首页 > 最新文献

Organic Polymer Material Research最新文献

英文 中文
A new study on the superplasticity of TiAl alloys TiAl合金超塑性的新研究
Pub Date : 2020-05-29 DOI: 10.30564/opmr.v2i1.1869
Run Xu, Boyong Hur
The superplasticity of Ti-46.7Al-2.2Cr(at.%) alloy was studied by mathematical induction. It is found that Zener Hollomon relative formula and there are serious deflections. According to the true superplastic stress and true strain curves, the deflection values of n=-7.46 and B=1439MPa are obtained, indicating that the limit of n>0 has been exceeded, which needs to be characterized by a negative sign. This shows that it conforms to the principle that the smaller n is, the better superplasticity is, but the problem that it has become a negative number needs to attract the attention of peers meantime B is a better match. 
采用数学归纳法研究了Ti-46.7Al-2.2Cr(at.%)合金的超塑性。发现齐纳-霍洛蒙相对公式存在严重的偏转。根据真超塑应力和真应变曲线,得到挠度值n=-7.46和B=1439MPa,说明已经超过了n>0的极限,需要用负号表示。这说明它符合n越小超塑性越好的原理,但它变成负数的问题需要引起同行的注意,同时B是一个更好的匹配。
{"title":"A new study on the superplasticity of TiAl alloys","authors":"Run Xu, Boyong Hur","doi":"10.30564/opmr.v2i1.1869","DOIUrl":"https://doi.org/10.30564/opmr.v2i1.1869","url":null,"abstract":"The superplasticity of Ti-46.7Al-2.2Cr(at.%) alloy was studied by mathematical induction. It is found that Zener Hollomon relative formula and there are serious deflections. According to the true superplastic stress and true strain curves, the deflection values of n=-7.46 and B=1439MPa are obtained, indicating that the limit of n>0 has been exceeded, which needs to be characterized by a negative sign. This shows that it conforms to the principle that the smaller n is, the better superplasticity is, but the problem that it has become a negative number needs to attract the attention of peers meantime B is a better match. ","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79169148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Wooden Beam Behaviors Reinforced with Fiber Reinforced Polymers 纤维增强聚合物增强木梁的性能研究
Pub Date : 2020-05-29 DOI: 10.30564/opmr.v2i1.1783
S. Kilincarslan, Y. Türker
Wood material can be demolished over time due to different environmental factors. Structural elements may need to be strengthened over time as a result of possible natural disasters or during use. Beams are elements under load in the direction perpendicular to their axes. Therefore, they are basically under the effect of bending. When the studies on the behavior of beams against bending test are examined, it is known that the bottom surface of the material generally breaks. For this reason, fiber reinforced polymers (FRP) materials have been used in recent years to reinforce beam members. It is a scientific fact that it is necessary to prefer FRPs for the solution of this problem, as well as their properties such as lightness, corrosion and flexibility, their application without disrupting the appearance of wood.In this study, it was aimed to investigate the effect of reinforcing wooden beams with fiber reinforced polymer materials with different properties on different bending behaviors such as load bearing capacity, ductility, modulus of elasticity. It was observed that the ductility and bearing capacity of wooden beams reinforced with fiber reinforced polymer materials increased significantly compared to non-reinforced beams.
