 2017]. Owing to the fact that the contentious data in the above article had already been published prior to its submission to <i>Oncology Reports</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 38: 837‑842, 2017; DOI: 10.3892/or.2017.5768].</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-27DOI: 10.3892/or.2024.8813
Yuqing Yang, Fang Wang, Yuqin Li, Ruxi Chen, Xiangyu Wang, Jiahong Chen, Xi Lin, Haipeng Zhang, Youwei Huang, Rui Wang
Lack of effective tumor‑specific delivery systems remains an unmet clinical challenge for the employment of chemotherapy using cytotoxic drugs. Extracellular vesicles (EVs) have recently been investigated for their potential as an efficient drug‑delivery platform, due to their good biodistribution, biocompatibility and low immunogenicity. In the present study, the formulation of GE11 peptide‑modified EVs (GE11‑EVs) loaded with doxorubicin (Dox‑GE11‑EVs), was developed to target epidermal growth factor receptor (EGFR)‑positive tumor cells. The results obtained demonstrated that GE11‑EVs exhibited highly efficient targeting and drug delivery to EGFR‑positive tumor cells compared with non‑modified EVs. Furthermore, treatment with Dox‑GE11‑EVs led to a significantly inhibition of cell proliferation and increased apoptosis of EGFR‑positive tumor cells compared with Dox‑EVs and free Dox treatments. In addition, it was observed that treatment with either free Dox or Dox‑EVs exhibited a high level of cytotoxicity to normal cells, whereas treatment with Dox‑GE11‑EVs had only a limited effect on cell viability of normal cells. Taken together, the findings of the present study demonstrated that the engineered Dox‑GE11‑EVs can treat EGFR‑positive tumors more accurately and have higher safety than traditional tumor therapies.
{"title":"Engineered extracellular vesicles with polypeptide for targeted delivery of doxorubicin against EGFR‑positive tumors.","authors":"Yuqing Yang, Fang Wang, Yuqin Li, Ruxi Chen, Xiangyu Wang, Jiahong Chen, Xi Lin, Haipeng Zhang, Youwei Huang, Rui Wang","doi":"10.3892/or.2024.8813","DOIUrl":"10.3892/or.2024.8813","url":null,"abstract":"<p><p>Lack of effective tumor‑specific delivery systems remains an unmet clinical challenge for the employment of chemotherapy using cytotoxic drugs. Extracellular vesicles (EVs) have recently been investigated for their potential as an efficient drug‑delivery platform, due to their good biodistribution, biocompatibility and low immunogenicity. In the present study, the formulation of GE11 peptide‑modified EVs (GE11‑EVs) loaded with doxorubicin (Dox‑GE11‑EVs), was developed to target epidermal growth factor receptor (EGFR)‑positive tumor cells. The results obtained demonstrated that GE11‑EVs exhibited highly efficient targeting and drug delivery to EGFR‑positive tumor cells compared with non‑modified EVs. Furthermore, treatment with Dox‑GE11‑EVs led to a significantly inhibition of cell proliferation and increased apoptosis of EGFR‑positive tumor cells compared with Dox‑EVs and free Dox treatments. In addition, it was observed that treatment with either free Dox or Dox‑EVs exhibited a high level of cytotoxicity to normal cells, whereas treatment with Dox‑GE11‑EVs had only a limited effect on cell viability of normal cells. Taken together, the findings of the present study demonstrated that the engineered Dox‑GE11‑EVs can treat EGFR‑positive tumors more accurately and have higher safety than traditional tumor therapies.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-02DOI: 10.3892/or.2024.8803
Wanli Liu, Xianze Wang, Wenming Wu
Interleukin‑17 (IL‑17), an inflammatory cytokine primarily secreted by T helper 17 cells, serves a crucial role in numerous inflammatory diseases and malignancies via its receptor, IL‑17R. In addition to stimulating inflammatory responses, IL‑17 exhibits dual functions in tumors, exerting both pro‑ and antitumor effects. Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and accounts for >90% of pancreatic cancer cases. PDAC is characterized by a prominent stromal microenvironment with significant heterogeneity, which contributes to treatment resistance. IL‑17/IL‑17R signaling has a notable effect on tumorigenesis, the tumor microenvironment and treatment efficacy in various cancer types, including PDAC. However, the specific mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer remain uncertain. This review presents a brief overview of the current knowledge and recent advances in the role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer. Furthermore, the potential of IL‑17‑targeted therapeutic strategies for PDAC treatment is also discussed.
{"title":"Role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer (Review).","authors":"Wanli Liu, Xianze Wang, Wenming Wu","doi":"10.3892/or.2024.8803","DOIUrl":"10.3892/or.2024.8803","url":null,"abstract":"<p><p>Interleukin‑17 (IL‑17), an inflammatory cytokine primarily secreted by T helper 17 cells, serves a crucial role in numerous inflammatory diseases and malignancies via its receptor, IL‑17R. In addition to stimulating inflammatory responses, IL‑17 exhibits dual functions in tumors, exerting both pro‑ and antitumor effects. Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and accounts for >90% of pancreatic cancer cases. PDAC is characterized by a prominent stromal microenvironment with significant heterogeneity, which contributes to treatment resistance. IL‑17/IL‑17R signaling has a notable effect on tumorigenesis, the tumor microenvironment and treatment efficacy in various cancer types, including PDAC. However, the specific mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer remain uncertain. This review presents a brief overview of the current knowledge and recent advances in the role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer. Furthermore, the potential of IL‑17‑targeted therapeutic strategies for PDAC treatment is also discussed.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 5","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}