Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA.These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.
{"title":"Enhancing Gene Therapy through Ultradeformable Vesicles for Efficient siRNA Delivery.","authors":"Chintan Aundhia, Nirmal Shah, Chitrali Talele, Aarti Zanwar, Mamta Kumari, Sapana Patil","doi":"10.2174/0122117385271654231215064542","DOIUrl":"10.2174/0122117385271654231215064542","url":null,"abstract":"<p><p>Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA.These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"55-69"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0122117385314186240522100239
Bhargav Devliya, Bimalkumar Patel, Shreya J Chauhan, Hitesh D Patel
Multidrug-resistant Staphylococcus aureus is a serious public health problem with high fatality rates and difficult treatment. Conventional antimicrobials are limited in their effectiveness against MRSA due to developing resistance mechanisms and protective biofilms. Nanomaterials present a potential alternative since they offer targeted drug delivery and synergetic effects of nanoconjugates, eradicate biofilms, and use photothermal and photodynamic therapies. Furthermore, the discovery of nanovaccines holds the potential for enhancing immune responses against multidrugresistant S. aureus. Nanoparticles show considerable promise in the battle against multidrugresistant S. aureus, but significant obstacles remain, including determining their possible toxicity, scalability, and cost-effectiveness for widespread clinical application. However, by overcoming these barriers, nanomaterial-based techniques provide a viable route for tackling multidrug resistance in S. aureus, opening the path for a future in which successful therapies are within reach.
{"title":"A Comprehensive Review of Nanomaterials as Potential Weapons against Multidrug-resistant <i>Staphylococcus aureus</i>.","authors":"Bhargav Devliya, Bimalkumar Patel, Shreya J Chauhan, Hitesh D Patel","doi":"10.2174/0122117385314186240522100239","DOIUrl":"10.2174/0122117385314186240522100239","url":null,"abstract":"<p><p>Multidrug-resistant Staphylococcus aureus is a serious public health problem with high fatality rates and difficult treatment. Conventional antimicrobials are limited in their effectiveness against MRSA due to developing resistance mechanisms and protective biofilms. Nanomaterials present a potential alternative since they offer targeted drug delivery and synergetic effects of nanoconjugates, eradicate biofilms, and use photothermal and photodynamic therapies. Furthermore, the discovery of nanovaccines holds the potential for enhancing immune responses against multidrugresistant S. aureus. Nanoparticles show considerable promise in the battle against multidrugresistant S. aureus, but significant obstacles remain, including determining their possible toxicity, scalability, and cost-effectiveness for widespread clinical application. However, by overcoming these barriers, nanomaterial-based techniques provide a viable route for tackling multidrug resistance in S. aureus, opening the path for a future in which successful therapies are within reach.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"865-884"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanorobotics, situated at the intersection of nanotechnology and robotics, holds the potential for revolutionary impact on precision medicine and medical interventions. This review explores the design, navigation, drug delivery, and applications of nanorobots. Architectural intricacies, sensor integration, and navigation strategies, both active and passive, are discussed. Nanorobots are poised to play a pivotal role in controlled drug delivery and personalized medicine, including disease-specific targeting. Their applications span across various domains, including cancer therapy, neurological interventions, and emerging fields. Despite the promises, challenges such as technological hurdles, regulatory considerations, and safety concerns are also acknowledged. The review anticipates a transformative impact on healthcare, offering a comprehensive guide for researchers, clinicians, and policymakers navigating the evolving landscape of nanorobotics.
{"title":"A Significant Prospective on Nanorobotics in Precision Medicine and Therapeutic Interventions.","authors":"Sakshi Soni, Arpana Purohit, Priyanshu Nema, Rashmi Rawal, Ajay Kumar, Vandana Soni, Sushil K Kashaw","doi":"10.2174/0122117385310095240913102242","DOIUrl":"10.2174/0122117385310095240913102242","url":null,"abstract":"<p><p>Nanorobotics, situated at the intersection of nanotechnology and robotics, holds the potential for revolutionary impact on precision medicine and medical interventions. This review explores the design, navigation, drug delivery, and applications of nanorobots. Architectural intricacies, sensor integration, and navigation strategies, both active and passive, are discussed. Nanorobots are poised to play a pivotal role in controlled drug delivery and personalized medicine, including disease-specific targeting. Their applications span across various domains, including cancer therapy, neurological interventions, and emerging fields. Despite the promises, challenges such as technological hurdles, regulatory considerations, and safety concerns are also acknowledged. The review anticipates a transformative impact on healthcare, offering a comprehensive guide for researchers, clinicians, and policymakers navigating the evolving landscape of nanorobotics.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"896-915"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.
