Pub Date : 2026-01-10DOI: 10.3390/pharmaceutics18010093
Jie Mao, Hae-Ji Kang, Gi-Deok Eom, Su In Heo, Hynnu Nam, Ji-Hyun Lee, Ki-Ho Park, Mi Suk Lee, Sung Soo Kim, Fu-Shi Quan
Background/Objectives: Toxoplasma gondii (T. gondii) dense granule antigen 14 (GRA14) is a parasitophorous vacuole membrane protein that plays a critical role in the development of chronic-stage cysts. However, its potential as a vaccine antigen and long-term immunity have not been evaluated using a virus-like particle (VLP) platform. Methods: influenza matrix protein (M1)-based VLPs displaying GRA14 were generated. Female BALB/c mice were intranasally immunized with the VLP vaccine and orally challenged with lethal ME49 cysts either 10 weeks or 32 weeks after prime vaccination for short-term and long-term immunity evaluation, respectively. Results: GRA14 VLP vaccination elicited higher levels of T. gondii-specific IgG, IgG1, and IgG2a antibody responses in sera compared to non-immunized controls. Upon challenge infection, elevated IgG- and IgA-secreting plasma cells, germinal center B cells, and memory B cells were observed, and CD4+, CD8+ T-cells, as well as both Th1 (IFN-γ) and Th2 (IL-4, IL-5) cytokines, were also increased. For the short-term immunity study, vaccinated mice exhibited suppressed cerebral inflammation, significantly reduced brain cyst burdens, maintained stable body weight, and achieved 100% survival. For the long-term study, GRA14 VLPs sustained elevated IgG and IgG1 levels as well as conferred partial yet significant protection, with lower cyst loads and 83% survival. Conclusions: GRA14 VLPs induce durable, balanced humoral and cellular immunity and provide both short-term and long-term protection against lethal chronic toxoplasmosis, supporting their potential as promising vaccine candidates.
{"title":"Protection Against <i>Toxoplasma gondii</i> Lethal ME49 Challenge Induced by Influenza Virus-like Particles Containing Dense Granule Protein 14.","authors":"Jie Mao, Hae-Ji Kang, Gi-Deok Eom, Su In Heo, Hynnu Nam, Ji-Hyun Lee, Ki-Ho Park, Mi Suk Lee, Sung Soo Kim, Fu-Shi Quan","doi":"10.3390/pharmaceutics18010093","DOIUrl":"10.3390/pharmaceutics18010093","url":null,"abstract":"<p><p><b>Background/Objectives</b>: <i>Toxoplasma gondii</i> (<i>T. gondii</i>) dense granule antigen 14 (GRA14) is a parasitophorous vacuole membrane protein that plays a critical role in the development of chronic-stage cysts. However, its potential as a vaccine antigen and long-term immunity have not been evaluated using a virus-like particle (VLP) platform. <b>Methods:</b> influenza matrix protein (M1)-based VLPs displaying GRA14 were generated. Female BALB/c mice were intranasally immunized with the VLP vaccine and orally challenged with lethal ME49 cysts either 10 weeks or 32 weeks after prime vaccination for short-term and long-term immunity evaluation, respectively. <b>Results:</b> GRA14 VLP vaccination elicited higher levels of <i>T. gondii</i>-specific IgG, IgG1, and IgG2a antibody responses in sera compared to non-immunized controls. Upon challenge infection, elevated IgG- and IgA-secreting plasma cells, germinal center B cells, and memory B cells were observed, and CD4<sup>+</sup>, CD8<sup>+</sup> T-cells, as well as both Th1 (IFN-γ) and Th2 (IL-4, IL-5) cytokines, were also increased. For the short-term immunity study, vaccinated mice exhibited suppressed cerebral inflammation, significantly reduced brain cyst burdens, maintained stable body weight, and achieved 100% survival. For the long-term study, GRA14 VLPs sustained elevated IgG and IgG1 levels as well as conferred partial yet significant protection, with lower cyst loads and 83% survival. <b>Conclusions:</b> GRA14 VLPs induce durable, balanced humoral and cellular immunity and provide both short-term and long-term protection against lethal chronic toxoplasmosis, supporting their potential as promising vaccine candidates.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146066082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: This study aimed to assess the intestinal permeation behaviors of andrographolide (AG) and 14-deoxy-11,12-didehydroandrographolide (DDAG), diterpene lactones from Andrographis paniculata extract (APE), pure AG, and three distinct source APEs. The effects of different solvents were also investigated. Methods: Solubility investigation was performed using APE. APEs and pure AG were prepared as liqui-masses, cohesive mixtures of APE, solvents, and solid carriers. PXRD, in vitro release, and ex vivo intestinal permeation using the non-everted gut sac method were investigated. Results: Solubility of AG and DDAG in N-methyl-2-pyrrolidone (NMP) > NMP/diethylene glycol monoethyl ether (DG) mixtures > DG. PXRD indicated that crystallinity loss of liqui-mass was affected by solvent's solvency capacity. The release behaviors of AG and DDAG in phosphate buffer from pure AG and APEs varied depending on their solid state. The release efficiencies of AG and DDAG from liqui-mass systems increased significantly. The apparent permeability (Papp) of AG from pure AG was 0.11 ± 0.05 ×10-5 cm·s-1, which was 11-25 times less than that of APEs. The Papp of DDAG from various APEs was comparable, ranging between 5.95 and 7.37 × 10-5 cm·s-1. The presence of a solvent, specifically NMP, in liqui-mass significantly enhanced the release rate and permeation flux. The Papp of AG and DDAG from liqui-mass increased by factors of 1.0-2.3 and 1.1-2.7, respectively. Conclusions: This study is the first to emphasize the differences in the release and intestinal permeation characteristics of AG and DDAG from APEs. These findings offer essential insights into the intestinal permeation behavior of diterpene lactones, along with a straightforward mechanistic strategy for enhancement.
