Serra Örsten, Cem Şahin, Engin Yılmaz, Yakut Akyön
Entamoeba gingivalis is a parasitic protozoan that colonizes the human oral cavity and there are two subtypes (ST1 and ST2) that have been identified to date. However, there are no reports on the molecular detection or characterization of E. gingivalis in Turkey. The objective of this study was to detect the presence of E. gingivalis in Turkish healthy individuals and those with periodontal disease and to subtype the isolates using molecular techniques. Samples from the oral cavity of 94 individuals were taken and the presence of E. gingivalis was determined by PCR using primers for SsrRNA and the amplicons were then confirmed by DNA sequencing. Each participant completed a questionnaire that included demographic data, habits and lifestyle, as well as health status. The presence of E. gingivalis was detected in a total of 19 samples (11 patients and eight healthy individuals). Molecular characterization determined that 12 samples belonged to ST1 and seven samples belonged to ST2. The presence of E. gingivalis was higher in patients with periodontal disease than in healthy individuals, and this association was statistically significant (P < .05). This study constitutes the first report of molecular detection and subtyping of E. gingivalis in Turkey.
{"title":"First molecular detection of Entamoeba gingivalis subtypes in individuals from Turkey.","authors":"Serra Örsten, Cem Şahin, Engin Yılmaz, Yakut Akyön","doi":"10.1093/femspd/ftad017","DOIUrl":"10.1093/femspd/ftad017","url":null,"abstract":"<p><p>Entamoeba gingivalis is a parasitic protozoan that colonizes the human oral cavity and there are two subtypes (ST1 and ST2) that have been identified to date. However, there are no reports on the molecular detection or characterization of E. gingivalis in Turkey. The objective of this study was to detect the presence of E. gingivalis in Turkish healthy individuals and those with periodontal disease and to subtype the isolates using molecular techniques. Samples from the oral cavity of 94 individuals were taken and the presence of E. gingivalis was determined by PCR using primers for SsrRNA and the amplicons were then confirmed by DNA sequencing. Each participant completed a questionnaire that included demographic data, habits and lifestyle, as well as health status. The presence of E. gingivalis was detected in a total of 19 samples (11 patients and eight healthy individuals). Molecular characterization determined that 12 samples belonged to ST1 and seven samples belonged to ST2. The presence of E. gingivalis was higher in patients with periodontal disease than in healthy individuals, and this association was statistically significant (P < .05). This study constitutes the first report of molecular detection and subtyping of E. gingivalis in Turkey.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"81 ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10275595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Infection of macrophages with Mycobacterium tuberculosis induces innate immune responses designed to clear the invading bacterium. However, bacteria often survive within the intracellular environment by exploiting these responses triggered by macrophages. Here, the role of the orphan nuclear receptor Nur77 (Nr4a1) in regulating the response of macrophages infected with M. tuberculosis (Mtb) has been delineated. Nur77 is induced early during infection, regulates metabolism by binding directly at the promoter of the TCA cycle enzyme, isocitrate dehydrogenase 2 (IDH2), to act as its repressor, and shifts the balance from a proinflammatory to an anti-inflammatory phenotype. Depletion of Nur77 increased transcription of IDH2 and, consequently, the levels of intracellular succinate, leading to enhanced levels of the proinflammatory cytokine IL-1β. Further, Nur77 inhibited the production of antibacterial nitric oxide and IL-1β in a succinate dehydrogenase (SDH)-dependent manner, suggesting that its induction favors bacterial survival by suppressing bactericidal responses. Indeed, depletion of Nur77 inhibited the intracellular survival of Mtb. On the other hand, depletion of Nur77 enhanced lipid body formation, suggesting that the fall in Nur77 levels as infection progresses likely favors foamy macrophage formation and long-term survival of Mtb in the host milieu.
