Pub Date : 2024-10-09DOI: 10.1021/acsenergylett.4c0187810.1021/acsenergylett.4c01878
Yue Zheng, Lei Hu, Wenru Li, Tianpeng Huang, Jun Ma*, Shanmu Dong* and Guanglei Cui*,
All-solid-state battery (ASSB) technology is one of the most promising approaches to energy storage due to its great safety and energy density. However, the detrimental effects of cathodal structure/morphology/composition/conductivity evolution on electrochemical performance significantly restrict the development of ASSBs. To elaborately investigate these cathodal dynamic evolution processes and deterioration mechanisms of ASSBs, in situ transmission electron microscopy (TEM) technology has been extensively introduced into the ASSB research. This paper discusses the latest important scientific discoveries toward cathodal dynamic evolution in multitype ASSBs through in situ TEM and highlights key challenges for in situ TEM to analyze ASSB cathodes with a higher spatial resolution. Lastly, insights for future directions of in situ TEM monitoring multiscale electro-chemo-mechanical evolution of ASSBs are prospectively provided. This Review will deepen the fundamental understanding of cathodal dynamic mechanisms and open new opportunities for the optimization and development of in situ TEM in ASSBs.
全固态电池(ASSB)技术具有极高的安全性和能量密度,是最有前途的储能方法之一。然而,阴极结构/形态/组成/电导率演化对电化学性能的不利影响极大地限制了全固态电池的发展。为了详细研究这些阴极动态演化过程和 ASSB 的劣化机制,原位透射电子显微镜(TEM)技术已被广泛引入 ASSB 研究中。本文讨论了通过原位 TEM 对多类型 ASSB 阴极动态演化的最新重要科学发现,并强调了原位 TEM 以更高空间分辨率分析 ASSB 阴极所面临的关键挑战。最后,还展望了原位 TEM 监测 ASSB 多尺度电化学机械演变的未来发展方向。本综述将加深对阴极动态机制的基本理解,并为 ASSB 原位 TEM 的优化和发展带来新的机遇。
{"title":"In Situ Transmission Electron Microscopy Advancing Cathodal Dynamic Visualization in All-Solid-State Battery","authors":"Yue Zheng, Lei Hu, Wenru Li, Tianpeng Huang, Jun Ma*, Shanmu Dong* and Guanglei Cui*, ","doi":"10.1021/acsenergylett.4c0187810.1021/acsenergylett.4c01878","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c01878https://doi.org/10.1021/acsenergylett.4c01878","url":null,"abstract":"<p >All-solid-state battery (ASSB) technology is one of the most promising approaches to energy storage due to its great safety and energy density. However, the detrimental effects of cathodal structure/morphology/composition/conductivity evolution on electrochemical performance significantly restrict the development of ASSBs. To elaborately investigate these cathodal dynamic evolution processes and deterioration mechanisms of ASSBs, <i>in situ</i> transmission electron microscopy (TEM) technology has been extensively introduced into the ASSB research. This paper discusses the latest important scientific discoveries toward cathodal dynamic evolution in multitype ASSBs through <i>in situ</i> TEM and highlights key challenges for <i>in situ</i> TEM to analyze ASSB cathodes with a higher spatial resolution. Lastly, insights for future directions of <i>in situ</i> TEM monitoring multiscale electro-chemo-mechanical evolution of ASSBs are prospectively provided. This Review will deepen the fundamental understanding of cathodal dynamic mechanisms and open new opportunities for the optimization and development of <i>in situ</i> TEM in ASSBs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5296–5309 5296–5309"},"PeriodicalIF":19.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09eCollection Date: 2024-11-04DOI: 10.1021/acsmaterialslett.4c01455
Ajay Piriya Vijaya Kumar Saroja, Yupei Han, Charlie A F Nason, Gopinathan Sankar, Pan He, Yi Lu, Henry R Tinker, Andrew Stewart, Veronica Celorrio, Min Zhou, Jiayan Luo, Yang Xu
MoS2 is regarded as one of the most promising potassium-ion battery (PIB) anodes. Despite the great progress to enhance its electrochemical performance, understanding of the electrochemical mechanism to store K-ions in MoS2 remains unclear. This work reports that the K storage process in MoS2 follows a complex reaction pathway involving the conversion reactions of Mo and S, showing both cationic redox activity of Mo and anionic redox activity of S. The presence of dual redox activity, characterized in-depth through synchrotron X-ray absorption, X-ray photoelectron, Raman, and UV-vis spectroscopies, reveals that the irreversible Mo oxidation during the depotassiation process directs the reaction pathway toward S oxidation, which leads to the occurrence of K-S electrochemistry in the (de)potassiation process. Moreover, the dual reaction pathway can be adjusted by controlling the discharge depth at different cycling stages of MoS2, realizing a long-term stable cycle life of MoS2 as a PIB anode.
