Pub Date : 2025-03-01Epub Date: 2024-12-24DOI: 10.1016/j.pharmr.2024.100032
Patricio Artusa, John H White
Vitamin D was discovered as the cure for nutritional rickets, a disease of bone growth arising from inadequate intestinal calcium absorption, and for much of the 20th century, it was studied for its critical role in calcium homeostasis. However, we now recognize that the vitamin D receptor and vitamin D metabolic enzymes are expressed in numerous tissues unrelated to calcium homeostasis. Notably, vitamin D signaling can induce cellular differentiation and cell cycle arrest. Moreover, the vitamin D receptor and the enzyme CYP27B1, which produces the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), are expressed throughout the immune system. In addition, CYP27B1 expression in immune cells is regulated by physiological inputs independent of those controlling its expression in calcium homeostatic tissues. These observations have driven the development of 1,25D-like secosteroidal analogs and nonsecosteroidal analogs to separate the effects of vitamin D on cell differentiation and function from its calcemic activities. Notably, some of these analogs have had considerable success in the clinic in the treatment of inflammatory and immune-related disorders. In this review, we described in detail the mechanisms of vitamin D signaling and the physiological signals controlling 1,25D synthesis and catabolism, with a focus on the immune system. We also surveyed the effects of 1,25D and its analogs on the regulation of immune system function and their implications for human immune-related disorders. Finally, we described the potential of vitamin D analogs as anticancer therapeutics, in particular, their use as adjuncts to cancer immunotherapy. SIGNIFICANCE STATEMENT: Vitamin D signaling is active in both the innate and adaptive arms of the immune system. Numerous vitamin D analogs, developed primarily to minimize the dose-limiting hypercalcemia of the active form of vitamin D, have been used widely in preclinical and clinical studies of immune system regulation. This review presents a description of the mechanisms of action of vitamin D signaling, an overview of analog development, and an in-depth discussion of the immunoregulatory roles of vitamin D analogs.
{"title":"Vitamin D and its analogs in immune system regulation.","authors":"Patricio Artusa, John H White","doi":"10.1016/j.pharmr.2024.100032","DOIUrl":"10.1016/j.pharmr.2024.100032","url":null,"abstract":"<p><p>Vitamin D was discovered as the cure for nutritional rickets, a disease of bone growth arising from inadequate intestinal calcium absorption, and for much of the 20th century, it was studied for its critical role in calcium homeostasis. However, we now recognize that the vitamin D receptor and vitamin D metabolic enzymes are expressed in numerous tissues unrelated to calcium homeostasis. Notably, vitamin D signaling can induce cellular differentiation and cell cycle arrest. Moreover, the vitamin D receptor and the enzyme CYP27B1, which produces the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), are expressed throughout the immune system. In addition, CYP27B1 expression in immune cells is regulated by physiological inputs independent of those controlling its expression in calcium homeostatic tissues. These observations have driven the development of 1,25D-like secosteroidal analogs and nonsecosteroidal analogs to separate the effects of vitamin D on cell differentiation and function from its calcemic activities. Notably, some of these analogs have had considerable success in the clinic in the treatment of inflammatory and immune-related disorders. In this review, we described in detail the mechanisms of vitamin D signaling and the physiological signals controlling 1,25D synthesis and catabolism, with a focus on the immune system. We also surveyed the effects of 1,25D and its analogs on the regulation of immune system function and their implications for human immune-related disorders. Finally, we described the potential of vitamin D analogs as anticancer therapeutics, in particular, their use as adjuncts to cancer immunotherapy. SIGNIFICANCE STATEMENT: Vitamin D signaling is active in both the innate and adaptive arms of the immune system. Numerous vitamin D analogs, developed primarily to minimize the dose-limiting hypercalcemia of the active form of vitamin D, have been used widely in preclinical and clinical studies of immune system regulation. This review presents a description of the mechanisms of action of vitamin D signaling, an overview of analog development, and an in-depth discussion of the immunoregulatory roles of vitamin D analogs.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100032"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-31DOI: 10.1016/j.pharmr.2024.100021
Ali H Eid
{"title":"Beyond the stomach stall: Current and emerging pharmacotherapeutics for gastroparesis.","authors":"Ali H Eid","doi":"10.1016/j.pharmr.2024.100021","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100021","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100021"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-24DOI: 10.1016/j.pharmr.2024.100033
Elisa Avolio, Barbara Bassani, Marzia Campanile, Khaled Ak Mohammed, Paola Muti, Antonino Bruno, Gaia Spinetti, Paolo Madeddu
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