{"title":"Intestinal Permeation Characteristics via Non-Everted Gut Sac of Diterpene Lactones from Pure Andrographolide and Three Different Andrographis Extracts: An Investigation into Liqui-Mass with Different Solvents.","authors":"Peera Tabboon, Ekapol Limpongsa, Thitiphorn Rongthong, Thaned Pongjanyakul, Napaphak Jaipakdee","doi":"10.3390/pharmaceutics18010090","DOIUrl":"10.3390/pharmaceutics18010090","url":null,"abstract":"<p><p><b>Objectives</b>: This study aimed to assess the intestinal permeation behaviors of andrographolide (AG) and 14-deoxy-11,12-didehydroandrographolide (DDAG), diterpene lactones from <i>Andrographis paniculata</i> extract (APE), pure AG, and three distinct source APEs. The effects of different solvents were also investigated. <b>Methods</b>: Solubility investigation was performed using APE. APEs and pure AG were prepared as liqui-masses, cohesive mixtures of APE, solvents, and solid carriers. PXRD, in vitro release, and ex vivo intestinal permeation using the non-everted gut sac method were investigated. <b>Results</b>: Solubility of AG and DDAG in N-methyl-2-pyrrolidone (NMP) > NMP/diethylene glycol monoethyl ether (DG) mixtures > DG. PXRD indicated that crystallinity loss of liqui-mass was affected by solvent's solvency capacity. The release behaviors of AG and DDAG in phosphate buffer from pure AG and APEs varied depending on their solid state. The release efficiencies of AG and DDAG from liqui-mass systems increased significantly. The apparent permeability (<i>P<sub>app</sub></i>) of AG from pure AG was 0.11 ± 0.05 ×10<sup>-5</sup> cm·s<sup>-1</sup>, which was 11-25 times less than that of APEs. The <i>P<sub>app</sub></i> of DDAG from various APEs was comparable, ranging between 5.95 and 7.37 × 10<sup>-5</sup> cm·s<sup>-1</sup>. The presence of a solvent, specifically NMP, in liqui-mass significantly enhanced the release rate and permeation flux. The <i>P<sub>app</sub></i> of AG and DDAG from liqui-mass increased by factors of 1.0-2.3 and 1.1-2.7, respectively. <b>Conclusions</b>: This study is the first to emphasize the differences in the release and intestinal permeation characteristics of AG and DDAG from APEs. These findings offer essential insights into the intestinal permeation behavior of diterpene lactones, along with a straightforward mechanistic strategy for enhancement.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146065442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-10DOI: 10.3390/pharmaceutics18010092
Bruno Charlier, Viviana Izzo, Giovanni Assenza, Anna Chiara Balsamo, Flavia Cirillo, Albino Coglianese, Carlo Di Bonaventura, Mariana Fernandes, Antonio Gambardella, Emanuele Cerulli Irelli, Claudio Liguori, Sandra Rufolo, Ilaria Sammarra, Amelia Filippelli, Francesca Felicia Operto
Background: Cenobamate (CNB) is an anti-seizure medication (ASM) approved for the treatment of drug-resistant focal epilepsy in adults. Notwithstanding significant proof of efficacy, real-world pharmacokinetics (PK) data are lacking, particularly regarding sex-based variations and the effect of concomitant ASMs. This exploratory study aimed to investigate the PK profile of CNB in responder adults with drug-resistant focal epilepsy and assess potential relationship with concomitant ASMs and clinical variables. Methods: We enrolled 17 patients receiving add-on CNB. The concentration-to-dose ratio (C/D), incremental slope (ΔC/ΔD), and dose-to-concentration AUC were calculated. Enrolled individuals were stratified into three exposure clusters (low, medium, and high). Univariate ANOVA was used to explore associations between PK parameters, clinical variables and concomitant ASMs. Results: Sex appeared to be associated with AUC cluster classification (p = 0.026), showing females predominating in the high-exposure group. A nonlinear dose-concentration relationship emerged from the ΔC/ΔD analysis, showing steeper slopes at low doses (12.5-50 mg), great variability at higher doses (100-200 mg), and a negative slope in some individuals. Higher CNB concentrations were observed in patients co-treated with lacosamide, while concomitant topiramate was associated with lower exposure. Carbamazepine and valproate showed non-significant trends consistent with their known enzyme-inducing and inhibiting properties. Conclusions: PK of CNB appears highly variable and seems to be influenced by sex and concomitant ASMs. These findings highlight the importance of therapeutic drug monitoring and individualized titration strategies to optimize efficacy and safety in clinical practice. These results should be regarded as exploratory and hypothesis-generating due to the small and monocentric sample size and need to be confirmed in larger, multicenter cohorts.