MoS2 被认为是最有前途的钾离子电池(PIB)阳极之一。尽管在提高其电化学性能方面取得了巨大进步,但人们对 MoS2 中储存钾离子的电化学机理仍不清楚。这项研究报告指出,MoS2 中的钾离子存储过程遵循一个复杂的反应途径,涉及 Mo 和 S 的转化反应,同时显示出 Mo 的阳离子氧化还原活性和 S 的阴离子氧化还原活性。通过同步辐射 X 射线吸收、X 射线光电子学、拉曼光谱和紫外-可见光谱对双重氧化还原活性的存在进行深入研究,发现在去钾化过程中,不可逆的 Mo 氧化将反应途径引向 S 氧化,从而导致在(去)钾化过程中发生 K-S 电化学反应。此外,还可以通过控制 MoS2 不同循环阶段的放电深度来调节双重反应途径,从而实现 MoS2 作为 PIB 阳极的长期稳定循环寿命。
{"title":"Cationic and Anionic Dual Redox Activity of MoS<sub>2</sub> for Electrochemical Potassium Storage.","authors":"Ajay Piriya Vijaya Kumar Saroja, Yupei Han, Charlie A F Nason, Gopinathan Sankar, Pan He, Yi Lu, Henry R Tinker, Andrew Stewart, Veronica Celorrio, Min Zhou, Jiayan Luo, Yang Xu","doi":"10.1021/acsmaterialslett.4c01455","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c01455","url":null,"abstract":"<p><p>MoS<sub>2</sub> is regarded as one of the most promising potassium-ion battery (PIB) anodes. Despite the great progress to enhance its electrochemical performance, understanding of the electrochemical mechanism to store K-ions in MoS<sub>2</sub> remains unclear. This work reports that the K storage process in MoS<sub>2</sub> follows a complex reaction pathway involving the conversion reactions of Mo and S, showing both cationic redox activity of Mo and anionic redox activity of S. The presence of dual redox activity, characterized in-depth through synchrotron X-ray absorption, X-ray photoelectron, Raman, and UV-vis spectroscopies, reveals that the irreversible Mo oxidation during the depotassiation process directs the reaction pathway toward S oxidation, which leads to the occurrence of K-S electrochemistry in the (de)potassiation process. Moreover, the dual reaction pathway can be adjusted by controlling the discharge depth at different cycling stages of MoS<sub>2</sub>, realizing a long-term stable cycle life of MoS<sub>2</sub> as a PIB anode.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"5031-5038"},"PeriodicalIF":9.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1021/acsenergylett.4c0209810.1021/acsenergylett.4c02098
Chwenhaw Liao, Runmin Tao, Guoliang Wang, Weiyuan Duan, Jueming Bing, Christopher G. Bailey, Tik Lun Leung, Zhuofeng Li, Chiung-Han Chen, Laura Granados Caro, Zeljko Pastuovic, Stefania Peracchi, Ryan Drury, Alan Xu, Ceri Brenner, Dane R. McCamey, Hieu T. Nguyen, Andreas Lambertz, Chu-Chen Chueh, Kaining Ding, David R. McKenzie, Jianghui Zheng*, Md Arafat Mahmud* and Anita W. Y. Ho-Baillie*,
Here, we report gas-quenched quasi-2D (GA)(MA)5Pb5I16 perovskites for single junction solar cells and monolithic-silicon tandem solar cells. This is the first time quasi-2D (GA)(MA)5Pb5I16 perovskite cells have been tested with proton beams, showing excellent tolerance. A representative tandem cell also passed the IEC 61215 Thermal Cycling Test (−40 °C ↔ 85 °C) twice, retaining 95.0% of its initial PCE after 400 cycles.