{"title":"Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing?","authors":"Elisa Avolio, Barbara Bassani, Marzia Campanile, Khaled Ak Mohammed, Paola Muti, Antonino Bruno, Gaia Spinetti, Paolo Madeddu","doi":"10.1016/j.pharmr.2024.100033","DOIUrl":"10.1016/j.pharmr.2024.100033","url":null,"abstract":"<p><p>Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 2","pages":"100033"},"PeriodicalIF":19.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143731119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-27DOI: 10.1016/j.pharmr.2024.100007
Ali H Eid
{"title":"Carbonic anhydrase inhibitors: \"Old\" drugs with new potential in unexpected areas.","authors":"Ali H Eid","doi":"10.1016/j.pharmr.2024.100007","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100007","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100007"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The oceans are a rich source of a myriad of structurally different and unique natural products that are mainly found in invertebrates, with potential applications in different disciplines. Microbial infection and cancer are the leading causes of death worldwide. The discovery of new sources of therapy for microbial infections is an urgent requirement owing to the emergence of pathogenic microorganisms that are resistant to existing therapies. Marine bioactives have been demonstrated to be promising sources for the discovery and development of novel antimicrobial and anticancer compounds. Several marine compounds are confirmed to have antibacterial effects, and most marine-based antifungal compounds are cytotoxic. Numerous antitumor marine natural products, derived mainly from not only sponges or molluscs but also bryozoans and cyanobacteria, exhibit potent antimitotic activity. In addition, marine biodiversity offers some possible leads or new drugs to treat human immunodeficiency virus. A majority of marine-derived drugs are currently in clinical trials or under preclinical evaluation. Furthermore, marine-based drugs approved by the US Food and Drug Administration are available in the market. This review summarizes the sources, mechanisms of action, and potential utilization of marine natural products such as peptides, alkaloids, polyketides, polyphenols, terpenoids, and sterols as antifungal, antibacterial, antiviral, and anticancer compounds. SIGNIFICANCE STATEMENT: Utilization of natural bioactive compounds from marine resources is a crucial advancement in the field of health care and wellness. A valuable source of potent compounds with therapeutic potential exists in marine organisms. These bioactives offer promising medicinal value for disease prevention, promoting overall wellbeing, and advancing pharmaceutical and nutraceutical industries. Their sustainable extraction and utilization not only benefit human health but also contribute to the conservation of marine ecosystems. This transformative approach enhances global health outcomes and sustainability.
{"title":"Bioactives from marine resources as natural health products: A review.","authors":"Sarusha Santhiravel, Deepika Dave, Fereidoon Shahidi","doi":"10.1124/pharmrev.123.001227","DOIUrl":"10.1124/pharmrev.123.001227","url":null,"abstract":"<p><p>The oceans are a rich source of a myriad of structurally different and unique natural products that are mainly found in invertebrates, with potential applications in different disciplines. Microbial infection and cancer are the leading causes of death worldwide. The discovery of new sources of therapy for microbial infections is an urgent requirement owing to the emergence of pathogenic microorganisms that are resistant to existing therapies. Marine bioactives have been demonstrated to be promising sources for the discovery and development of novel antimicrobial and anticancer compounds. Several marine compounds are confirmed to have antibacterial effects, and most marine-based antifungal compounds are cytotoxic. Numerous antitumor marine natural products, derived mainly from not only sponges or molluscs but also bryozoans and cyanobacteria, exhibit potent antimitotic activity. In addition, marine biodiversity offers some possible leads or new drugs to treat human immunodeficiency virus. A majority of marine-derived drugs are currently in clinical trials or under preclinical evaluation. Furthermore, marine-based drugs approved by the US Food and Drug Administration are available in the market. This review summarizes the sources, mechanisms of action, and potential utilization of marine natural products such as peptides, alkaloids, polyketides, polyphenols, terpenoids, and sterols as antifungal, antibacterial, antiviral, and anticancer compounds. SIGNIFICANCE STATEMENT: Utilization of natural bioactive compounds from marine resources is a crucial advancement in the field of health care and wellness. A valuable source of potent compounds with therapeutic potential exists in marine organisms. These bioactives offer promising medicinal value for disease prevention, promoting overall wellbeing, and advancing pharmaceutical and nutraceutical industries. Their sustainable extraction and utilization not only benefit human health but also contribute to the conservation of marine ecosystems. This transformative approach enhances global health outcomes and sustainability.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100006"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-27DOI: 10.1016/j.pharmr.2024.100009