{"title":"Do Cenobamate Pharmacokinetics Change with Co-Administered Antiseizure Medications? An Exploratory Analysis of Responder Patients with Focal Drug-Resistant Epilepsy.","authors":"Bruno Charlier, Viviana Izzo, Giovanni Assenza, Anna Chiara Balsamo, Flavia Cirillo, Albino Coglianese, Carlo Di Bonaventura, Mariana Fernandes, Antonio Gambardella, Emanuele Cerulli Irelli, Claudio Liguori, Sandra Rufolo, Ilaria Sammarra, Amelia Filippelli, Francesca Felicia Operto","doi":"10.3390/pharmaceutics18010092","DOIUrl":"10.3390/pharmaceutics18010092","url":null,"abstract":"<p><p><b>Background:</b> Cenobamate (CNB) is an anti-seizure medication (ASM) approved for the treatment of drug-resistant focal epilepsy in adults. Notwithstanding significant proof of efficacy, real-world pharmacokinetics (PK) data are lacking, particularly regarding sex-based variations and the effect of concomitant ASMs. This exploratory study aimed to investigate the PK profile of CNB in responder adults with drug-resistant focal epilepsy and assess potential relationship with concomitant ASMs and clinical variables. <b>Methods:</b> We enrolled 17 patients receiving add-on CNB. The concentration-to-dose ratio (C/D), incremental slope (ΔC/ΔD), and dose-to-concentration AUC were calculated. Enrolled individuals were stratified into three exposure clusters (low, medium, and high). Univariate ANOVA was used to explore associations between PK parameters, clinical variables and concomitant ASMs. <b>Results:</b> Sex appeared to be associated with AUC cluster classification (<i>p</i> = 0.026), showing females predominating in the high-exposure group. A nonlinear dose-concentration relationship emerged from the ΔC/ΔD analysis, showing steeper slopes at low doses (12.5-50 mg), great variability at higher doses (100-200 mg), and a negative slope in some individuals. Higher CNB concentrations were observed in patients co-treated with lacosamide, while concomitant topiramate was associated with lower exposure. Carbamazepine and valproate showed non-significant trends consistent with their known enzyme-inducing and inhibiting properties. <b>Conclusions:</b> PK of CNB appears highly variable and seems to be influenced by sex and concomitant ASMs. These findings highlight the importance of therapeutic drug monitoring and individualized titration strategies to optimize efficacy and safety in clinical practice. These results should be regarded as exploratory and hypothesis-generating due to the small and monocentric sample size and need to be confirmed in larger, multicenter cohorts.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146065860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background:Aristolochia clematitis L. (AC), a plant with diverse traditional uses, has gained increasing scientific interest due to its rich content of bioactive compounds such as flavonoids and polyphenols. However, its systemic use is limited by the presence of aristolochic acids, which are known for their nephrotoxic and carcinogenic potential. Methods: In this context, the present study investigates the therapeutic potential of A. clematitis extract by encapsulating it in liposomes with the aim of enhancing its topical efficacy. Results: The extract was characterized in terms of its flavonoid content (67.23 ± 0.33 mg QE/g DW (quercetin/dry plant material)) and polyphenols expressed as gallic acid equivalents (64.38 ± 0.16 mg GAE/g DW), as well as its antioxidant capacity using the reagents 1,1-diphenyl-2-picrylhydrazyl (DPPH - IC50 = 0.1619 mg/mL extract) and diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS - IC50 = 205.57 μg/mL extract). Four types of liposomes were synthesized (two loaded with extract and two empty), and their characterization was performed using Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Zeta Potential, polydispersity index, and in vitro release studies. Conclusions: The results demonstrated a high entrapment efficiency (over 82%), good stability over 30 days, and controlled release of flavonoids. Microbiological studies revealed relevant antimicrobial activity against Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains. The evaluation on HaCaT skin-derived cells (at 10-100 µg/mL) proved that the samples displayed good overall tolerability, slightly decreasing cell viability (the most statistically significant being associated with AC treatment) and showing no structural, nuclear, or mitochondrial morphological changes.
{"title":"Potentiation of the Pharmacological Effects of an <i>Aristolochia clematitis</i> L. Extract by Loading into Liposomes Facilitating Release to HaCaT Cells.","authors":"Laura Grațiela Vicaș, Nicole Alina Marian, Diana Haj Ali, Narcis Duteanu, Paula Svera, Cristina Dehelean, Ana-Maria Vlase, Olimpia-Daniela Frenț, Ioana-Lavinia Dejeu, Rodica Anamaria Negrean, Răzvan Mihai Oros, Luminița Fritea, Andreea Smeu, Mariana Eugenia Mureșan","doi":"10.3390/pharmaceutics18010089","DOIUrl":"10.3390/pharmaceutics18010089","url":null,"abstract":"<p><p><b>Background:</b><i>Aristolochia clematitis</i> L. (AC), a plant with diverse traditional uses, has gained increasing scientific interest due to its rich content of bioactive compounds such as flavonoids and polyphenols. However, its systemic use is limited by the presence of aristolochic acids, which are known for their nephrotoxic and carcinogenic potential. <b>Methods:</b> In this context, the present study investigates the therapeutic potential of <i>A. clematitis</i> extract by encapsulating it in liposomes with the aim of enhancing its topical efficacy. <b>Results:</b> The extract was characterized in terms of its flavonoid content (67.23 ± 0.33 mg QE/g DW (quercetin/dry plant material)) and polyphenols expressed as gallic acid equivalents (64.38 ± 0.16 mg GAE/g DW), as well as its antioxidant capacity using the reagents 1,1-diphenyl-2-picrylhydrazyl (DPPH - IC<sub>50</sub> = 0.1619 mg/mL extract) and diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS - IC<sub>50</sub> = 205.57 μg/mL extract). Four types of liposomes were synthesized (two loaded with extract and two empty), and their characterization was performed using Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Zeta Potential, polydispersity index, and in vitro release studies. <b>Conclusions:</b> The results demonstrated a high entrapment efficiency (over 82%), good stability over 30 days, and controlled release of flavonoids. Microbiological studies revealed relevant antimicrobial activity against <i>Staphylococcus aureus</i>, <i>Streptococcus pneumoniae</i>, <i>Escherichia coli</i>, and <i>Pseudomonas aeruginosa</i> strains. The evaluation on HaCaT skin-derived cells (at 10-100 µg/mL) proved that the samples displayed good overall tolerability, slightly decreasing cell viability (the most statistically significant being associated with AC treatment) and showing no structural, nuclear, or mitochondrial morphological changes.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146066067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: 5-Azacytidine (5-Aza) is a clinically important DNMT inhibitor with the potential to modulate cardiac remodeling by epigenetically reprogramming human cardiac fibroblasts (HCFs). However, its clinical utility is limited by rapid hydrolytic degradation. Nanoparticle (NP) encapsulation offers a strategy to mitigate this instability. This study evaluated the physical and chemical stability of free 5-Aza and 5-Aza-loaded lipid nanoparticles (5-Aza-NP) under different storage temperatures and examined their effects on DNA methylation-related gene expression in HCFs. Methods: Hyaluronic acid-stabilized lipid NPs were prepared using a solvent displacement method. Particle size, polydispersity index (PDI), and zeta potential were monitored over four days at -20 °C, 4 °C, and 30 °C. Chemical stability was assessed using HPLC and first-order kinetic modeling. Functional activity was evaluated by treating HCFs with free 5-Aza or 5-Aza-NP stored for 96 h and measuring DNMT1, DNMT3A, and DNMT3B expression by RT-qPCR. Results: 5-Aza-NP remained physically stable at 4 °C, while -20 °C induced aggregation and 30 °C caused thermal variability. Free 5-Aza degraded rapidly at 30 °C (6.56% remaining at 72 h), whereas 5-Aza-NP preserved 11.54%. Kinetic modeling confirmed first-order degradation, with consistently longer half-lives for the NP formulation. Functionally, 5-Aza-NP preserved its ability to suppress DNMT1 expression following 96 h of storage at 4 °C, whereas free 5-Aza showed reduced activity. In contrast, DNMT3A and DNMT3B levels remained low and unchanged across all treatments. Conclusions: NP encapsulation enhances the physicochemical stability of 5-Aza and preserves its DNMT1-inhibitory activity, while DNMT3A/B remain unaffected. These findings support NP-based delivery as a promising strategy to stabilize labile epigenetic drugs such as 5-Aza.