{"title":"Gas Quenched Alternating Cations in the Interlayer Space Quasi-2D (GA)(MA)5Pb5I16 Perovskite for Radiation Tolerant Single Junction and Stable Monolithic Quasi-2D Perovskite-Silicon Tandem Solar Cells","authors":"Chwenhaw Liao, Runmin Tao, Guoliang Wang, Weiyuan Duan, Jueming Bing, Christopher G. Bailey, Tik Lun Leung, Zhuofeng Li, Chiung-Han Chen, Laura Granados Caro, Zeljko Pastuovic, Stefania Peracchi, Ryan Drury, Alan Xu, Ceri Brenner, Dane R. McCamey, Hieu T. Nguyen, Andreas Lambertz, Chu-Chen Chueh, Kaining Ding, David R. McKenzie, Jianghui Zheng*, Md Arafat Mahmud* and Anita W. Y. Ho-Baillie*, ","doi":"10.1021/acsenergylett.4c0209810.1021/acsenergylett.4c02098","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02098https://doi.org/10.1021/acsenergylett.4c02098","url":null,"abstract":"<p >Here, we report gas-quenched quasi-2D (GA)(MA)<sub>5</sub>Pb<sub>5</sub>I<sub>16</sub> perovskites for single junction solar cells and monolithic-silicon tandem solar cells. This is the first time quasi-2D (GA)(MA)<sub>5</sub>Pb<sub>5</sub>I<sub>16</sub> perovskite cells have been tested with proton beams, showing excellent tolerance. A representative tandem cell also passed the IEC 61215 Thermal Cycling Test (−40 °C ↔ 85 °C) twice, retaining 95.0% of its initial PCE after 400 cycles.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5310–5318 5310–5318"},"PeriodicalIF":19.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1021/acsenergylett.4c0248010.1021/acsenergylett.4c02480
Byoungchul Kwon, Alexandra Schraiber and Judith A. Jeevarajan*,
The study included characterization of the components of fire and smoke during thermal runaway for NMC and LFP cells, modules, and batteries and to determine if the size and volume of fire and smoke released scaleup linearly when one goes from the cell to module and then to a battery configuration for the same cathode chemistry. Thermal runaway tests were conducted in ambient as well as inert environments to characterize gas release with and without combustion. During thermal runaway, the test articles exhibited fire, smoke, or both. Gas analysis exhibited hydrocarbons as well as hydrogen and carbon dioxide that could accumulate above the lower flammability limit (LFL) of the gas mixture if released into an enclosure. The nature of fire and volume of smoke released do not always scale linearly with an increasing number of cells, showing that testing in the relevant configuration and environment is imperative. A good understanding of gases released into a certain enclosed space will help with safer vent and deflagration designs and provide a warning to first responders and firefighters of the expected nature of gases.