{"title":"Nur77 influences immunometabolism to regulate the release of proinflammatory cytokines and the formation of lipid bodies during Mycobacterium tuberculosis infection of macrophages.","authors":"Pankaj Birari, Soumya Mal, Debayan Majumder, Arun K Sharma, Manish Kumar, Troyee Das, Zhumur Ghosh, Kuladip Jana, Umesh D Gupta, Manikuntala Kundu, Joyoti Basu","doi":"10.1093/femspd/ftad033","DOIUrl":"10.1093/femspd/ftad033","url":null,"abstract":"<p><p>Infection of macrophages with Mycobacterium tuberculosis induces innate immune responses designed to clear the invading bacterium. However, bacteria often survive within the intracellular environment by exploiting these responses triggered by macrophages. Here, the role of the orphan nuclear receptor Nur77 (Nr4a1) in regulating the response of macrophages infected with M. tuberculosis (Mtb) has been delineated. Nur77 is induced early during infection, regulates metabolism by binding directly at the promoter of the TCA cycle enzyme, isocitrate dehydrogenase 2 (IDH2), to act as its repressor, and shifts the balance from a proinflammatory to an anti-inflammatory phenotype. Depletion of Nur77 increased transcription of IDH2 and, consequently, the levels of intracellular succinate, leading to enhanced levels of the proinflammatory cytokine IL-1β. Further, Nur77 inhibited the production of antibacterial nitric oxide and IL-1β in a succinate dehydrogenase (SDH)-dependent manner, suggesting that its induction favors bacterial survival by suppressing bactericidal responses. Indeed, depletion of Nur77 inhibited the intracellular survival of Mtb. On the other hand, depletion of Nur77 enhanced lipid body formation, suggesting that the fall in Nur77 levels as infection progresses likely favors foamy macrophage formation and long-term survival of Mtb in the host milieu.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The obligate intracellular bacterial pathogen Chlamydia trachomatis is a leading cause of sexually transmitted infections and infectious blindness. Chlamydia undergo a biphasic developmental cycle alternating between the infectious elementary body (EB) and the replicative reticulate body (RB). The molecular mechanisms governing RB growth and RB-EB differentiation are unclear. We hypothesize that the bacterium senses host cell and bacterial energy levels and metabolites to ensure that development and growth coincide with nutrient availability. We predict that a partner switching mechanism (PSM) plays a key role in the sensing and response process acting as a molecular throttle sensitive to metabolite levels. Using purified wild type and mutant PSM proteins, we discovered that metal type impacts enzyme activity and the substrate specificity of RsbU and that RsbW prefers ATP over GTP as a phosphate donor. Immunoblotting analysis of RsbV1/V2 demonstrated the presence of both proteins beyond 20 hours post infection and we observed that an RsbV1-null strain has a developmental delay and exhibits differential growth attenuation in response to glucose levels. Collectively, our data support that the PSM regulates growth in response to metabolites and further defines biochemical features governing PSM-component interactions which could help in the development of novel PSM-targeted therapeutics.
{"title":"Impact of nutrients on the function of the chlamydial Rsb partner switching mechanism.","authors":"Shiomi Kuwabara, Evan R Landers, Derek J Fisher","doi":"10.1093/femspd/ftac044","DOIUrl":"https://doi.org/10.1093/femspd/ftac044","url":null,"abstract":"<p><p>The obligate intracellular bacterial pathogen Chlamydia trachomatis is a leading cause of sexually transmitted infections and infectious blindness. Chlamydia undergo a biphasic developmental cycle alternating between the infectious elementary body (EB) and the replicative reticulate body (RB). The molecular mechanisms governing RB growth and RB-EB differentiation are unclear. We hypothesize that the bacterium senses host cell and bacterial energy levels and metabolites to ensure that development and growth coincide with nutrient availability. We predict that a partner switching mechanism (PSM) plays a key role in the sensing and response process acting as a molecular throttle sensitive to metabolite levels. Using purified wild type and mutant PSM proteins, we discovered that metal type impacts enzyme activity and the substrate specificity of RsbU and that RsbW prefers ATP over GTP as a phosphate donor. Immunoblotting analysis of RsbV1/V2 demonstrated the presence of both proteins beyond 20 hours post infection and we observed that an RsbV1-null strain has a developmental delay and exhibits differential growth attenuation in response to glucose levels. Collectively, our data support that the PSM regulates growth in response to metabolites and further defines biochemical features governing PSM-component interactions which could help in the development of novel PSM-targeted therapeutics.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10343554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabrielle Gimenes Lima, Amanda Izeli Portilho, Elizabeth De Gaspari
Adjuvants are important components of vaccines, increasing immunogenicity and modulating the immune response. SARS-CoV-2 vaccines are still being developed in order to improve worldwide access to immunization. Specific populations should be addressed in these investigations, such as pregnant women-to protect both mothers and neonates. In this study, female adult mice were immunized with Receptor-binding domain (RBD) from SARS-CoV-2 adjuvanted by a mixture of DDA and Saponin and put to mating to verify the maternal transference of IgG. For comparison, other group received RBD adjuvanted by OMVs from Neisseria meningitidis and Alum. The adjuvants enhanced IgG production and neutralization. DDA/Sap contributed to increase IgG1, IgG2a, IgG2b, and IgG3 isotypes. Total IgG avidity was considered high, as well as IgG1, IgG2a, and IgG2b avidity. IgG antibodies were effectively transferred to the offspring, predominantly IgG2a, IgG2b, and IgG3. The passive transferred immunoglobulin maintained the neutralizing ability, although it lost avidity. ELISA data was confirmed in Dot-ELISA and immunoblotting assays. DDA and Saponin seem a promising adjuvant mixture to enhance the humoral response of SARS-CoV-2 antigens. Further studies considering the effects of maternal immunization in the protection of offspring are needed, regardless the platform used in COVID-19 vaccines.