{"title":"A Nanoparticle-Based Strategy to Stabilize 5-Azacytidine and Preserve DNA Demethylation Activity in Human Cardiac Fibroblasts.","authors":"Kantaporn Kheawfu, Chuda Chittasupho, Sudarshan Singh, Siriporn Okonogi, Narainrit Karuna","doi":"10.3390/pharmaceutics18010088","DOIUrl":"10.3390/pharmaceutics18010088","url":null,"abstract":"<p><p><b>Background:</b> 5-Azacytidine (5-Aza) is a clinically important DNMT inhibitor with the potential to modulate cardiac remodeling by epigenetically reprogramming human cardiac fibroblasts (HCFs). However, its clinical utility is limited by rapid hydrolytic degradation. Nanoparticle (NP) encapsulation offers a strategy to mitigate this instability. This study evaluated the physical and chemical stability of free 5-Aza and 5-Aza-loaded lipid nanoparticles (5-Aza-NP) under different storage temperatures and examined their effects on DNA methylation-related gene expression in HCFs. <b>Methods:</b> Hyaluronic acid-stabilized lipid NPs were prepared using a solvent displacement method. Particle size, polydispersity index (PDI), and zeta potential were monitored over four days at -20 °C, 4 °C, and 30 °C. Chemical stability was assessed using HPLC and first-order kinetic modeling. Functional activity was evaluated by treating HCFs with free 5-Aza or 5-Aza-NP stored for 96 h and measuring <i>DNMT1</i>, <i>DNMT3A</i>, and <i>DNMT3B</i> expression by RT-qPCR. <b>Results:</b> 5-Aza-NP remained physically stable at 4 °C, while -20 °C induced aggregation and 30 °C caused thermal variability. Free 5-Aza degraded rapidly at 30 °C (6.56% remaining at 72 h), whereas 5-Aza-NP preserved 11.54%. Kinetic modeling confirmed first-order degradation, with consistently longer half-lives for the NP formulation. Functionally, 5-Aza-NP preserved its ability to suppress <i>DNMT1</i> expression following 96 h of storage at 4 °C, whereas free 5-Aza showed reduced activity. In contrast, <i>DNMT3A</i> and <i>DNMT3B</i> levels remained low and unchanged across all treatments. <b>Conclusions:</b> NP encapsulation enhances the physicochemical stability of 5-Aza and preserves its <i>DNMT1</i>-inhibitory activity, while <i>DNMT3A/B</i> remain unaffected. These findings support NP-based delivery as a promising strategy to stabilize labile epigenetic drugs such as 5-Aza.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146065812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.3390/pharmaceutics18010085
Olga A Sindeeva, Lyubov I Kazakova, Alexandra Sain, Olga I Gusliakova, Oleg A Kulikov, Daria A Terentyeva, Irina A Gololobova, Nikolay A Pyataev, Gleb B Sukhorukov
Background: While intravenous administration of nanoparticles (NPs) is effective for targeting the lungs and liver, directing them to other organs and tissues remains challenging. Methods: Here, we report alternative administration routes that improve organ-specific accumulation of poly (lactic-co-glycolic acid) (PLGA) NPs (100 nm, negatively charged) loaded with the near-infrared dye Cyanine 7 (Cy7). NP cytotoxicity was evaluated in HEK293, mMSCs, C2C12, L929, and RAW264.7 cells. Hemocompatibility was assessed using WBCs and RBCs. NPs were administered via the tail vein, carotid, renal, and femoral arteries in BALB/c mice. Administration safety was evaluated by laser speckle contrast imaging and histological analysis. NP biodistribution and accumulation were assessed using in vivo and ex vivo fluorescence tomography and confocal microscopy of cryosections. Results: PLGA-Cy7 NPs demonstrate low cytotoxicity even at high doses and exhibit good hemocompatibility. Administration of NPs through the mouse carotid, renal, and femoral arteries significantly increases accumulation in the target ipsilateral brain hemisphere (31.7-fold) and salivary glands (28.3-fold), kidney (13.7-fold), and hind paw (3.6-fold), respectively, compared to intravenous administration. Injection of NPs through arteries supplying the target organs and tissues does not result in significant changes in blood flow, morphological alterations, or irreversible embolization of vessels, provided the procedure is performed correctly and the optimal dosage is used. Conclusions: These results highlight the potential of intra-arterial delivery of NPs for organ-specific drug targeting, underscoring the synergistic impact of advances in materials science, minimally invasive endovascular surgery, and nanomedicine.