随着时间的推移,由于不同的环境因素,木质材料可能会被拆除。由于可能发生的自然灾害或在使用期间,结构元件可能需要随着时间的推移而加强。梁是在与其轴线垂直方向上受荷载的构件。因此,它们基本上处于弯曲作用下。在对梁的抗弯性能进行研究时,我们知道材料的底面通常是断裂的。因此,近年来纤维增强聚合物(FRP)材料已被用于加固梁构件。这是一个科学事实,有必要选择frp来解决这个问题,以及它们的特性,如轻质、耐腐蚀和柔韧性,它们的应用不会破坏木材的外观。本研究旨在探讨不同性能的纤维增强高分子材料对木梁的承载力、延性、弹性模量等不同弯曲性能的影响。结果表明,经纤维增强高分子材料加固的木梁的延性和承载力比未加固的梁有显著提高。
{"title":"Investigation of Wooden Beam Behaviors Reinforced with Fiber Reinforced Polymers","authors":"S. Kilincarslan, Y. Türker","doi":"10.30564/opmr.v2i1.1783","DOIUrl":"https://doi.org/10.30564/opmr.v2i1.1783","url":null,"abstract":"Wood material can be demolished over time due to different environmental factors. Structural elements may need to be strengthened over time as a result of possible natural disasters or during use. Beams are elements under load in the direction perpendicular to their axes. Therefore, they are basically under the effect of bending. When the studies on the behavior of beams against bending test are examined, it is known that the bottom surface of the material generally breaks. For this reason, fiber reinforced polymers (FRP) materials have been used in recent years to reinforce beam members. It is a scientific fact that it is necessary to prefer FRPs for the solution of this problem, as well as their properties such as lightness, corrosion and flexibility, their application without disrupting the appearance of wood.In this study, it was aimed to investigate the effect of reinforcing wooden beams with fiber reinforced polymer materials with different properties on different bending behaviors such as load bearing capacity, ductility, modulus of elasticity. It was observed that the ductility and bearing capacity of wooden beams reinforced with fiber reinforced polymer materials increased significantly compared to non-reinforced beams.","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91332045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Rheological and Mechanical Performance of Asphalt Binders and Mixtures Incorporating CaCO3 and Lldpe CaCO3和Lldpe混合料沥青粘结剂的流变力学性能
Pub Date : 2019-10-31 DOI: 10.30564/opmr.v1i1.1015
M. Hasan, Zhanping You, M. Satar, M. N. Warid, N. Kamaruddin, S. Poovaneshvaran
This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol% and 6 vol% of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE), and combinations of CaCO3 and LLDPE. The rheological properties of control and modified asphalt binders were evaluated using a series of testing such as rotational viscometer (RV), multiple stress creep recovery (MSCR) and bending beam rheometer (BBR) tests. Meanwhile, four-point beam fatigue test, the dynamic modulus (E*) test and tensile strength ratio (TSR) test were conducted to assess the engineering properties of asphalt mixtures. Based on the findings, the RV and MSCR test result shows that all modified asphalt binders have improved performance in comparison to the neat asphalt binders in terms of higher viscosity and improved permanent deformation resistance. A higher amount of CaCO3 and LLDPE have led modified asphalt binders to better recovery percentage, except the asphalt binders modified using a combination of CaCO3 and LLDPE. However, the inclusion of LLDPE into asphalt binder has lowered the thermal cracking resistance. The incorporation of CaCO3 in asphalt mixtures was found beneficial, especially in improving the ability to resist fatigue cracking of asphalt mixture. In contrast, asphalt mixtures show better moisture sensitivity through the addition of LLDPE. The addition of LLDPE has significantly enhanced the indirect tensile strength values and tensile strength ratio of asphalt mixtures.
本研究评估了改性沥青粘合剂的性能,以及加入3vol %和6vol %碳酸钙(CaCO3)、线性低密度聚乙烯(LLDPE)以及CaCO3和LLDPE组合制备的混合物的工程性能。通过旋转粘度计(RV)、多重应力蠕变恢复(MSCR)和弯曲梁流变仪(BBR)等一系列测试,评估了控制沥青和改性沥青粘结剂的流变特性。同时,通过四点梁疲劳试验、动模量(E*)试验和抗拉强度比(TSR)试验对沥青混合料的工程性能进行了评价。在此基础上,RV和MSCR试验结果表明,与纯沥青粘结剂相比,所有改性沥青粘结剂在更高的粘度和更高的永久变形抗力方面都有改善。除了使用CaCO3和LLDPE组合改性的沥青粘合剂外,CaCO3和LLDPE的含量越高,改性后的沥青粘合剂的回收率越高。然而,LLDPE掺入沥青粘结剂中降低了其抗热裂性。在沥青混合料中掺入碳酸钙是有益的,特别是在提高沥青混合料的抗疲劳开裂能力方面。相比之下,加入LLDPE的沥青混合料表现出更好的水分敏感性。LLDPE的加入显著提高了沥青混合料的间接抗拉强度值和抗拉强度比。
{"title":"Rheological and Mechanical Performance of Asphalt Binders and Mixtures Incorporating CaCO3 and Lldpe","authors":"M. Hasan, Zhanping You, M. Satar, M. N. Warid, N. Kamaruddin, S. Poovaneshvaran","doi":"10.30564/opmr.v1i1.1015","DOIUrl":"https://doi.org/10.30564/opmr.v1i1.1015","url":null,"abstract":"This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol% and 6 vol% of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE), and combinations of CaCO3 and LLDPE. The rheological properties of control and modified asphalt binders were evaluated using a series of testing such as rotational viscometer (RV), multiple stress creep recovery (MSCR) and bending beam rheometer (BBR) tests. Meanwhile, four-point beam fatigue test, the dynamic modulus (E*) test and tensile strength ratio (TSR) test were conducted to assess the engineering properties of asphalt mixtures. Based on the findings, the RV and MSCR test result shows that all modified asphalt binders have improved performance in comparison to the neat asphalt binders