{"title":"Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery.","authors":"Chintan Aundhia, Ghanshyam Parmar, Chitrali Talele, Dipali Talele, Avinsh Kumar Seth","doi":"10.2174/0122117385271651231228073850","DOIUrl":"10.2174/0122117385271651231228073850","url":null,"abstract":"<p><p>Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"41-54"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The assessment of the hard and soft tissue conditions is part of the overall dental treatments.
Aims: In this study, we investigated nano curcumin-containing membranes to improve the quality of the hard and soft tissues in the extracted tooth area as a clinical trial study.
Methods: After the patient was selected following the inclusion and exclusion criteria, the patients who had teeth extracted from both sides of the mouth (split mouth) on the side of the intervention received a membrane containing nanocurcumin, and on the control side, no material was placed in the socket. For data analysis, SPSS software version 24 was used. A significance threshold was deemed to be less than 0.05 in terms of probability.
Results: Two months after tooth extraction, during implant placement, the average gingival thickness on the "intervention side," was 3.1±0.34 mm, while the average gingival thickness on the "control side" was 2.6±0.42 mm. Then, the membrane could improve the quality of soft tissue (P< 0.0001). As another outcome, the application of this membrane did not significantly affect bone repair in these patients compared to the control group (P = 0.72). However, the histology data revealed that the newly generated bone of the intervention group was seen close to the membrane, demonstrating the osteoconductive ability of the membrane.
Conclusion: Based on the obtained results, the newly developed membrane can be used to improve the quality of hard and soft tissues in the extracted tooth area. Nonetheless , more efforts in nanocurcumin dosage adjustment are needed for hard tissue regeneration in future studies.
{"title":"Nanocurcumin-containing Spongy Membrane for Improving the Quality of Hard and Soft Tissues in the Extracted Tooth Area: A Double-Blind Split-Mouth Clinical Trial Study.","authors":"Sina Hessari, Farzin Ahmadpour, Javad Yazdani, Yasmin Golparvar Atashi, Solmaz Maleki Dizaj, Simin Sharifi","doi":"10.2174/0122117385311052240820114853","DOIUrl":"10.2174/0122117385311052240820114853","url":null,"abstract":"<p><strong>Background: </strong>The assessment of the hard and soft tissue conditions is part of the overall dental treatments.</p><p><strong>Aims: </strong>In this study, we investigated nano curcumin-containing membranes to improve the quality of the hard and soft tissues in the extracted tooth area as a clinical trial study.</p><p><strong>Methods: </strong>After the patient was selected following the inclusion and exclusion criteria, the patients who had teeth extracted from both sides of the mouth (split mouth) on the side of the intervention received a membrane containing nanocurcumin, and on the control side, no material was placed in the socket. For data analysis, SPSS software version 24 was used. A significance threshold was deemed to be less than 0.05 in terms of probability.</p><p><strong>Results: </strong>Two months after tooth extraction, during implant placement, the average gingival thickness on the \"intervention side,\" was 3.1±0.34 mm, while the average gingival thickness on the \"control side\" was 2.6±0.42 mm. Then, the membrane could improve the quality of soft tissue (P< 0.0001). As another outcome, the application of this membrane did not significantly affect bone repair in these patients compared to the control group (P = 0.72). However, the histology data revealed that the newly generated bone of the intervention group was seen close to the membrane, demonstrating the osteoconductive ability of the membrane.</p><p><strong>Conclusion: </strong>Based on the obtained results, the newly developed membrane can be used to improve the quality of hard and soft tissues in the extracted tooth area. Nonetheless , more efforts in nanocurcumin dosage adjustment are needed for hard tissue regeneration in future studies.</p><p><strong>Clinical trial registration no: </strong>IRCT20200919048756N5.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"959-964"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0122117385332757241104104727
Sampath Kumar, Mothilal Mohan
Background: The necessity for extended drug discharge to alleviate pain without adverse effects underscores the importance of innovative drug delivery systems. Achieving sustained pain relief without compromising patient safety is a critical objective in healthcare. By extending the duration of drug action while suppressing side effects, such systems offer enhanced therapeutic outcomes and improved patient quality of life.