{"title":"Minimally Invasive Endovascular Administration for Targeted PLGA Nanoparticles Delivery to Brain, Salivary Glands, Kidney and Lower Limbs.","authors":"Olga A Sindeeva, Lyubov I Kazakova, Alexandra Sain, Olga I Gusliakova, Oleg A Kulikov, Daria A Terentyeva, Irina A Gololobova, Nikolay A Pyataev, Gleb B Sukhorukov","doi":"10.3390/pharmaceutics18010085","DOIUrl":"10.3390/pharmaceutics18010085","url":null,"abstract":"<p><p><b>Background:</b> While intravenous administration of nanoparticles (NPs) is effective for targeting the lungs and liver, directing them to other organs and tissues remains challenging. <b>Methods:</b> Here, we report alternative administration routes that improve organ-specific accumulation of poly (lactic-co-glycolic acid) (PLGA) NPs (100 nm, negatively charged) loaded with the near-infrared dye Cyanine 7 (Cy7). NP cytotoxicity was evaluated in HEK293, mMSCs, C2C12, L929, and RAW264.7 cells. Hemocompatibility was assessed using WBCs and RBCs. NPs were administered via the tail vein, carotid, renal, and femoral arteries in BALB/c mice. Administration safety was evaluated by laser speckle contrast imaging and histological analysis. NP biodistribution and accumulation were assessed using in vivo and ex vivo fluorescence tomography and confocal microscopy of cryosections. <b>Results:</b> PLGA-Cy7 NPs demonstrate low cytotoxicity even at high doses and exhibit good hemocompatibility. Administration of NPs through the mouse carotid, renal, and femoral arteries significantly increases accumulation in the target ipsilateral brain hemisphere (31.7-fold) and salivary glands (28.3-fold), kidney (13.7-fold), and hind paw (3.6-fold), respectively, compared to intravenous administration. Injection of NPs through arteries supplying the target organs and tissues does not result in significant changes in blood flow, morphological alterations, or irreversible embolization of vessels, provided the procedure is performed correctly and the optimal dosage is used. <b>Conclusions:</b> These results highlight the potential of intra-arterial delivery of NPs for organ-specific drug targeting, underscoring the synergistic impact of advances in materials science, minimally invasive endovascular surgery, and nanomedicine.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146065924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.3390/pharmaceutics18010084
Simona Ruxandra Volovat, Iolanda Georgiana Augustin, Constantin Volovat, Ingrid Vasilache, Madalina Ostafe, Diana Ioana Panaite, Alin Burlacu, Cristian Constantin Volovat
Cancer immunotherapy increasingly relies on nucleic acid-based vaccines, yet achieving efficient and safe delivery remains a critical limitation. Polyplexes-electrostatic complexes of cationic polymers and nucleic acids-have emerged as versatile carriers offering greater chemical tunability and multivalent targeting capacity compared to lipid nanoparticles, with lower immunogenicity than viral vectors. This review summarizes key design principles governing polyplex performance, including polymer chemistry, architecture, and assembly route-emphasizing microfluidic fabrication for improved size control and reproducibility. Mechanistically, effective systems support stepwise delivery: tumor targeting, cellular uptake, endosomal escape (via proton-sponge, membrane fusion, or photochemical disruption), and compartment-specific cargo release. We discuss therapeutic applications spanning plasmid DNA, siRNA, miRNA, mRNA, and CRISPR-based editing, highlighting preclinical data across multiple tumor types and early clinical evidence of on-target knockdown in human cancers. Particular attention is given to physiological barriers and engineering strategies-including size-switching systems, charge-reversal polymers, and tumor-penetrating peptides-that improve intratumoral distribution. However, significant challenges persist, including cationic toxicity, protein corona formation, manufacturing variability, and limited clinical responses to date. Current evidence supports polyplexes as a modular platform complementary to lipid nanoparticles in selected oncology indications, though realizing this potential requires continued optimization alongside rigorous translational development.
{"title":"Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies-A Literature Review.","authors":"Simona Ruxandra Volovat, Iolanda Georgiana Augustin, Constantin Volovat, Ingrid Vasilache, Madalina Ostafe, Diana Ioana Panaite, Alin Burlacu, Cristian Constantin Volovat","doi":"10.3390/pharmaceutics18010084","DOIUrl":"10.3390/pharmaceutics18010084","url":null,"abstract":"<p><p>Cancer immunotherapy increasingly relies on nucleic acid-based vaccines, yet achieving efficient and safe delivery remains a critical limitation. Polyplexes-electrostatic complexes of cationic polymers and nucleic acids-have emerged as versatile carriers offering greater chemical tunability and multivalent targeting capacity compared to lipid nanoparticles, with lower immunogenicity than viral vectors. This review summarizes key design principles governing polyplex performance, including polymer chemistry, architecture, and assembly route-emphasizing microfluidic fabrication for improved size control and reproducibility. Mechanistically, effective systems support stepwise delivery: tumor targeting, cellular uptake, endosomal escape (via proton-sponge, membrane fusion, or photochemical disruption), and compartment-specific cargo release. We discuss therapeutic applications spanning plasmid DNA, siRNA, miRNA, mRNA, and CRISPR-based editing, highlighting preclinical data across multiple tumor types and early clinical evidence of on-target knockdown in human cancers. Particular attention is given to physiological barriers and engineering strategies-including size-switching systems, charge-reversal polymers, and tumor-penetrating peptides-that improve intratumoral distribution. However, significant challenges persist, including cationic toxicity, protein corona formation, manufacturing variability, and limited clinical responses to date. Current evidence supports polyplexes as a modular platform complementary to lipid nanoparticles in selected oncology indications, though realizing this potential requires continued optimization alongside rigorous translational development.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146066129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.3390/pharmaceutics18010087
Marta Belka, Aleksandra Gostyńska-Stawna, Karina Sommerfeld-Klatta, Maciej Stawny, Violetta Krajka-Kuźniak