{"title":"Evaluating Fire and Smoke Risks with Lithium-Ion Cells, Modules, and Batteries","authors":"Byoungchul Kwon, Alexandra Schraiber and Judith A. Jeevarajan*, ","doi":"10.1021/acsenergylett.4c0248010.1021/acsenergylett.4c02480","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02480https://doi.org/10.1021/acsenergylett.4c02480","url":null,"abstract":"<p >The study included characterization of the components of fire and smoke during thermal runaway for NMC and LFP cells, modules, and batteries and to determine if the size and volume of fire and smoke released scaleup linearly when one goes from the cell to module and then to a battery configuration for the same cathode chemistry. Thermal runaway tests were conducted in ambient as well as inert environments to characterize gas release with and without combustion. During thermal runaway, the test articles exhibited fire, smoke, or both. Gas analysis exhibited hydrocarbons as well as hydrogen and carbon dioxide that could accumulate above the lower flammability limit (LFL) of the gas mixture if released into an enclosure. The nature of fire and volume of smoke released do not always scale linearly with an increasing number of cells, showing that testing in the relevant configuration and environment is imperative. A good understanding of gases released into a certain enclosed space will help with safer vent and deflagration designs and provide a warning to first responders and firefighters of the expected nature of gases.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5319–5328 5319–5328"},"PeriodicalIF":19.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c02480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-11-04DOI: 10.1021/acsmaterialslett.4c01899
Martina Rimmele, Zhuoran Qiao, Filip Aniés, Adam V Marsh, Aren Yazmaciyan, George Harrison, Shadi Fatayer, Nicola Gasparini, Martin Heeney
The performance of organic photodetectors (OPDs) using conjugated polymer donors and molecular acceptors has improved rapidly, but many polymers are difficult to upscale due to their complex structures. This study examines two low-complexity thiophene copolymers with substituted benzooxadiazole (FO6-BO-T) or benzothiadiazole (FO6-T). Substituting sulfur with oxygen in FO6-BO-T increased its ionization energy without affecting the optical gap. When blended with the nonfullerene acceptor IDSe, FO6-BO-T showed a significantly lower dark current density (2.06·10-9 A cm-2 at -2 V) compared to FO6-T. Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements demonstrated that pristine FO6-BO-T exhibited a more ordered morphology than FO6-T. However, blending resulted in a significant disruption to the ordered domains in both cases, with a loss of orientational order, suggesting that FO6-BO-T's improved performance is largely related to its increased ionization energy. This study demonstrates the potential of chalcogen atom engineering to enhance the performance of the OPD in scalable polymers.
使用共轭聚合物供体和分子受体的有机光电探测器(OPD)的性能迅速提高,但许多聚合物因结构复杂而难以升级。本研究探讨了两种低复杂度的噻吩与取代苯并噁二唑(FO6-BO-T)或苯并噻二唑(FO6-T)的共聚物。用氧取代 FO6-BO-T 中的硫可提高其电离能,但不会影响光隙。与非富勒烯受体 IDSe 混合后,FO6-BO-T 的暗电流密度(-2 V 时为 2.06-10-9 A cm-2)明显低于 FO6-T。掠入射广角 X 射线散射(GIWAXS)测量结果表明,原始 FO6-BO-T 的形态比 FO6-T 更有序。然而,在这两种情况下,混合会导致有序畴的严重破坏,并失去取向有序性,这表明 FO6-BO-T 性能的提高在很大程度上与其电离能的增加有关。这项研究证明了缩醛原子工程在可扩展聚合物中提高 OPD 性能的潜力。
{"title":"Energy Level Tuning in Conjugated Donor Polymers by Chalcogen Exchange for Low Dark Current Organic Photodetectors.","authors":"Martina Rimmele, Zhuoran Qiao, Filip Aniés, Adam V Marsh, Aren Yazmaciyan, George Harrison, Shadi Fatayer, Nicola Gasparini, Martin Heeney","doi":"10.1021/acsmaterialslett.4c01899","DOIUrl":"https://doi.org/10.1021/acsmaterialslett.4c01899","url":null,"abstract":"<p><p>The performance of organic photodetectors (OPDs) using conjugated polymer donors and molecular acceptors has improved rapidly, but many polymers are difficult to upscale due to their complex structures. This study examines two low-complexity thiophene copolymers with substituted benzooxadiazole (<b>FO6-BO-T</b>) or benzothiadiazole (<b>FO6-T</b>). Substituting sulfur with oxygen in <b>FO6-BO-T</b> increased its ionization energy without affecting the optical gap. When blended with the nonfullerene acceptor IDSe, <b>FO6-BO-T</b> showed a significantly lower dark current density (2.06·10<sup>-9</sup> A cm<sup>-2</sup> at -2 V) compared to <b>FO6-T</b>. Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements demonstrated that pristine <b>FO6-BO-T</b> exhibited a more ordered morphology than <b>FO6-T</b>. However, blending resulted in a significant disruption to the ordered domains in both cases, with a loss of orientational order, suggesting that <b>FO6-BO-T</b>'s improved performance is largely related to its increased ionization energy. This study demonstrates the potential of chalcogen atom engineering to enhance the performance of the OPD in scalable polymers.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"5006-5015"},"PeriodicalIF":9.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1021/acsenergylett.4c0187510.1021/acsenergylett.4c01875