{"title":"Adjuvants to increase immunogenicity of SARS-CoV-2 RBD and support maternal-fetal transference of antibodies in mice.","authors":"Gabrielle Gimenes Lima, Amanda Izeli Portilho, Elizabeth De Gaspari","doi":"10.1093/femspd/ftac038","DOIUrl":"https://doi.org/10.1093/femspd/ftac038","url":null,"abstract":"<p><p>Adjuvants are important components of vaccines, increasing immunogenicity and modulating the immune response. SARS-CoV-2 vaccines are still being developed in order to improve worldwide access to immunization. Specific populations should be addressed in these investigations, such as pregnant women-to protect both mothers and neonates. In this study, female adult mice were immunized with Receptor-binding domain (RBD) from SARS-CoV-2 adjuvanted by a mixture of DDA and Saponin and put to mating to verify the maternal transference of IgG. For comparison, other group received RBD adjuvanted by OMVs from Neisseria meningitidis and Alum. The adjuvants enhanced IgG production and neutralization. DDA/Sap contributed to increase IgG1, IgG2a, IgG2b, and IgG3 isotypes. Total IgG avidity was considered high, as well as IgG1, IgG2a, and IgG2b avidity. IgG antibodies were effectively transferred to the offspring, predominantly IgG2a, IgG2b, and IgG3. The passive transferred immunoglobulin maintained the neutralizing ability, although it lost avidity. ELISA data was confirmed in Dot-ELISA and immunoblotting assays. DDA and Saponin seem a promising adjuvant mixture to enhance the humoral response of SARS-CoV-2 antigens. Further studies considering the effects of maternal immunization in the protection of offspring are needed, regardless the platform used in COVID-19 vaccines.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620730/pdf/ftac038.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9254779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vonetta L Edwards, Elias McComb, Jason P Gleghorn, Larry Forney, Patrik M Bavoil, Jacques Ravel
2D cell culture systems have historically provided controlled, reproducible means to analyze host-pathogen interactions observed in the human reproductive tract. Although inexpensive, straightforward, and requiring a very short time commitment, these models recapitulate neither the functionality of multilayered cell types nor the associated microbiome that occurs in a human. Animal models have commonly been used to recreate the complexity of human infections. However, extensive modifications of animal models are required to recreate interactions that resemble those in the human reproductive tract. 3D cell culture models have emerged as alternative means of reproducing vital elements of human infections at a fraction of the cost of animal models and on a scale that allows for replicative experiments. Here, we describe a new 3D model that utilizes transwells with epithelial cells seeded apically and a basolateral extracellular matrix (ECM)-like layer. The model produced tissues with morphologic and physiological resemblance to human cervical and vaginal epithelia, including mucus levels produced by cervical cells. Infection by Chlamydia trachomatis and Neisseria gonorrhoeae was demonstrated, as well as the growth of bacterial species observed in the human vaginal microbiota. This enabled controlled mechanistic analyses of the interactions between host cells, the vaginal microbiota, and STI pathogens. Affordable and semi high-throughput 3D models of the cervicovaginal epithelia that are physiologically relevant by sustaining vaginal bacterial colonization, and facilitate studies of chlamydial and gonococcal infections.