Objective: This study endeavors to develop and appraise an innovative implantable drug delivery system by integrating NSAID-loaded gelatin microcapsules into a gelatin scaffold designed to augment drug delivery efficiency and sustain drug release.
Methods: Piroxicam-loaded microcapsules with a 1:1 ratio of poly lactic acid and poly lacto glycolic acid showed smaller particle size, good yield, entrapment efficiency, and discharge. They were selected to make gelatin scaffolds with Box Behnken Design using Design Expert software for optimization. The better scaffolds were made in the form of rod-shaped sub-dermal implants. The primary focus of the investigation was the evaluation of critical parameters, specifically entrapment efficiency and drug discharge properties as dependent variables.
Results: Microcapsules with a 1:1 ratio of PLA and PLGA showed smaller particle sizes, good yield, entrapment efficiency, and discharge. Notably, the Design Expert-driven optimization yields highly favorable results. Furthermore, the scaffolds loaded with microcapsules exhibited favorable physicochemical assets, including drug discharge, for an extended period, underscoring their versatility for drug delivery.
Conclusion: By employing Design Expert software for optimization, the study demonstrates promising results, particularly in sustained pain management for arthritis, potentially improving therapeutic outcomes and patient quality of life. The study concludes that the prepared implants (holding scaffolds impregnated with piroxicam-loaded microcapsules) can be promising for relieving arthritis all day.
{"title":"Empowering Arthritis Patients: Optimized Drug Delivery through Piroxicam Microcapsule-Embedded Scaffold Implants via Box-Behnken Experimental Design.","authors":"Sampath Kumar, Mothilal Mohan","doi":"10.2174/0122117385332757241104104727","DOIUrl":"10.2174/0122117385332757241104104727","url":null,"abstract":"<p><strong>Background: </strong>The necessity for extended drug discharge to alleviate pain without adverse effects underscores the importance of innovative drug delivery systems. Achieving sustained pain relief without compromising patient safety is a critical objective in healthcare. By extending the duration of drug action while suppressing side effects, such systems offer enhanced therapeutic outcomes and improved patient quality of life.</p><p><strong>Objective: </strong>This study endeavors to develop and appraise an innovative implantable drug delivery system by integrating NSAID-loaded gelatin microcapsules into a gelatin scaffold designed to augment drug delivery efficiency and sustain drug release.</p><p><strong>Methods: </strong>Piroxicam-loaded microcapsules with a 1:1 ratio of poly lactic acid and poly lacto glycolic acid showed smaller particle size, good yield, entrapment efficiency, and discharge. They were selected to make gelatin scaffolds with Box Behnken Design using Design Expert software for optimization. The better scaffolds were made in the form of rod-shaped sub-dermal implants. The primary focus of the investigation was the evaluation of critical parameters, specifically entrapment efficiency and drug discharge properties as dependent variables.</p><p><strong>Results: </strong>Microcapsules with a 1:1 ratio of PLA and PLGA showed smaller particle sizes, good yield, entrapment efficiency, and discharge. Notably, the Design Expert-driven optimization yields highly favorable results. Furthermore, the scaffolds loaded with microcapsules exhibited favorable physicochemical assets, including drug discharge, for an extended period, underscoring their versatility for drug delivery.</p><p><strong>Conclusion: </strong>By employing Design Expert software for optimization, the study demonstrates promising results, particularly in sustained pain management for arthritis, potentially improving therapeutic outcomes and patient quality of life. The study concludes that the prepared implants (holding scaffolds impregnated with piroxicam-loaded microcapsules) can be promising for relieving arthritis all day.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"999-1016"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0122117385269522231113041029
Mekha Mathew, Anasuya Patil, Hemanth G
Background: Rheumatoid arthritis is indeed a constant, progressive autoimmune disease that acts on the synovial membrane, distinguished by joint pain, swelling, and tenderness. Sulfasalazine belongs to BCS Class IV having low solubility and low permeability. To overcome the issue and provide a localized effect Cubosomes were chosen for the transdermal drug delivery system.