in terms of higher viscosity and improved permanent deformation resistance. A higher amount of CaCO3 and LLDPE have led modified asphalt binders to better recovery percentage, except the asphalt binders modified using a combination of CaCO3 and LLDPE. However, the inclusion of LLDPE into asphalt binder has lowered the thermal cracking resistance. The incorporation of CaCO3 in asphalt mixtures was found beneficial, especially in improving the ability to resist fatigue cracking of asphalt mixture. In contrast, asphalt mixtures show better moisture sensitivity through the addition of LLDPE. The addition of LLDPE has significantly enhanced the indirect tensile strength values and tensile strength ratio of asphalt mixtures.","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89056759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Optimal Method for Production of Amorphous Cellulose with Increased Enzymatic Digestibility 提高酶消化率的无定形纤维素的最佳生产方法
Pub Date : 2019-10-31 DOI: 10.30564/opmr.v1i1.1301
M. Ioelovich
In this paper, a simple and cheap method for producing of amorphous cellulose was studied by treating the initial cellulosic material (MCC and waste paper) with a cold solvent, such as aqueous solution of 7% NaOH/12% Urea, at the various ratios of the solvent to cellulose (v/w) (R). If was found that after treatment of cellulose materials with the solvent at R ≥5, a completely amorphous cellulose (AC) is formed. Due to high digestibility, the AC with concentration of 50 g/L is converted to glucose almost completely for 48 h under the action of cellulolytic enzyme CTec-3 with a dose of 30 mg/g solid sample. Such sample can be used as an amorphous standard in the study of crystallinity degree and enzymatic hydrolysis of various types of cellulose and lignocellulose. It was found that enzymatic saccharification is most advantageous to carry out at elevated concentrations of AC, 150 g /L. Due to high cost of MCC, it is preferable to use a cheap cellulose raw material, such as mixed waste paper (MWP), for the commercial production of AC and glucose. The resulting glucose can find application in biotechnology as a promising nutrient for various microorganisms.
本文研究了一种简单、廉价的生产无定形纤维素的方法,将纤维素原料(MCC和废纸)用7% NaOH/12%尿素水溶液,在不同的溶剂与纤维素的比(v/w) (R)下处理,发现纤维素原料用R≥5的溶剂处理后,形成完全无定形纤维素(AC)。由于消化率高,50g /L的AC在纤维素水解酶CTec-3的作用下,在30mg /g固体样品的作用下,48h几乎完全转化为葡萄糖。该样品可作为研究各类纤维素和木质纤维素结晶度和酶解的无定形标准。研究发现,在AC浓度升高(150 g /L)时,酶促糖化最有利。由于MCC成本高,因此最好使用廉价的纤维素原料,如混合废纸(MWP),用于AC和葡萄糖的商业化生产。由此产生的葡萄糖可以作为各种微生物的有前途的营养物在生物技术中得到应用。
{"title":"Optimal Method for Production of Amorphous Cellulose with Increased Enzymatic Digestibility","authors":"M. Ioelovich","doi":"10.30564/opmr.v1i1.1301","DOIUrl":"https://doi.org/10.30564/opmr.v1i1.1301","url":null,"abstract":"In this paper, a simple and cheap method for producing of amorphous cellulose was studied by treating the initial cellulosic material (MCC and waste paper) with a cold solvent, such as aqueous solution of 7% NaOH/12% Urea, at the various ratios of the solvent to cellulose (v/w) (R). If was found that after treatment of cellulose materials with the solvent at R ≥5, a completely amorphous cellulose (AC) is formed. Due to high digestibility, the AC with concentration of 50 g/L is converted to glucose almost completely for 48 h under the action of cellulolytic enzyme CTec-3 with a dose of 30 mg/g solid sample. Such sample can be used as an amorphous standard in the study of crystallinity degree and enzymatic hydrolysis of various types of cellulose and lignocellulose. It was found that enzymatic saccharification is most advantageous to carry out at elevated concentrations of AC, 150 g /L. Due to high cost of MCC, it is preferable to use a cheap cellulose raw material, such as mixed waste paper (MWP), for the commercial production of AC and glucose. The resulting glucose can find application in biotechnology as a promising nutrient for various microorganisms.","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74047469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Alkali Treatment to Maximize Adhesion of Polypyrrole Coatings for Electro-Conductive Textile Materials 碱处理提高导电纺织材料用聚吡咯涂层的附着力
Pub Date : 2019-10-31 DOI: 10.30564/opmr.v1i1.1010
Z. Yildiz
In this paper polyester fabrics were pretreated with alkaline solution to improve the ability for the fabric surface to bond with polypyrrole (PPy) coating layer. In situ chemical oxidative polymerization of pyrrole monomer was performed on alkali treated polyester fabrics. Then the fabrics were characterized by FTIR and XRD analysis. The tensile properties of the yarns in both warp and weft directions were measured after alkali treatment and PPy coating processes. The abrasion resistance test was performed on PPy coated fabrics with and without alkali treatment. The surface electrical resistivity of PPy coated fabrics were searched. The electromagnetic shielding effectiveness (EMSE) properties of fabrics in terms of reflection, absorption and transmission behaviors were also investigated. A significant EMSE value increase (about 27%) was obtained with alkali treatment.