{"title":"Three-dimensional models of the cervicovaginal epithelia to study host-microbiome interactions and sexually transmitted infections.","authors":"Vonetta L Edwards, Elias McComb, Jason P Gleghorn, Larry Forney, Patrik M Bavoil, Jacques Ravel","doi":"10.1093/femspd/ftac026","DOIUrl":"https://doi.org/10.1093/femspd/ftac026","url":null,"abstract":"<p><p>2D cell culture systems have historically provided controlled, reproducible means to analyze host-pathogen interactions observed in the human reproductive tract. Although inexpensive, straightforward, and requiring a very short time commitment, these models recapitulate neither the functionality of multilayered cell types nor the associated microbiome that occurs in a human. Animal models have commonly been used to recreate the complexity of human infections. However, extensive modifications of animal models are required to recreate interactions that resemble those in the human reproductive tract. 3D cell culture models have emerged as alternative means of reproducing vital elements of human infections at a fraction of the cost of animal models and on a scale that allows for replicative experiments. Here, we describe a new 3D model that utilizes transwells with epithelial cells seeded apically and a basolateral extracellular matrix (ECM)-like layer. The model produced tissues with morphologic and physiological resemblance to human cervical and vaginal epithelia, including mucus levels produced by cervical cells. Infection by Chlamydia trachomatis and Neisseria gonorrhoeae was demonstrated, as well as the growth of bacterial species observed in the human vaginal microbiota. This enabled controlled mechanistic analyses of the interactions between host cells, the vaginal microbiota, and STI pathogens. Affordable and semi high-throughput 3D models of the cervicovaginal epithelia that are physiologically relevant by sustaining vaginal bacterial colonization, and facilitate studies of chlamydial and gonococcal infections.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10603496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bartonella quintana is a re-emerging louse-borne pathogen. Horizontal transmission from the body louse vector (Pediculus humanus humanus) to a human host occurs through contact with infectious louse feces containing a high concentration of the bacteria. However, questions have remained about whether vertical transmission from infected vectors to their progeny, which could significantly influence the dynamics of transmission to humans, occurs in body lice. To address this subject, we performed a series of controlled laboratory experiments that examined the presence of B. quintana on the surface of and within eggs produced by female body lice that were provisioned multiple infectious blood meals to recapitulate the natural pathogen acquisition process. Our results demonstrate that B. quintana DNA can be detected from the surface of eggs by qPCR due to vertical transfer of infectious feces to the egg sheath during or after oviposition. However, viable B. quintana could not be cultured from the hemolymph of adult female lice or from within eggs that were surface sterilized, indicating a lack of true transovarial transmission. Based on this evidence, vertical transfer of B. quintana from infected adult lice to their eggs probably has a limited impact on the dynamics of transmission to humans.
{"title":"Examination of vertical transmission of Bartonella quintana in body lice following multiple infectious blood meals.","authors":"Lauren Kress, Rashaun Potts, Jose E Pietri","doi":"10.1093/femspd/ftac028","DOIUrl":"https://doi.org/10.1093/femspd/ftac028","url":null,"abstract":"<p><p>Bartonella quintana is a re-emerging louse-borne pathogen. Horizontal transmission from the body louse vector (Pediculus humanus humanus) to a human host occurs through contact with infectious louse feces containing a high concentration of the bacteria. However, questions have remained about whether vertical transmission from infected vectors to their progeny, which could significantly influence the dynamics of transmission to humans, occurs in body lice. To address this subject, we performed a series of controlled laboratory experiments that examined the presence of B. quintana on the surface of and within eggs produced by female body lice that were provisioned multiple infectious blood meals to recapitulate the natural pathogen acquisition process. Our results demonstrate that B. quintana DNA can be detected from the surface of eggs by qPCR due to vertical transfer of infectious feces to the egg sheath during or after oviposition. However, viable B. quintana could not be cultured from the hemolymph of adult female lice or from within eggs that were surface sterilized, indicating a lack of true transovarial transmission. Based on this evidence, vertical transfer of B. quintana from infected adult lice to their eggs probably has a limited impact on the dynamics of transmission to humans.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384838/pdf/ftac028.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10119636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea G Marshall, Caroline B Palavicino-Maggio, Kit Neikirk, Zer Vue, Heather K Beasley, Edgar Garza-Lopez, Sandra A Murray, Denise Martinez, Amber Crabtree, Zachary C Conley, Larry Vang, Jamaine S Davis, Keesha L Powell-Roach, Susan Campbell, Angyth B Dal, Bryanna Shao, Stefanie Alexander, Nancy Vang, Neng Vue, Mein Vue, Haysetta D Shuler, Elsie C Spencer, Derrick J Morton, Antentor Hinton
Despite efforts to increase diversity, a glaring underrepresentation of minorities (URM) persists in the fields of science, technology, engineering, and mathematics (STEM). Graduate school can be a stressful step in the STEM pipeline, especially for students previously unaware of the structure and challenges of postgraduate education. To promote successful minority participation in STEM and prepare prospective students for the impending challenges of applying for and attending graduate school, we developed a workshop based on the mentoring and fostering of a champion-oriented mindset entitled, "The Trials and Tribulations of Graduate School: How Do You Make an Impact?." Students from the HBCU Winston-Salem State University attended the workshop, and a pre/post-a 10-point Likert scale-based survey was administered. The questions used in this seminar were newly designed by the authors as program evaluations. The results suggest that the workshop was well-received by the students and provided information that they considered helpful to help navigate the graduate school process.