Omar E. Solis, Miriam Mínguez-Avellán, Pablo F. Betancur, Raúl I. Sánchez- Alarcón, Isabelle Rodriguez, Juan P. Martínez-Pastor, Teresa S. Ripolles*, Rafael Abargues* and Pablo P. Boix*,
Tin-based perovskites (Sn-PVK) are promising lead-free alternatives for efficient photovoltaic technology, but they face challenges related to bulk and surface defects due to suboptimal crystallization and Sn2+ oxidation. Introducing thiophene-2-ethylammonium halides (TEAX, where X = I, Br, Cl) improves FASnI3 crystallization and reduces Sn4+ formation. This is achieved by adjusting the crystallization dynamics through the formation of a complex between S and Sn during the preparation of the precursor solution, which also inhibits Sn2+ oxidation in the resulting films. In solar cells, these additives boost power conversion efficiency (PCE) from 6.6% (without additives) to 9.4% (using TEABr), with further enhancement to 12% by adjusting selective contacts. The addition of TEAX also increases the Sn2+ content, outperforming control. Devices with TEABr maintained over 95% of their initial PCE after 2000 h in N2 under continuous operation with 1 sun simulated illumination.
{"title":"Adjusting the Crystallization of Tin Perovskites through Thiophene Additives for Improved Photovoltaic Stability","authors":"Omar E. Solis, Miriam Mínguez-Avellán, Pablo F. Betancur, Raúl I. Sánchez- Alarcón, Isabelle Rodriguez, Juan P. Martínez-Pastor, Teresa S. Ripolles*, Rafael Abargues* and Pablo P. Boix*, ","doi":"10.1021/acsenergylett.4c0187510.1021/acsenergylett.4c01875","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c01875https://doi.org/10.1021/acsenergylett.4c01875","url":null,"abstract":"<p >Tin-based perovskites (Sn-PVK) are promising lead-free alternatives for efficient photovoltaic technology, but they face challenges related to bulk and surface defects due to suboptimal crystallization and Sn<sup>2+</sup> oxidation. Introducing thiophene-2-ethylammonium halides (TEAX, where X = I, Br, Cl) improves FASnI<sub>3</sub> crystallization and reduces Sn<sup>4+</sup> formation. This is achieved by adjusting the crystallization dynamics through the formation of a complex between S and Sn during the preparation of the precursor solution, which also inhibits Sn<sup>2+</sup> oxidation in the resulting films. In solar cells, these additives boost power conversion efficiency (PCE) from 6.6% (without additives) to 9.4% (using TEABr), with further enhancement to 12% by adjusting selective contacts. The addition of TEAX also increases the Sn<sup>2+</sup> content, outperforming control. Devices with TEABr maintained over 95% of their initial PCE after 2000 h in N<sub>2</sub> under continuous operation with 1 sun simulated illumination.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5288–5295 5288–5295"},"PeriodicalIF":19.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c01875","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1021/acsenergylett.4c0208110.1021/acsenergylett.4c02081
Xu Dong, Alexander Mayer, Zhen Chen, Stefano Passerini* and Dominic Bresser*,
High-performance polymer electrolyte systems for lithium–metal batteries (LMBs) commonly contain a relatively high amount of fluorine to stabilize the electrode|electrolyte interfaces, particularly that with lithium metal. Herein, we report an advanced single-ion conducting polymer electrolyte that contains less fluorine in the backbone than previous systems, enabling a significant cost reduction, while still providing highly stable cycling of LMB cells containing LiNi0.6Co0.2Mn0.2O2 (NCM622) and LiNi0.8Co0.1Mn0.1O2 (NCM811) positive electrodes. Moreover, we show that the choice of the incorporated “molecular transporters”, i.e., small molecules with high mobility and a high dielectric constant to facilitate the Li+ transport, is essential for achieving high-performance LMB cells. In fact, the transition from pure ethylene carbonate to a mixture with propylene carbonate allows for an extended electrochemical stability toward oxidation and higher limiting current density, resulting in enhanced rate capability and cycling stability of Li∥NCM cells─and the possibility to cycle these cells also at ambient temperature.