Background: Intestinal failure-associated liver disease (IFALD) is a serious complication in patients receiving parenteral nutrition, often exacerbated by inflammation, lipid overload, and oxidative stress. Nobiletin (NOB), a polymethoxylated flavone, is known for its anti-inflammatory and lipid-regulating properties. Methods: We employed an in vitro model using THLE-2 human hepatocytes and primary human cholangiocytes exposed to Intralipid (INT) and lipopolysaccharide (LPS) to simulate IFALD conditions. NOB was tested at non-toxic concentrations (10 and 25 µM) to assess its protective effects. MTT viability assays, multiplex bead-based immunoassays (MAGPIX), RT-qPCR, and Western blotting were used to evaluate changes in inflammation markers, gene expression, and protein signaling. Moreover, ALT and AST activities were used to assess hepatocellular injury. Results: NOB maintained high cell viability in THLE-2 hepatocytes and cholangiocytes, confirming its low cytotoxicity. NOB normalized ALT and AST activities in both tested cell lines, but the effect reached statistical significance only for ALT in cholangiocytes. Under IFALD-like conditions (LPS+INT), NOB significantly preserved metabolic activity in both cell types. In THLE-2 and cholangiocytes, NOB markedly reduced the phosphorylation of pro-inflammatory proteins JNK, NF-κB, and STAT3, indicating a broad inhibition of inflammatory signaling. Moreover, in THLE-2 cells, NOB upregulated lipid metabolism-related genes (PRKAA2, CYP7A1, and ABCA1) and decreased oxidative stress, thereby enhancing the nuclear translocation of Nrf2 and increasing SOD1 level, which supports the activation of antioxidant defenses. Conclusions: NOB exhibits hepatoprotective properties under IFALD-like conditions in vitro, likely through modulation of inflammation-related signaling and lipid metabolism pathways.
{"title":"Nobiletin Attenuates Inflammation and Modulates Lipid Metabolism in an In Vitro Model of Intestinal Failure-Associated Liver Disease.","authors":"Marta Belka, Aleksandra Gostyńska-Stawna, Karina Sommerfeld-Klatta, Maciej Stawny, Violetta Krajka-Kuźniak","doi":"10.3390/pharmaceutics18010087","DOIUrl":"10.3390/pharmaceutics18010087","url":null,"abstract":"<p><p><b>Background</b>: Intestinal failure-associated liver disease (IFALD) is a serious complication in patients receiving parenteral nutrition, often exacerbated by inflammation, lipid overload, and oxidative stress. Nobiletin (NOB), a polymethoxylated flavone, is known for its anti-inflammatory and lipid-regulating properties. <b>Methods</b>: We employed an in vitro model using THLE-2 human hepatocytes and primary human cholangiocytes exposed to Intralipid (INT) and lipopolysaccharide (LPS) to simulate IFALD conditions. NOB was tested at non-toxic concentrations (10 and 25 µM) to assess its protective effects. MTT viability assays, multiplex bead-based immunoassays (MAGPIX), RT-qPCR, and Western blotting were used to evaluate changes in inflammation markers, gene expression, and protein signaling. Moreover, ALT and AST activities were used to assess hepatocellular injury. <b>Results</b>: NOB maintained high cell viability in THLE-2 hepatocytes and cholangiocytes, confirming its low cytotoxicity. NOB normalized ALT and AST activities in both tested cell lines, but the effect reached statistical significance only for ALT in cholangiocytes. Under IFALD-like conditions (LPS+INT), NOB significantly preserved metabolic activity in both cell types. In THLE-2 and cholangiocytes, NOB markedly reduced the phosphorylation of pro-inflammatory proteins JNK, NF-κB, and STAT3, indicating a broad inhibition of inflammatory signaling. Moreover, in THLE-2 cells, NOB upregulated lipid metabolism-related genes (<i>PRKAA2</i>, <i>CYP7A1</i>, and <i>ABCA1</i>) and decreased oxidative stress, thereby enhancing the nuclear translocation of Nrf2 and increasing SOD1 level, which supports the activation of antioxidant defenses. <b>Conclusions</b>: NOB exhibits hepatoprotective properties under IFALD-like conditions in vitro, likely through modulation of inflammation-related signaling and lipid metabolism pathways.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146065855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.3390/pharmaceutics18010086
Denisia Adelina Tornea, Christian Goldis, Alexandru Isaic, Alexandru Catalin Motofelea, Alexandra Christa Sima, Tudor Ciocarlie, Andreea Crintea, Razvan Gheorghe Diaconescu, Nadica Motofelea, Adrian Goldis
Background: Metabolically associated fatty liver disease (MASLD) constitutes a major burden. Glucagon-like peptide-1 agonists (GLP-1) could improve hepatic steatosis as well as weight loss. However, the effect of GLP-1 agonists on patients with and without diabetes and the effect of newer drugs (dual and triple agonists) are unclear. Objective: To investigate the effect of GLP-1 agonists, including dual and triple agonists, in patients with metabolic-associated liver steatosis and steatohepatitis, while exploring their effect on patients with and without type 2 diabetes. Methods: We searched PubMed, Scopus, and Web of Science in October 2025 for randomized parallel controlled trials that investigated the effect of GLP-1 agonists in patients with MASLD or metabolic-associated steatohepatitis (MASH). We assessed the quality of the included studies using Cochrane ROB2. We performed the analysis using RevMan 5.4. We performed subgroup analysis based on the status of diabetes, the control group, and the class of GLP-1 agonist (single, dual, or triple). Results: We included twenty studies. Compared to the control group, GLP-1 agonists were associated with a statistically significant increase in the resolution of MASH without worsening fibrosis (RR 3.03, p < 0.0001) and at least one stage of liver fibrosis without the worsening of MASH compared to the control group (RR: 1.45, p < 0.00001). GLP-1 agonists were associated with a statistically significant weight reduction (SMD -1.11, p < 0.0001), glycosylated hemoglobin (SMD -0.81, p < 0.00001), levels of aspartate aminotransferase (SMD -0.48, p = 0.008), and alanine aminotransferase (SMD -0.54, p = 0.008). However, in patients without type 2 diabetes, GLP-1 agonists had no significant effect on weight loss (SMD -0.97, p = 0.12) or improvement in fibrosis (RR 1.54, p = 0.24). There was a statistically significant increase in the overall adverse events (RR 1.10, p < 0.00001), while there was no significant difference in serious adverse events (p = 0.35). Conclusions: GLP-1 agonists improved liver fibrosis, steatohepatitis, weight loss, HbA1c, and liver enzymes in patients with MASLD or MASH. Overall, GLP-1 agonists were associated with a significantly higher risk of adverse events compared to the control, while serious adverse events were comparable between both groups. There was no significant effect on weight loss or improvement in fibrosis in patients without type 2 diabetes. However, there was a limited number of studies in this population. Thus, further research is needed before recommendations can be made for this subgroup.