{"title":"Using champion-oriented mindset to overcome the challenges of graduate school: impact of workshop for graduate school skills on underrepresented minority retention.","authors":"Andrea G Marshall, Caroline B Palavicino-Maggio, Kit Neikirk, Zer Vue, Heather K Beasley, Edgar Garza-Lopez, Sandra A Murray, Denise Martinez, Amber Crabtree, Zachary C Conley, Larry Vang, Jamaine S Davis, Keesha L Powell-Roach, Susan Campbell, Angyth B Dal, Bryanna Shao, Stefanie Alexander, Nancy Vang, Neng Vue, Mein Vue, Haysetta D Shuler, Elsie C Spencer, Derrick J Morton, Antentor Hinton","doi":"10.1093/femspd/ftac024","DOIUrl":"https://doi.org/10.1093/femspd/ftac024","url":null,"abstract":"<p><p>Despite efforts to increase diversity, a glaring underrepresentation of minorities (URM) persists in the fields of science, technology, engineering, and mathematics (STEM). Graduate school can be a stressful step in the STEM pipeline, especially for students previously unaware of the structure and challenges of postgraduate education. To promote successful minority participation in STEM and prepare prospective students for the impending challenges of applying for and attending graduate school, we developed a workshop based on the mentoring and fostering of a champion-oriented mindset entitled, \"The Trials and Tribulations of Graduate School: How Do You Make an Impact?.\" Students from the HBCU Winston-Salem State University attended the workshop, and a pre/post-a 10-point Likert scale-based survey was administered. The questions used in this seminar were newly designed by the authors as program evaluations. The results suggest that the workshop was well-received by the students and provided information that they considered helpful to help navigate the graduate school process.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375733/pdf/ftac024.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10078825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea G Marshall, Zer Vue, Caroline B Palavicino-Maggio, Kit Neikirk, Heather K Beasley, Edgar Garza-Lopez, Sandra A Murray, Denise Martinez, Amber Crabtree, Zachary C Conley, Larry Vang, Jamaine S Davis, Keesha L Powell-Roach, Susan Campbell, Lillian J Brady, Angyth B Dal, Bryanna Shao, Stefanie Alexander, Nancy Vang, Neng Vue, Mein Vue, Haysetta D Shuler, Elsie C Spencer, Derrick J Morton, Antentor Hinton
The success of mentoring derives from active and respectful listening and the willingness to learn and accept opportunities for personal growth. This shapes every trainee and their destined path in science, technology, engineering, and mathematics (STEM). The act of cultivating rapport, asking, and pondering meaningful questions, and receiving constructive feedback are critical to support a productive mentoring relationship. Successful mentoring in STEM can be established and allow mentees, especially underrepresented minorities (URMs), to flourish in an environment where they feel welcomed and supported. However, mentees from underrepresented groups often experience inadequate mentoring due to a mentor's lack of awareness, poor trainings themselves, or lack of understanding of the mentee's hardships. It is important for mentors and mentees to work together to promote diversity, equity, and inclusion (DEI) in STEM education through creativity, authenticity, and networking. We analyzed data obtained from students who attended a recent workshop that are interested in going to graduate school. Our results show that despite low initial expectations for the workshop, many students were satisfied in the knowledge they gleaned. The future and role of diversity in STEM within these underrepresented groups lies in community support and an important role that they can play in the lives of others through DEI initiatives and throughout their careers all of which involves positive mentoring.