Objectives: The primary objective of this investigation was to pass on sulfasalazine-loaded cubosomes over the skin to treat rheumatoid arthritis. On the way to overcome this issue of oral sulfasalazine and provide localized effect, Cubosomes were chosen for the transdermal drug delivery system.
Methods: Sulfasalazine-loaded cubosomes were prepared by the top-down method using GMO and Poloxamer 407. Different concentrations of lipid and surfactant were used in the formulation using 32 full factorial designs. The prepared formulations were assessed for p.s, z,p, %EE, FTIR, SEM, in-vitro release, ex-vivo permeation, and deposition studies with pH 7.4 phosphate buffer saline.
Results: The particle size varies between 65 nm to 129 nm, while the negative zeta potential ranged from - 18.8 mV to -24.8 mV. The entrapment efficiency was between 87% and 95%. The formulations' in-vitro drug release was carried out for 12 hours. The optimized formulation showed a controlled release of sulfasalazine and better ex-vivo permeation and deposition properties than sulfasalazine suspension.
Conclusion: Overall study findings support the possibility of applying transdermal sulfasalazineloaded cubosomes to alleviate rheumatoid arthritis.
{"title":"Development and Characterization of Sulfasalazine Cubosomes for Potential Transdermal Drug Delivery.","authors":"Mekha Mathew, Anasuya Patil, Hemanth G","doi":"10.2174/0122117385269522231113041029","DOIUrl":"10.2174/0122117385269522231113041029","url":null,"abstract":"<p><strong>Background: </strong>Rheumatoid arthritis is indeed a constant, progressive autoimmune disease that acts on the synovial membrane, distinguished by joint pain, swelling, and tenderness. Sulfasalazine belongs to BCS Class IV having low solubility and low permeability. To overcome the issue and provide a localized effect Cubosomes were chosen for the transdermal drug delivery system.</p><p><strong>Objectives: </strong>The primary objective of this investigation was to pass on sulfasalazine-loaded cubosomes over the skin to treat rheumatoid arthritis. On the way to overcome this issue of oral sulfasalazine and provide localized effect, Cubosomes were chosen for the transdermal drug delivery system.</p><p><strong>Methods: </strong>Sulfasalazine-loaded cubosomes were prepared by the top-down method using GMO and Poloxamer 407. Different concentrations of lipid and surfactant were used in the formulation using 3<sup>2</sup> full factorial designs. The prepared formulations were assessed for p.s, z,p, %EE, FTIR, SEM, <i>in-vitro</i> release, <i>ex-vivo</i> permeation, and deposition studies with pH 7.4 phosphate buffer saline.</p><p><strong>Results: </strong>The particle size varies between 65 nm to 129 nm, while the negative zeta potential ranged from - 18.8 mV to -24.8 mV. The entrapment efficiency was between 87% and 95%. The formulations' in-vitro drug release was carried out for 12 hours. The optimized formulation showed a controlled release of sulfasalazine and better ex-vivo permeation and deposition properties than sulfasalazine suspension.</p><p><strong>Conclusion: </strong>Overall study findings support the possibility of applying transdermal sulfasalazineloaded cubosomes to alleviate rheumatoid arthritis.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"320-327"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0122117385277725231120043600
Mukesh P Ratnaparkhi, Shailendra S Salvankar, Avinash R Tekade, Gajanan M Kulkarni
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
{"title":"Core-Shell Nanoparticles for Pulmonary Drug Delivery.","authors":"Mukesh P Ratnaparkhi, Shailendra S Salvankar, Avinash R Tekade, Gajanan M Kulkarni","doi":"10.2174/0122117385277725231120043600","DOIUrl":"10.2174/0122117385277725231120043600","url":null,"abstract":"<p><p>Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"90-116"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.