{"title":"Advanced Single-Ion Conducting Block Copolymer Electrolyte for Safer and Less Costly Lithium–Metal Batteries","authors":"Xu Dong, Alexander Mayer, Zhen Chen, Stefano Passerini* and Dominic Bresser*, ","doi":"10.1021/acsenergylett.4c0208110.1021/acsenergylett.4c02081","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02081https://doi.org/10.1021/acsenergylett.4c02081","url":null,"abstract":"<p >High-performance polymer electrolyte systems for lithium–metal batteries (LMBs) commonly contain a relatively high amount of fluorine to stabilize the electrode|electrolyte interfaces, particularly that with lithium metal. Herein, we report an advanced single-ion conducting polymer electrolyte that contains less fluorine in the backbone than previous systems, enabling a significant cost reduction, while still providing highly stable cycling of LMB cells containing LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM<sub>622</sub>) and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM<sub>811</sub>) positive electrodes. Moreover, we show that the choice of the incorporated “molecular transporters”, i.e., small molecules with high mobility and a high dielectric constant to facilitate the Li<sup>+</sup> transport, is essential for achieving high-performance LMB cells. In fact, the transition from pure ethylene carbonate to a mixture with propylene carbonate allows for an extended electrochemical stability toward oxidation and higher limiting current density, resulting in enhanced rate capability and cycling stability of Li∥NCM cells─and the possibility to cycle these cells also at ambient temperature.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5279–5287 5279–5287"},"PeriodicalIF":19.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1021/acsenergylett.4c0201910.1021/acsenergylett.4c02019
Saul Perez-Beltran, Dacheng Kuai and Perla B. Balbuena*,
The stabilization and enhanced performance of lithium metal batteries (LMBs) depend on the formation and evolution of the Solid Electrolyte Interphase (SEI) layer as a critical component for regulating the Li metal electrodeposition processes. This study employs a first-principles kinetic Monte Carlo (kMC) model to simulate the SEI formation and Li+ electrodeposition processes on a lithium metal anode, integrating both the electrochemical electrolyte reduction reactions and the diffusion events giving place to the SEI aggregation processes during battery charge and discharge processes. The model replicates the competitive interactions between organic and inorganic SEI components, emphasizing the influence of the cycling regime. Results indicate that grain boundaries within the SEI facilitate faster lithium-ion transport compared to crystalline regions, crucial for improving the performance and stability of LMBs. The findings underscore the importance of dynamic SEI modeling for further development of next-generation high-energy-density batteries.