{"title":"The role of mentoring in promoting diversity equity and inclusion in STEM Education and Research.","authors":"Andrea G Marshall, Zer Vue, Caroline B Palavicino-Maggio, Kit Neikirk, Heather K Beasley, Edgar Garza-Lopez, Sandra A Murray, Denise Martinez, Amber Crabtree, Zachary C Conley, Larry Vang, Jamaine S Davis, Keesha L Powell-Roach, Susan Campbell, Lillian J Brady, Angyth B Dal, Bryanna Shao, Stefanie Alexander, Nancy Vang, Neng Vue, Mein Vue, Haysetta D Shuler, Elsie C Spencer, Derrick J Morton, Antentor Hinton","doi":"10.1093/femspd/ftac019","DOIUrl":"https://doi.org/10.1093/femspd/ftac019","url":null,"abstract":"<p><p>The success of mentoring derives from active and respectful listening and the willingness to learn and accept opportunities for personal growth. This shapes every trainee and their destined path in science, technology, engineering, and mathematics (STEM). The act of cultivating rapport, asking, and pondering meaningful questions, and receiving constructive feedback are critical to support a productive mentoring relationship. Successful mentoring in STEM can be established and allow mentees, especially underrepresented minorities (URMs), to flourish in an environment where they feel welcomed and supported. However, mentees from underrepresented groups often experience inadequate mentoring due to a mentor's lack of awareness, poor trainings themselves, or lack of understanding of the mentee's hardships. It is important for mentors and mentees to work together to promote diversity, equity, and inclusion (DEI) in STEM education through creativity, authenticity, and networking. We analyzed data obtained from students who attended a recent workshop that are interested in going to graduate school. Our results show that despite low initial expectations for the workshop, many students were satisfied in the knowledge they gleaned. The future and role of diversity in STEM within these underrepresented groups lies in community support and an important role that they can play in the lives of others through DEI initiatives and throughout their careers all of which involves positive mentoring.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302695/pdf/ftac019.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9641350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea G Marshall, Zer Vue, Caroline B Palavicino-Maggio, Kit Neikirk, Heather K Beasley, Edgar Garza-Lopez, Sandra A Murray, Denise Martinez, Amber Crabtree, Zachary C Conley, Larry Vang, Jamaine S Davis, Keesha L Powell-Roach, Susan Campbell, Lillian J Brady, Angyth B Dal, Bryanna Shao, Stefanie Alexander, Nancy Vang, Neng Vue, Mein Vue, Haysetta D Shuler, Elsie C Spencer, Derrick J Morton, Antentor Hinton
Despite an increase in programming to promote persons excluded by their ethnicity or race (PEER) scholars, minorities remain underrepresented in many STEM programs. The academic pipeline is largely leaky for underrepresented minority (URM) scholars due to a lack of effective mentorship. Many URM students experience microaggressions and discrimination from their mentors due to a lack of quality mentorship training. In this workshop, we provide a framework to show trainees what effective mentoring looks like. Mentees, especially URM trainees, can flourish in effective mentoring environments where they feel welcomed and can comfortably develop new ideas without feeling threatened by external factors. Effective mentoring environments provide motivational support, empathy, cultural competency, and training. This workshop explains facets of effective mentoring to students, as well as highlights to URM trainees why mentors can serve as valuable resources.
{"title":"An effective workshop on \"How to be an Effective Mentor for Underrepresented STEM Trainees\".","authors":"Andrea G Marshall, Zer Vue, Caroline B Palavicino-Maggio, Kit Neikirk, Heather K Beasley, Edgar Garza-Lopez, Sandra A Murray, Denise Martinez, Amber Crabtree, Zachary C Conley, Larry Vang, Jamaine S Davis, Keesha L Powell-Roach, Susan Campbell, Lillian J Brady, Angyth B Dal, Bryanna Shao, Stefanie Alexander, Nancy Vang, Neng Vue, Mein Vue, Haysetta D Shuler, Elsie C Spencer, Derrick J Morton, Antentor Hinton","doi":"10.1093/femspd/ftac022","DOIUrl":"https://doi.org/10.1093/femspd/ftac022","url":null,"abstract":"<p><p>Despite an increase in programming to promote persons excluded by their ethnicity or race (PEER) scholars, minorities remain underrepresented in many STEM programs. The academic pipeline is largely leaky for underrepresented minority (URM) scholars due to a lack of effective mentorship. Many URM students experience microaggressions and discrimination from their mentors due to a lack of quality mentorship training. In this workshop, we provide a framework to show trainees what effective mentoring looks like. Mentees, especially URM trainees, can flourish in effective mentoring environments where they feel welcomed and can comfortably develop new ideas without feeling threatened by external factors. Effective mentoring environments provide motivational support, empathy, cultural competency, and training. This workshop explains facets of effective mentoring to students, as well as highlights to URM trainees why mentors can serve as valuable resources.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258687/pdf/ftac022.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9633385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of concern on: Mitogen-activated protein kinases regulate Mycobacterium avium-induced tumor necrosis factor-α release from macrophages.","authors":"","doi":"10.1093/femspd/ftac017","DOIUrl":"https://doi.org/10.1093/femspd/ftac017","url":null,"abstract":"","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"80 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10409302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}