Maha Khachab, Amirhossein Sahebkar, Ali H Eid
{"title":"Drugs from the ocean floor.","authors":"Maha Khachab, Amirhossein Sahebkar, Ali H Eid","doi":"10.1016/j.pharmr.2024.100009","DOIUrl":"https://doi.org/10.1016/j.pharmr.2024.100009","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100009"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-27DOI: 10.1016/j.pharmr.2024.100008
Amirhossein Sahebkar, Ali H Eid
{"title":"Toward a paradigm shift: Oral agents and injectable drugs in the future of obesity management.","authors":"Amirhossein Sahebkar, Ali H Eid","doi":"10.1016/j.pharmr.2024.100008","DOIUrl":"10.1016/j.pharmr.2024.100008","url":null,"abstract":"","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100008"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-22DOI: 10.1124/pharmrev.123.001140
Maik Behrens
For most vertebrates, bitter perception plays a critical role in the detection of potentially harmful substances in food items. The detection of bitter compounds is facilitated by specialized receptors located in the taste buds of the oral cavity. This work focuses on these receptors, including their sensitivities, structure-function relationships, agonists, and antagonists. The existence of numerous bitter taste receptor variants in the human population and the fact that several of them profoundly affect individual perceptions of bitter tastes are discussed as well. Moreover, the identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues are described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with bitter taste of other animals to understand which forces might have shaped the evolution of bitter taste receptors and their functions and to distinguish apparently typical human features from rather general ones. For readers who are not very familiar with the gustatory system, short descriptions of taste anatomy, signal transduction, and oral bitter taste receptor expression are included in the beginning of this article. SIGNIFICANCE STATEMENT: Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have recently received much attention. For careful assessment of their functions inside and outside the taste system, a solid knowledge of the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.
{"title":"International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 receptors-Structures, functions, activators, and blockers.","authors":"Maik Behrens","doi":"10.1124/pharmrev.123.001140","DOIUrl":"10.1124/pharmrev.123.001140","url":null,"abstract":"<p><p>For most vertebrates, bitter perception plays a critical role in the detection of potentially harmful substances in food items. The detection of bitter compounds is facilitated by specialized receptors located in the taste buds of the oral cavity. This work focuses on these receptors, including their sensitivities, structure-function relationships, agonists, and antagonists. The existence of numerous bitter taste receptor variants in the human population and the fact that several of them profoundly affect individual perceptions of bitter tastes are discussed as well. Moreover, the identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues are described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with bitter taste of other animals to understand which forces might have shaped the evolution of bitter taste receptors and their functions and to distinguish apparently typical human features from rather general ones. For readers who are not very familiar with the gustatory system, short descriptions of taste anatomy, signal transduction, and oral bitter taste receptor expression are included in the beginning of this article. SIGNIFICANCE STATEMENT: Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have recently received much attention. For careful assessment of their functions inside and outside the taste system, a solid knowledge of the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 1","pages":"100001"},"PeriodicalIF":19.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1124/pharmrev.124.001433
Eddie Weitzberg, Magnus Ingelman-Sundberg, Jon O. Lundberg, Göran Engberg, Gunnar Schulte, Volker M. Lauschke, Lynette Daws
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come.
{"title":"The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet—Examples of Recent Accomplishments and Future Perspectives","authors":"Eddie Weitzberg, Magnus Ingelman-Sundberg, Jon O. Lundberg, Göran Engberg, Gunnar Schulte, Volker M. Lauschke, Lynette Daws","doi":"10.1124/pharmrev.124.001433","DOIUrl":"https://doi.org/10.1124/pharmrev.124.001433","url":null,"abstract":"Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come.","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"60 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1124/pharmrev.124.001245
Essam Eldin A. Osman, Nouri Neamati, Des Richardson
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144’s iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts.
{"title":"Ironing Out the Mechanism of gp130 Signaling","authors":"Essam Eldin A. Osman, Nouri Neamati, Des Richardson","doi":"10.1124/pharmrev.124.001245","DOIUrl":"https://doi.org/10.1124/pharmrev.124.001245","url":null,"abstract":"gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144’s iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts.","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"22 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}