锂金属电池(LMB)的稳定和性能提升取决于固态电解质相间层(SEI)的形成和演化,这是调节锂金属电沉积过程的关键组成部分。本研究采用第一原理动力学蒙特卡洛(kMC)模型模拟锂金属阳极上 SEI 的形成和 Li+ 的电沉积过程,同时整合了电池充放电过程中的电化学电解质还原反应和 SEI 聚集过程的扩散事件。该模型复制了有机和无机 SEI 成分之间的竞争性相互作用,强调了循环机制的影响。结果表明,与结晶区域相比,SEI 中的晶界有助于加快锂离子传输速度,这对提高 LMB 的性能和稳定性至关重要。这些发现强调了动态 SEI 建模对进一步开发新一代高能量密度电池的重要性。
{"title":"SEI Formation and Lithium-Ion Electrodeposition Dynamics in Lithium Metal Batteries via First-Principles Kinetic Monte Carlo Modeling","authors":"Saul Perez-Beltran, Dacheng Kuai and Perla B. Balbuena*, ","doi":"10.1021/acsenergylett.4c0201910.1021/acsenergylett.4c02019","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02019https://doi.org/10.1021/acsenergylett.4c02019","url":null,"abstract":"<p >The stabilization and enhanced performance of lithium metal batteries (LMBs) depend on the formation and evolution of the Solid Electrolyte Interphase (SEI) layer as a critical component for regulating the Li metal electrodeposition processes. This study employs a first-principles kinetic Monte Carlo (kMC) model to simulate the SEI formation and Li<sup>+</sup> electrodeposition processes on a lithium metal anode, integrating both the electrochemical electrolyte reduction reactions and the diffusion events giving place to the SEI aggregation processes during battery charge and discharge processes. The model replicates the competitive interactions between organic and inorganic SEI components, emphasizing the influence of the cycling regime. Results indicate that grain boundaries within the SEI facilitate faster lithium-ion transport compared to crystalline regions, crucial for improving the performance and stability of LMBs. The findings underscore the importance of dynamic SEI modeling for further development of next-generation high-energy-density batteries.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 11","pages":"5268–5278 5268–5278"},"PeriodicalIF":19.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c02019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1021/acsenergylett.4c0193110.1021/acsenergylett.4c01931
Suhwan Kim, Hyobin Lee, Jaejin Lim, Joonam Park and Yong Min Lee*,
The intricate correlation between microstructural properties and performance in lithium rechargeable batteries necessitates advanced methods to elucidate their mechanisms. In this regard, digital twin simulations have been utilized by creating virtual replicas that simulate battery behaviors and performances under various conditions. However, the relationship between microstructural parameters and battery performances is still not fully understood. This focus review aims to revisit the state of digital twin simulations, with a particular focus on its effectiveness for analyzing microstructures and unraveling the hidden parameters. For this purpose, we explore microstructure formation and validation methods as top-down and bottom-up simulation techniques and provide a comprehensive view of multiphysics approaches for understanding the electrochemical, mechanical, and thermal behaviors. Finally, we discuss the potential of artificial intelligence (AI)-driven multiscale modeling strategies and dynamic simulations, offering insights into how digital twin technology can advance battery design and optimization for enhanced performance and safety.
{"title":"Digital Twin Battery Modeling and Simulations: A New Analysis and Design Tool for Rechargeable Batteries","authors":"Suhwan Kim, Hyobin Lee, Jaejin Lim, Joonam Park and Yong Min Lee*, ","doi":"10.1021/acsenergylett.4c0193110.1021/acsenergylett.4c01931","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c01931https://doi.org/10.1021/acsenergylett.4c01931","url":null,"abstract":"<p >The intricate correlation between microstructural properties and performance in lithium rechargeable batteries necessitates advanced methods to elucidate their mechanisms. In this regard, digital twin simulations have been utilized by creating virtual replicas that simulate battery behaviors and performances under various conditions. However, the relationship between microstructural parameters and battery performances is still not fully understood. This focus review aims to revisit the state of digital twin simulations, with a particular focus on its effectiveness for analyzing microstructures and unraveling the hidden parameters. For this purpose, we explore microstructure formation and validation methods as top-down and bottom-up simulation techniques and provide a comprehensive view of multiphysics approaches for understanding the electrochemical, mechanical, and thermal behaviors. Finally, we discuss the potential of artificial intelligence (AI)-driven multiscale modeling strategies and dynamic simulations, offering insights into how digital twin technology can advance battery design and optimization for enhanced performance and safety.