背景:代谢性脂肪性肝病(MASLD)是一个主要的负担。胰高血糖素样肽-1激动剂(GLP-1)可改善肝脂肪变性和减轻体重。然而,GLP-1激动剂对糖尿病患者和非糖尿病患者的影响以及新药(双重和三重激动剂)的影响尚不清楚。目的:探讨GLP-1激动剂(包括双重和三重激动剂)在代谢性肝脂肪变性和脂肪性肝炎患者中的作用,同时探讨其对伴有和不伴有2型糖尿病患者的影响。方法:我们在2025年10月检索了PubMed、Scopus和Web of Science,以研究GLP-1激动剂对MASLD或代谢相关脂肪性肝炎(MASH)患者的影响的随机平行对照试验。我们使用Cochrane ROB2评估纳入研究的质量。我们使用RevMan 5.4进行分析。我们根据糖尿病状态、对照组和GLP-1激动剂类别(单、双或三联)进行亚组分析。结果:我们纳入了20项研究。与对照组相比,GLP-1激动剂与与对照组相比,在没有恶化纤维化的MASH的消退(RR 3.03, p < 0.0001)和至少一个阶段的肝纤维化没有恶化的MASH (RR: 1.45, p < 0.00001)相关,具有统计学意义。GLP-1激动剂与体重减轻(SMD -1.11, p < 0.0001)、糖化血红蛋白(SMD -0.81, p < 0.00001)、天冬氨酸转氨酶(SMD -0.48, p = 0.008)和丙氨酸转氨酶(SMD -0.54, p = 0.008)相关。然而,在没有2型糖尿病的患者中,GLP-1激动剂对体重减轻(SMD -0.97, p = 0.12)或纤维化改善(RR 1.54, p = 0.24)没有显著影响。总不良事件发生率增高有统计学意义(RR 1.10, p < 0.00001),严重不良事件发生率无统计学差异(p = 0.35)。结论:GLP-1激动剂可改善MASLD或MASH患者的肝纤维化、脂肪性肝炎、体重减轻、HbA1c和肝酶。总体而言,与对照组相比,GLP-1激动剂与显著更高的不良事件风险相关,而两组之间的严重不良事件具有可比性。在没有2型糖尿病的患者中,对体重减轻或纤维化改善没有显著影响。然而,针对这一人群的研究数量有限。因此,在对这一小组提出建议之前,需要进一步的研究。
{"title":"The Effect of GLP-1 Agonists on Patients with Metabolic-Associated Steatotic Liver Disease: A Systematic Review and Meta-Analysis.","authors":"Denisia Adelina Tornea, Christian Goldis, Alexandru Isaic, Alexandru Catalin Motofelea, Alexandra Christa Sima, Tudor Ciocarlie, Andreea Crintea, Razvan Gheorghe Diaconescu, Nadica Motofelea, Adrian Goldis","doi":"10.3390/pharmaceutics18010086","DOIUrl":"10.3390/pharmaceutics18010086","url":null,"abstract":"<p><p><b>Background</b>: Metabolically associated fatty liver disease (MASLD) constitutes a major burden. Glucagon-like peptide-1 agonists (GLP-1) could improve hepatic steatosis as well as weight loss. However, the effect of GLP-1 agonists on patients with and without diabetes and the effect of newer drugs (dual and triple agonists) are unclear. <b>Objective</b>: To investigate the effect of GLP-1 agonists, including dual and triple agonists, in patients with metabolic-associated liver steatosis and steatohepatitis, while exploring their effect on patients with and without type 2 diabetes. <b>Methods</b>: We searched PubMed, Scopus, and Web of Science in October 2025 for randomized parallel controlled trials that investigated the effect of GLP-1 agonists in patients with MASLD or metabolic-associated steatohepatitis (MASH). We assessed the quality of the included studies using Cochrane ROB2. We performed the analysis using RevMan 5.4. We performed subgroup analysis based on the status of diabetes, the control group, and the class of GLP-1 agonist (single, dual, or triple). <b>Results</b>: We included twenty studies. Compared to the control group, GLP-1 agonists were associated with a statistically significant increase in the resolution of MASH without worsening fibrosis (RR 3.03, <i>p</i> < 0.0001) and at least one stage of liver fibrosis without the worsening of MASH compared to the control group (RR: 1.45, <i>p</i> < 0.00001). GLP-1 agonists were associated with a statistically significant weight reduction (SMD -1.11, <i>p</i> < 0.0001), glycosylated hemoglobin (SMD -0.81, <i>p</i> < 0.00001), levels of aspartate aminotransferase (SMD -0.48, <i>p</i> = 0.008), and alanine aminotransferase (SMD -0.54, <i>p</i> = 0.008). However, in patients without type 2 diabetes, GLP-1 agonists had no significant effect on weight loss (SMD -0.97, <i>p</i> = 0.12) or improvement in fibrosis (RR 1.54, <i>p</i> = 0.24). There was a statistically significant increase in the overall adverse events (RR 1.10, <i>p</i> < 0.00001), while there was no significant difference in serious adverse events (<i>p</i> = 0.35). <b>Conclusions</b>: GLP-1 agonists improved liver fibrosis, steatohepatitis, weight loss, HbA1c, and liver enzymes in patients with MASLD or MASH. Overall, GLP-1 agonists were associated with a significantly higher risk of adverse events compared to the control, while serious adverse events were comparable between both groups. There was no significant effect on weight loss or improvement in fibrosis in patients without type 2 diabetes. However, there was a limited number of studies in this population. Thus, further research is needed before recommendations can be made for this subgroup.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146065858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08DOI: 10.3390/pharmaceutics18010081
Shiryn D Sukhram, Majandra Sanchez, Ayotunde Anidugbe, Bora Kupa, Vincent P Edwards, Muhammad Zia, Grozdena Yilmaz