本文用碱性溶液对涤纶织物进行预处理,以提高织物表面与聚吡咯(PPy)涂层的结合能力。在碱处理涤纶织物上进行了吡咯单体的原位化学氧化聚合。并用FTIR和XRD对织物进行了表征。测定了经碱处理和聚吡啶涂覆后纱线经纬方向的拉伸性能。对经碱处理和不经碱处理的聚吡啶涂层织物进行了耐磨性试验。研究了聚吡啶涂层织物的表面电阻率。从反射、吸收和透射等方面对织物的电磁屏蔽性能进行了研究。碱处理显著提高了EMSE值(约27%)。
{"title":"Alkali Treatment to Maximize Adhesion of Polypyrrole Coatings for Electro-Conductive Textile Materials","authors":"Z. Yildiz","doi":"10.30564/opmr.v1i1.1010","DOIUrl":"https://doi.org/10.30564/opmr.v1i1.1010","url":null,"abstract":"In this paper polyester fabrics were pretreated with alkaline solution to improve the ability for the fabric surface to bond with polypyrrole (PPy) coating layer. In situ chemical oxidative polymerization of pyrrole monomer was performed on alkali treated polyester fabrics. Then the fabrics were characterized by FTIR and XRD analysis. The tensile properties of the yarns in both warp and weft directions were measured after alkali treatment and PPy coating processes. The abrasion resistance test was performed on PPy coated fabrics with and without alkali treatment. The surface electrical resistivity of PPy coated fabrics were searched. The electromagnetic shielding effectiveness (EMSE) properties of fabrics in terms of reflection, absorption and transmission behaviors were also investigated. A significant EMSE value increase (about 27%) was obtained with alkali treatment.","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90710599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Foreword from the Editor-in-Chief 总编辑的前言
Pub Date : 2019-07-05 DOI: 10.30564/JOR.V1I1.634
Hongwei Chen
Accompanying the development of petrochemical industry, great progress has been achieved in the organic polymer materials. It is well known that the conventional polymer materials usually consist of organosilicon polymers, polycarbonates, polyethylene, polyamide, polyurethane, polysulfone, phenolic resin and so on. Although their synthesis and applications have been well developed, the further research on them still has great significance. Moreover, natural polymers such as polysaccharides, tannins, cellulose also occupy an important position in the family of the organic polymer materials.
随着石油化工的发展,有机高分子材料取得了长足的进步。众所周知,传统的高分子材料通常由有机硅聚合物、聚碳酸酯、聚乙烯、聚酰胺、聚氨酯、聚砜、酚醛树脂等组成。虽然它们的合成和应用已经很发达,但对它们的进一步研究仍具有重要意义。此外,多糖、单宁、纤维素等天然高分子材料在有机高分子材料家族中也占有重要地位。
{"title":"A Foreword from the Editor-in-Chief","authors":"Hongwei Chen","doi":"10.30564/JOR.V1I1.634","DOIUrl":"https://doi.org/10.30564/JOR.V1I1.634","url":null,"abstract":"Accompanying the development of petrochemical industry, great progress has been achieved in the organic polymer materials. It is well known that the conventional polymer materials usually consist of organosilicon polymers, polycarbonates, polyethylene, polyamide, polyurethane, polysulfone, phenolic resin and so on. Although their synthesis and applications have been well developed, the further research on them still has great significance. Moreover, natural polymers such as polysaccharides, tannins, cellulose also occupy an important position in the family of the organic polymer materials.","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72896307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Organic Polymer Material Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1