{"title":"Solid Lipid Nanoparticles as an Innovative Lipidic Drug Delivery System.","authors":"Suchita Waghmare, Rohini Palekar, Lata Potey, Pramod Khedekar, Prafulla Sabale, Vidya Sabale","doi":"10.2174/0122117385271393231117063750","DOIUrl":"10.2174/0122117385271393231117063750","url":null,"abstract":"<p><p>In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"22-40"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0122117385300471240408063205
Sonia Singh, Vandana Chauhan, Piyali Barik
Cancer is a prevalent and potentially fatal disease worldwide. The proliferation of abnormal cells and uncontrolled cellular growth characterizes cancer. Cancerous tumors exhibit distinct microenvironments characterized by a deficient lymphatic drainage system and aberrant blood supply. Various medications and diagnostic systems exist for cancer treatment, but they all have inherent limitations and undesirable consequences. Consequently, the achievement of effective cancer detection and treatment remains challenging. Theranostics nanoparticles are becoming increasingly popular in nano drug delivery systems. These nanoparticles can diagnose and treat tumors, making them a promising approach in the field. They are designed to be small in size, allowing them to be effective in delivering drugs to targeted areas. Furthermore, these nanoparticles can fundamentally transform the identification and management of several ailments, including cardiovascular disorders and infectious diseases. Such nanoparticles possess dual capabilities, functioning as therapeutic agents and diagnostic tools. They can transport medicinal substances, such as medications, nucleic acids, or therapeutic proteins, and include substances that can be used for imaging, such as contrast agents or fluorescent dyes, to enable non-invasive diagnostics and monitoring of the effectiveness of the treatment. These techniques can be employed for diagnostic purposes to identify, locate, and determine the extent of disorders using imaging modalities such as magnetic resonance imaging, computed tomography, positron emission tomography, and fluorescence imaging. These nanoparticles can deliver therapeutic compounds to specific locations accurately during therapy. This leads to improved effectiveness of the treatment, decreased adverse effects, and better patient outcomes. They offer a potential nanomedicine approach by providing diagnostic and therapeutic capabilities for disease diagnosis and treatment. Theranostics nanoparticles have distinct characteristics and adaptability, which can transform the healthcare sector by facilitating personalized and precise medical treatments.
{"title":"Nano-based Theranostics Approach in the Management of Cancer: Review.","authors":"Sonia Singh, Vandana Chauhan, Piyali Barik","doi":"10.2174/0122117385300471240408063205","DOIUrl":"10.2174/0122117385300471240408063205","url":null,"abstract":"<p><p>Cancer is a prevalent and potentially fatal disease worldwide. The proliferation of abnormal cells and uncontrolled cellular growth characterizes cancer. Cancerous tumors exhibit distinct microenvironments characterized by a deficient lymphatic drainage system and aberrant blood supply. Various medications and diagnostic systems exist for cancer treatment, but they all have inherent limitations and undesirable consequences. Consequently, the achievement of effective cancer detection and treatment remains challenging. Theranostics nanoparticles are becoming increasingly popular in nano drug delivery systems. These nanoparticles can diagnose and treat tumors, making them a promising approach in the field. They are designed to be small in size, allowing them to be effective in delivering drugs to targeted areas. Furthermore, these nanoparticles can fundamentally transform the identification and management of several ailments, including cardiovascular disorders and infectious diseases. Such nanoparticles possess dual capabilities, functioning as therapeutic agents and diagnostic tools. They can transport medicinal substances, such as medications, nucleic acids, or therapeutic proteins, and include substances that can be used for imaging, such as contrast agents or fluorescent dyes, to enable non-invasive diagnostics and monitoring of the effectiveness of the treatment. These techniques can be employed for diagnostic purposes to identify, locate, and determine the extent of disorders using imaging modalities such as magnetic resonance imaging, computed tomography, positron emission tomography, and fluorescence imaging. These nanoparticles can deliver therapeutic compounds to specific locations accurately during therapy. This leads to improved effectiveness of the treatment, decreased adverse effects, and better patient outcomes. They offer a potential nanomedicine approach by providing diagnostic and therapeutic capabilities for disease diagnosis and treatment. Theranostics nanoparticles have distinct characteristics and adaptability, which can transform the healthcare sector by facilitating personalized and precise medical treatments.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":"633-647"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}