Background: Depression and diabetic neuropathy (DN) commonly complicate diabetes and impair glycemic control and quality of life. Ketamine and its S-enantiomer, esketamine, provide rapid antidepressant and analgesic effects, yet diabetes-related pathophysiology and co-therapies may modify exposure, response, and safety. Methods: We conducted a scoping review following PRISMA-ScR. MEDLINE/PubMed, CINAHL, and APA PsycInfo were searched (January 2020-31 May 2025). Eligible human and animal studies evaluated ketamine, esketamine, or norketamine in the context of diabetes (type 1 [T1DM], type 2 [T2DM], gestational [GDM]), or DN, and reported psychiatric, analgesic, metabolic, or mechanistic outcomes. Two reviewers independently screened and charted data; no formal risk-of-bias assessment was performed. Results: Eleven studies met inclusion criteria: four human case reports/series (three T1DM, one T2DM), one randomized trial in GDM, two narrative reviews of topical ketamine for DN, and four preclinical rodent studies using streptozotocin- or diet-induced diabetes models. Short-term improvements were reported for treatment-resistant depression and neuropathic pain, including opioid-sparing postoperative analgesia in GDM. Glycemic effects varied across settings, with both hyperglycemia and hypoglycemia reported. Mechanistic and clinical drug-drug and drug-disease interactions (particularly involving metformin, GLP-1 receptor agonists, SGLT2 inhibitors, and CYP3A4/CYP2B6 modulators) remain insufficiently studied. We outline a forward-looking population pharmacokinetic (popPK) and pharmacokinetic-pharmacodynamic (PK-PD) research agenda, including priority covariates (eGFR, hepatic function, inflammatory status, HbA1c, genotype, co-medications) and sparse-sampling windows for future model-informed precision dosing. Conclusions: Current evidence supports cautious, selective use of ketamine for refractory depression and DN within multidisciplinary diabetes care. Purpose-built popPK/PK-PD studies in both human and preclinical diabetic models cohorts are needed to quantify variability, define drug-disease-drug interactions and glycemic risk, and inform individualized dosing strategies.
{"title":"Ketamine in Diabetes Care: Metabolic Insights and Clinical Applications.","authors":"Shiryn D Sukhram, Majandra Sanchez, Ayotunde Anidugbe, Bora Kupa, Vincent P Edwards, Muhammad Zia, Grozdena Yilmaz","doi":"10.3390/pharmaceutics18010081","DOIUrl":"10.3390/pharmaceutics18010081","url":null,"abstract":"<p><p><b>Background:</b> Depression and diabetic neuropathy (DN) commonly complicate diabetes and impair glycemic control and quality of life. Ketamine and its S-enantiomer, esketamine, provide rapid antidepressant and analgesic effects, yet diabetes-related pathophysiology and co-therapies may modify exposure, response, and safety. <b>Methods:</b> We conducted a scoping review following PRISMA-ScR. MEDLINE/PubMed, CINAHL, and APA PsycInfo were searched (January 2020-31 May 2025). Eligible human and animal studies evaluated ketamine, esketamine, or norketamine in the context of diabetes (type 1 [T1DM], type 2 [T2DM], gestational [GDM]), or DN, and reported psychiatric, analgesic, metabolic, or mechanistic outcomes. Two reviewers independently screened and charted data; no formal risk-of-bias assessment was performed. <b>Results:</b> Eleven studies met inclusion criteria: four human case reports/series (three T1DM, one T2DM), one randomized trial in GDM, two narrative reviews of topical ketamine for DN, and four preclinical rodent studies using streptozotocin- or diet-induced diabetes models. Short-term improvements were reported for treatment-resistant depression and neuropathic pain, including opioid-sparing postoperative analgesia in GDM. Glycemic effects varied across settings, with both hyperglycemia and hypoglycemia reported. Mechanistic and clinical drug-drug and drug-disease interactions (particularly involving metformin, GLP-1 receptor agonists, SGLT2 inhibitors, and CYP3A4/CYP2B6 modulators) remain insufficiently studied. We outline a forward-looking population pharmacokinetic (popPK) and pharmacokinetic-pharmacodynamic (PK-PD) research agenda, including priority covariates (eGFR, hepatic function, inflammatory status, HbA1c, genotype, co-medications) and sparse-sampling windows for future model-informed precision dosing. <b>Conclusions:</b> Current evidence supports cautious, selective use of ketamine for refractory depression and DN within multidisciplinary diabetes care. Purpose-built popPK/PK-PD studies in both human and preclinical diabetic models cohorts are needed to quantify variability, define drug-disease-drug interactions and glycemic risk, and inform individualized dosing strategies.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146065616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}