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 10","pages":"5225–5239 5225–5239"},"PeriodicalIF":19.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1021/acsenergylett.4c0235010.1021/acsenergylett.4c02350
Michal Ronovský, Olivia Dunseath, Tomáš Hrbek, Peter Kúš, Matija Gatalo, Shlomi Polani, Jan Kubát, Daniel Götz, Hridya Nedumkulam, Andrea Sartori, Enrico Petrucco, Francisco Ruiz-Zepeda, Nejc Hodnik, Alex Martinez Bonastre, Peter Strasser and Jakub Drnec*,
Despite extensive efforts to reduce the costs of high-performance electrochemical devices, incorporating catalyst materials frequently falls short of achieving performance targets. Platinum alloys, known for their high oxygen reduction activity, exemplify this challenge due to integration difficulties. Here, we introduce an in situ X-ray diffraction approach to investigate structural changes in PtCo and PtNi catalysts during ink preparation. Contrary to previous assumptions that acidity is the main factor driving catalyst dissolution, our findings demonstrate that temperature plays a more critical role. Additionally, we observe rapid structural degradation during the hot-pressing of catalyst-coated membranes (CCMs), a critical yet often unavoidable processing step. These results indicate that significant catalyst deactivation can occur before operation, emphasizing the need for optimized fabrication processes. This study highlights the importance of refining ink formulation and processing protocols to fully leverage advanced materials in CCM-based energy conversion systems.
尽管为降低高性能电化学装置的成本做出了大量努力,但催化剂材料的集成往往无法实现性能目标。众所周知,铂合金具有很高的氧还原活性,但由于整合困难,铂合金也面临着这一挑战。在此,我们介绍了一种原位 X 射线衍射方法,用于研究铂钴和铂镍催化剂在油墨制备过程中的结构变化。与以往认为酸性是导致催化剂溶解的主要因素相反,我们的研究结果表明温度起着更为关键的作用。此外,我们还观察到催化剂涂层膜(CCM)在热压过程中的快速结构降解,这是一个关键但往往不可避免的加工步骤。这些结果表明,催化剂会在运行前发生严重失活,这就强调了优化制造工艺的必要性。这项研究强调了改进油墨配方和加工规程的重要性,以便在基于 CCM 的能源转换系统中充分利用先进材料。
{"title":"Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication","authors":"Michal Ronovský, Olivia Dunseath, Tomáš Hrbek, Peter Kúš, Matija Gatalo, Shlomi Polani, Jan Kubát, Daniel Götz, Hridya Nedumkulam, Andrea Sartori, Enrico Petrucco, Francisco Ruiz-Zepeda, Nejc Hodnik, Alex Martinez Bonastre, Peter Strasser and Jakub Drnec*, ","doi":"10.1021/acsenergylett.4c0235010.1021/acsenergylett.4c02350","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02350https://doi.org/10.1021/acsenergylett.4c02350","url":null,"abstract":"<p >Despite extensive efforts to reduce the costs of high-performance electrochemical devices, incorporating catalyst materials frequently falls short of achieving performance targets. Platinum alloys, known for their high oxygen reduction activity, exemplify this challenge due to integration difficulties. Here, we introduce an in situ X-ray diffraction approach to investigate structural changes in PtCo and PtNi catalysts during ink preparation. Contrary to previous assumptions that acidity is the main factor driving catalyst dissolution, our findings demonstrate that temperature plays a more critical role. Additionally, we observe rapid structural degradation during the hot-pressing of catalyst-coated membranes (CCMs), a critical yet often unavoidable processing step. These results indicate that significant catalyst deactivation can occur before operation, emphasizing the need for optimized fabrication processes. This study highlights the importance of refining ink formulation and processing protocols to fully leverage advanced materials in CCM-based energy conversion systems.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"9 10","pages":"5251–5258 5251–5258"},"PeriodicalIF":19.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}